51
|
Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ 2016; 4:e2097. [PMID: 27330860 PMCID: PMC4906661 DOI: 10.7717/peerj.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Institute of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xuelian He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guiping He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
52
|
Lai YS, Li S, Tang Q, Li HX, Chen SX, Li PW, Xu JY, Xu Y, Guo X. The Dark-Purple Tea Cultivar 'Ziyan' Accumulates a Large Amount of Delphinidin-Related Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2719-26. [PMID: 26996195 DOI: 10.1021/acs.jafc.5b04036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, we developed a novel tea cultivar 'Ziyan' with distinct purple leaves. There was a significant correlation between leaf color and anthocyanin pigment content in the leaves. A distinct allocation of metabolic flow for B-ring trihydroxylated anthocyanins and catechins in 'Ziyan' was observed. Delphinidin, cyanidin, and pelargonidin (88.15 mg/100 g FW in total) but no other anthocyanin pigments were detected in 'Ziyan', and delphinidin (70.76 mg/100 g FW) was particularly predominant. An analysis of the catechin content in 'Ziyan' and eight other cultivars indicated that 'Ziyan' exhibits a preference for synthesizing B-ring trihydroxylated catechins (with a proportion of 74%). The full-length cDNA sequences of flavonoid pathway genes were isolated by RNA-Seq coupled with conventional TA cloning, and their expression patterns were characterized. Purple-leaved cultivars had lower amounts of total catechins, polyphenols, and water extract than ordinary non-anthocyanin cultivars but similar levels of caffeine. Because dark-purple-leaved Camellia species are rare in nature, this study provides new insights into the interplay between the accumulations of anthocyanins and other bioactive components in tea leaves.
Collapse
Affiliation(s)
- Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Sha Li
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Huan-Xiu Li
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Shen-Xiang Chen
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Pin-Wu Li
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Jin-Yi Xu
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yan Xu
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Xiang Guo
- College of Horticulture, Sichuan Agricultural University , 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| |
Collapse
|
53
|
Huang J, Gao Y, Jia H, Zhang Z. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Mol Ecol Resour 2016; 16:1465-1477. [DOI: 10.1111/1755-0998.12526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Huang
- National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University; Wuhan 430070 China
| | - Youjun Gao
- National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University; Wuhan 430070 China
| | - Haitao Jia
- National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University; Wuhan 430070 China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement; Huazhong Agricultural University; Wuhan 430070 China
- College of Life Science; Huanggang Normal University; Huanggang 438000 China
| |
Collapse
|
54
|
Skorupa M, Gołębiewski M, Domagalski K, Kurnik K, Abu Nahia K, Złoch M, Tretyn A, Tyburski J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:56-70. [PMID: 26795151 DOI: 10.1016/j.plantsci.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
Beta vulgaris ssp. maritima is a halophytic relative of cultivated beets. In the present work a transcriptome response to acute salt stress imposed to excised leaves of sea beet was investigated. Salt treatments consisted of adding NaCl directly to the transpiration stream by immersing the petioles of excised leaves into the salt solutions. Sequencing libraries were generated from leaves subjected to either moderate or strong salt stress. Control libraries were constructed from untreated leaves. Sequencing was performed using the Illumina MiSeq platform. We obtained 32970 unigenes by assembling the pooled reads from all the libraries with Trinity software. Screening the nr database returned 18,362 sequences with functional annotation. Using the reference transcriptome we identified 1,246 genes that were differentially expressed after 48 h of NaCl stress. Genes related to several cellular functions such as membrane transport, osmoprotection, molecular chaperoning, redox metabolism or protein synthesis were differentially expressed in response to salt stress. The response of sea beet leaves to salt treatments was marked out by transcriptomic up-regulation of genes related to photosynthetic carbon fixation, ribosome biogenesis, cell wall-building and cell wall expansion. Furthermore, several novel and undescribed transcripts were responsive to salinity in leaves of sea beet.
Collapse
Affiliation(s)
- Monika Skorupa
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Krzysztof Domagalski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Karim Abu Nahia
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Złoch
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
55
|
Wu ZJ, Tian C, Jiang Q, Li XH, Zhuang J. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep 2016; 6:19748. [PMID: 26813576 PMCID: PMC4728435 DOI: 10.1038/srep19748] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
Tea plant (Camellia sinensis) leaf is an important non-alcoholic beverage resource. The application of quantitative real time polymerase chain reaction (qRT-PCR) has a profound significance for the gene expression studies of tea plant, especially when applied to tea leaf development and metabolism. In this study, nine candidate reference genes (i.e., CsACT7, CsEF-1α, CseIF-4α, CsGAPDH, CsPP2A, CsSAND, CsTBP, CsTIP41, and CsTUB) of C. sinensis were cloned. The quantitative expression data of these genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA, IAA, MeJA, and SA), and gene expression stability was calculated using three common statistical algorithms, namely, geNorm, NormFinder, and Bestkeeper. Results indicated that CsTBP and CsTIP41 were the most stable genes in tea leaf development and CsTBP was the best gene under hormonal stimuli; by contrast, CsGAPDH and CsTUB genes showed the least stability. The gene expression profile of CsNAM gene was analyzed to confirm the validity of the reference genes in this study. Our data provide basis for the selection of reference genes for future biological research in the leaf development and hormonal stimuli of C. sinensis.
