51
|
Zhang Q, Luo T, Yuan D, Liu J, Fu Y, Yuan J. Qilongtian ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibiting IL-17 signal pathway. Sci Rep 2023; 13:6002. [PMID: 37045911 PMCID: PMC10092933 DOI: 10.1038/s41598-023-31439-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis (PF) is a special type of pulmonary parenchymal disease, with chronic, progressive, fibrosis, and high mortality. There is a lack of safe, effective, and affordable treatment methods. Qilongtian (QLT) is a traditional Chinese prescription that is composed of Panax notoginseng, Earthworm, and Rhodiola, and shows the remarkable clinical curative effect of PF. However, the mechanism of QLT remains to be clarified. Therefore, we studied the effectivity of QLT in treating Bleomycin (BLM) induced PF mice. 36 C57BL/6 J mice were randomized into the control group, the model group, the low-, medium- and high-dose QLT group, and Pirfenidone group. After establishing a model of pulmonary fibrosis in mice, the control and model groups were infused with a normal saline solution, and the delivery group was infused with QLT. Pulmonary function in the mice from each group was detected. Pulmonary tissue morphologies and collagen deposition were stained by HE and Masson. The content of hydroxyproline (HYP) was detected by alkaline hydrolysis and the mRNA and protein expression of related genes in pulmonary tissues were detected by using q-PCR, ELISA, and Western blot. Our studies have shown that QLT significantly reduced the inflammatory injury, hydroxy-proline content, and collagen deposition of pulmonary tissue in BLM-induced PF mice and down-regulated the cytokine related to inflammation and fibrosis and PF expression on the mRNA and protein level in PF mice. To identify the mechanism of QLT, the Transcriptome was measured and the IL-17 signal pathway was screened out for further research. Further studies indicated that QLT reduced the mRNAs and protein levels of interleukin 17 (IL-17), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 5 (CXCL5), fos-like antigen 1 (FOSL1), matrix metalloproteinase-9 (MMP9), and amphiregulin (AREG), which are inflammation and fibrosis-related genes in the IL-17 signal pathway. The results indicated that the potential mechanism for QLT in the prevention of PF progression was by inhibiting inflammation resulting in the IL-17 signal pathway. Our study provides the novel scientific basis of QLT and represents new therapeutics for PF in clinical.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Ting Luo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dezheng Yuan
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jing Liu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yi Fu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
- The third Affiliated Hospital of Yunnan University of Chinese Medicine: Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jiali Yuan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
52
|
Han N, Yang ZY, Xie ZX, Xu HZ, Yu TT, Li QR, Li LG, Peng XC, Yang XX, Hu J, Xu X, Chen X, Wang MF, Li TF. Dihydroartemisinin elicits immunogenic death through ferroptosis-triggered ER stress and DNA damage for lung cancer immunotherapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154682. [PMID: 36739636 DOI: 10.1016/j.phymed.2023.154682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.
Collapse
Affiliation(s)
- Ning Han
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Department of hand Microsurgery, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Zi-Yi Yang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Zhong-Xiong Xie
- Department of hand Microsurgery, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Ting-Ting Yu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Department of hand Microsurgery, Dongfeng Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiao-Xin Yang
- School Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jun Hu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Tong-Fei Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
53
|
Wang L, Han X, Li H, Lv C, Wang M. The ethyl acetate extract of Wenxia Changfu Formula inhibits the carcinogenesis of lung adenocarcinoma by regulating PI3K-AKT signaling pathway. Sci Rep 2023; 13:4715. [PMID: 36949111 PMCID: PMC10033682 DOI: 10.1038/s41598-023-31924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer. With a rise in new cases worldwide each year, early diagnosis and treatment are very important. Network pharmacology provides the effective way to evaluate poly-pharmacological effects and anticancer molecular mechanisms of drugs. The aim of the present study was to explore the anti-tumor mechanism of ethyl acetate extract of Wenxia Changfu Formula (WFEA) in lung adenocarcinoma by using analytical chemistry, network pharmacology and molecular biology. A total of 193 compounds were identified from WFEA, mainly including esters, phenols, ketones and alkaloids. Totally, 374 targets were regarded as potential targets of WFEA against lung adenocarcinoma. Interestingly, PI3K-AKT was found to be one of the significantly enriched signaling pathways of targets of WFEA against lung adenocarcinoma. AKT1, MMP3, CASP3 and BCL2 had strong binding effect with compound molecules of WFEA. Some combinations with the best docking binding were identified, including quercetin/oleanolic_acid/emodin/aloe_emodin/catechin-AKT1 and quercetin-MMP3. In lung adenocarcinoma cells, the WFEA inhibited the proliferation, migration and invasion, and promoted the apoptosis. Moreover, the WFEA inhibited the mRNA expression of MMP3 and Bcl-2 and promoted the mRNA expression of Caspase3. In addition, WFEA inhibited the protein