Collapse
Affiliation(s)
- Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
56
|
Huang X, Yan HD, Zhang XQ, Zhang J, Frazier TP, Huang DJ, Lu L, Huang LK, Liu W, Peng Y, Ma X, Yan YH. De novo Transcriptome Analysis and Molecular Marker Development of Two Hemarthria Species. FRONTIERS IN PLANT SCIENCE 2016; 7:496. [PMID: 27148320 PMCID: PMC4834353 DOI: 10.3389/fpls.2016.00496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 03/29/2016] [Indexed: 05/11/2023]
Abstract
Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa "Yaan" and H. altissima "1110." Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for "Yaan" and "1110," respectively. In addition, a total of 86,731 "Yaan" and 48,645 "1110" unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11-87.04%) of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus.
Collapse
Affiliation(s)
- Xiu Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Hai-Dong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Quan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Jian Zhang
- Herbivorous Livestock Research Institute, Chongqing Academy of Animal SciencesChongqing, China
- Jian Zhang
| | - Taylor P. Frazier
- Department of Horticulture, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - De-Jun Huang
- Herbivorous Livestock Research Institute, Chongqing Academy of Animal SciencesChongqing, China
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de BarcelonaCerdanyola del Vallès, Spain
| | - Lin-Kai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Lin-Kai Huang
| | - Wei Liu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Yan Peng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Xiao Ma
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| | - Yan-Hong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
57
|
Fan K, Fan D, Ding Z, Su Y, Wang X. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:350-360. [PMID: 26520678 DOI: 10.1016/j.plaphy.2015.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The nitrogen source affects the growth of tea plants and regulates the accumulation of catechins in the leaves. In this report, we assessed the influences of NH4(+) and NO3(-) on plant growth, catechins accumulation and associated gene expression. Compared with the preferential nitrogen source NH4(+), when NO3(-) was supplied as the sole nitrogen source, tea plants showed similar symptoms with the nitrogen-free treatments and showed lower nitrogen, free amino acid accumulation, chlorophyll content and biomass gain, indicating NO3(-) was not efficiently used by these plants. However, the total shoot catechins content was significantly higher for NO3(-) treatments than that for NH4(+) treatment or combined NH4(+)+NO3(-) treatment, suggesting that, in addition to its influence on plant growth, the nitrogen form regulated the accumulation of catechins in tea. The expression of catechins biosynthesis-related genes was associated with the regulation of catechins accumulation and composition changes mediated by nitrogen form. PAL, CHS, CHI, and DFR genes exhibited higher expression levels in plants supplied with NO3(-), in which the transcript level of DFR in the shoots was significantly correlated with the catechins content. In the end, we identified a new function for the Cs-miR156, which was drastically induced through NH4(+). Moreover, a potential mechanism of the Cs-miR156 pathway in regulating catechins biosynthesis in tea plants has been suggested, with particular respect to nitrogen forms. Cs-miR156 might repress the expression of the target gene SPL to regulate the DFR gene, which plays a vital role in catechins biosynthesis.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Dongmei Fan
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Zhaotang Ding
- Institute of Tea Science, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xiaochang Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
58
|
Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 2015; 576:52-9. [PMID: 26431998 DOI: 10.1016/j.gene.2015.09.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023]
Abstract
In vascular plants, heat shock transcription factors (Hsfs) regulate heat stress response by regulating the expression of heat shock proteins. This study systematically and comprehensively analyzed the Hsf family in tea plant [Camellia sinensis (L.) O. Kuntze]. A total of 16 CsHsfs were identified from the transcriptome database of tea plant and analyzed for their phylogenetic relationships, motifs, and physicochemical characteristics. On the basis of the phylogenetic comparison of tea plant with Arabidopsis thaliana, Populus trichocarpa, Theobroma cacao, and Oryza sativa, the CsHsfs were classified into three classes, namely, A (56.25%), B (37.50%), and C (6.25%). Heat mapping showed that the expression profiles of CsHsf genes under non-stress conditions varied among four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. Six CsHsf genes (CsHsfA1a, CsHsfA1b, CsHsfA6, CsHsfB1, CsHsfB2b, and CsHsfC1) were selected from classes A, B, and C to analyze the expression profiles of CsHsf genes through quantitative real-time PCR in 'Yingshuang', 'Anjibaicha', and 'Yunnanshilixiang' under high (38 °C) or low (4 °C) temperature stress. Temperature stress positively or negatively regulated all of the selected CsHsf genes, and the expression levels evidently varied even among CsHsf genes belonging to the same class. This study provided a relatively detailed summary of Hsfs in tea plant and may serve as a reference for further studies on the mechanism of temperature stress regulation by CsHsfs.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Huang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
59
|
Wei K, Wang L, Zhang C, Wu L, Li H, Zhang F, Cheng H. Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis. PLoS One 2015; 10:e0137925. [PMID: 26367395 PMCID: PMC4569414 DOI: 10.1371/journal.pone.0137925] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/23/2015] [Indexed: 12/15/2022] Open
Abstract
The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3′H and F3′5′H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3′H and F3′5′H genes (including CsF3′5′H1, CsF3′H1, CsF3′H2 and CsF3′H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3′H and F3′5′H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3′H genes and a F3′5′H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea.
Collapse
Affiliation(s)
- Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyuan Wang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengcai Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyun Wu
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hailin Li
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Fen Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- * E-mail:
| |
Collapse
|
60
|
Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Mol Genet Genomics 2015; 291:255-69. [PMID: 26308611 DOI: 10.1007/s00438-015-1107-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/14/2015] [Indexed: 01/17/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.
Collapse
Affiliation(s)
- Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
61
|
Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC PLANT BIOLOGY 2015; 15:190. [PMID: 26245644 PMCID: PMC4527363 DOI: 10.1186/s12870-015-0574-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tea plants (Camellia sinensis) are used to produce one of the most important beverages worldwide. The nutritional value and healthful properties of tea are closely related to the large amounts of three major characteristic constituents including polyphenols (mainly catechins), theanine and caffeine. Although oil tea (Camellia oleifera) belongs to the genus Camellia, this plant lacks these three characteristic constituents. Comparative analysis of tea and oil tea via RNA-Seq would help uncover the genetic components underlying the biosynthesis of characteristic metabolites in tea. RESULTS We found that 3,787 and 3,359 bud genes, as well as 4,042 and 3,302 leaf genes, were up-regulated in tea and oil tea, respectively. High-performance liquid chromatography (HPLC) analysis revealed high levels of all types of catechins, theanine and caffeine in tea compared to those in oil tea. Activation of the genes involved in the biosynthesis of these characteristic compounds was detected by RNA-Seq analysis. In particular, genes encoding enzymes involved in flavonoid, theanine and caffeine pathways exhibited considerably different expression levels in tea compared to oil tea, which were also confirmed by quantitative RT-PCR (qRT-PCR). CONCLUSION We assembled 81,826 and 78,863 unigenes for tea and oil tea, respectively, based on their differences at the transcriptomic level. A potential connection was observed between gene expression and content variation for catechins, theanine and caffeine in tea and oil tea. The results demonstrated that the metabolism was activated during the accumulation of characteristic metabolites in tea, which were present at low levels in oil tea. From the molecular biological perspective, our comparison of the transcriptomes and related metabolites revealed differential regulatory mechanisms underlying secondary metabolic pathways in tea versus oil tea.
Collapse
Affiliation(s)
- Yuling Tai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Jing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Congbing Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Chitang Ho
- Department of Food Science, Rutgers University, Rutgers, NJ, USA.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
62
|
Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Funct Integr Genomics 2015; 15:741-52. [PMID: 26233577 DOI: 10.1007/s10142-015-0457-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 01/01/2023]
Abstract
Tea plant (Camellia sinensis) is an important natural resource for the global supply of non-alcoholic beverage production. The extension of tea plant cultivation is challenged by biotic and abiotic stresses. Transcription factors (TFs) of the APETALA 2 (AP2)/ethylene-responsive factor (ERF) family are involved in growth and anti-stresses through multifaceted transcriptional regulation in plants. This study comprehensively analyzed AP2/ERF family TFs from C. sinensis on the basis of the transcriptome sequencing data of four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. A total of 89 putative AP2/ERF transcription factors with full-length AP2 domain were identified from C. sinensis and classified into five subfamilies, namely, AP2, dehydration-responsive-element-binding (DREB), ERF, related to ABI3/VP (RAV), and Soloist. All identified CsAP2/ERF genes presented relatively stable expression levels in the four tea plant cultivars. Many groups also showed cultivar specificity. Five CsAP2/ERF genes from each AP2/ERF subfamily (DREB, ERF, AP2, and RAV) were related to temperature stresses; these results indicated that AP2/ERF TFs may play important roles in abnormal temperature stress response in C. sinensis.
Collapse
|
63
|
Chen L, Li L, Dai Y, Wang X, Duan Y, Yang G. De novo transcriptome analysis of Osmanthus serrulatus Rehd. flowers and leaves by Illumina sequencing. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
64
|
Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 2015. [PMID: 26220550 PMCID: PMC4518527 DOI: 10.1186/s12864-015-1773-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Major secondary metabolites, including flavonoids, caffeine, and theanine, are important components of tea products and are closely related to the taste, flavor, and health benefits of tea. Secondary metabolite biosynthesis in Camellia sinensis is differentially regulated in different tissues during growth and development. Until now, little was known about the expression patterns of genes involved in secondary metabolic pathways or their regulatory mechanisms. This study aimed to generate expression profiles for C. sinensis tissues and to build a gene regulation model of the secondary metabolic pathways. Results RNA sequencing was performed on 13 different tissue samples from various organs and developmental stages of tea plants, including buds and leaves of different ages, stems, flowers, seeds, and roots. A total of 43.7 Gbp of raw sequencing data were generated, from which 347,827 unigenes were assembled and annotated. There were 46,693, 8446, 3814, 10,206, and 4948 unigenes specifically expressed in the buds and leaves, stems, flowers, seeds, and roots, respectively. In total, 1719 unigenes were identified as being involved in the secondary metabolic pathways in C. sinensis, and the expression patterns of the genes involved in flavonoid, caffeine, and theanine biosynthesis were characterized, revealing the dynamic nature of their regulation during plant growth and development. The possible transcription factor regulation network for the biosynthesis of flavonoid, caffeine, and theanine was built, encompassing 339 transcription factors from 35 families, namely bHLH, MYB, and NAC, among others. Remarkably, not only did the data reveal the possible critical check points in the flavonoid, caffeine, and theanine biosynthesis pathways, but also implicated the key transcription factors and related mechanisms in the regulation of secondary metabolite biosynthesis. Conclusions Our study generated gene expression profiles for different tissues at different developmental stages in tea plants. The gene network responsible for the regulation of the secondary metabolic pathways was analyzed. Our work elucidated the possible cross talk in gene regulation between the secondary metabolite biosynthetic pathways in C. sinensis. The results increase our understanding of how secondary metabolic pathways are regulated during plant development and growth cycles, and help pave the way for genetic selection and engineering for germplasm improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1773-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Fang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yao Yu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Qiong-Yi Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. .,Present address: The University of Queensland, Queensland Brain Institute, Brisbane St Lucia, QLD 4072, Australia.
| | - Sheng-Jun Wang
- Suzhou Genezym Biological Technology Co, Ltd, Suzhou, 215011, China.
| | - Xin-Chao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Da Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Ya-Jun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
65
|
Wei K, Wang L, Zhang C, Wu L, Li H, Zhang F, Cheng H. Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis. PLoS One 2015. [PMID: 26367395 DOI: 10.1371/journal.pgen.00137925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3'H and F3'5'H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3'H and F3'5'H genes (including CsF3'5'H1, CsF3'H1, CsF3'H2 and CsF3'H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3'H and F3'5'H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3'H genes and a F3'5'H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea.
Collapse
Affiliation(s)
- Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyuan Wang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengcai Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Liyun Wu
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hailin Li
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Fen Zhang
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, China; Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| |
Collapse
|
66
|
Zhang Y, Cheng Y, Guo J, Yang E, Liu C, Zheng X, Deng K, Zhou J. Comparative transcriptome analysis to reveal genes involved in wheat hybrid necrosis. Int J Mol Sci 2014; 15:23332-44. [PMID: 25522166 PMCID: PMC4284769 DOI: 10.3390/ijms151223332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469) were investigated using digital gene expression (DGE). A total of 1300 differentially expressed genes were identified, indicating that the response to hybrid necrosis in wheat is complicated. The assignments of the annotated genes based on Gene Ontology (GO) revealed that most of the up-regulated genes belong to “universal stress related”, “DNA/RNA binding”, “protein degradation” functional groups, while the down-regulated genes belong to “carbohydrate metabolism” and “translation regulation” functional groups. These findings suggest that these pathways were affected by hybrid necrosis. Our results provide preliminarily new insight into the underlying molecular mechanisms of hybrid necrosis and will help to identify important candidate genes involved in wheat hybrid necrosis.
Collapse
Affiliation(s)
- Yong Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yan Cheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jiahui Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China.
| | - Xuelian Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jianping Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|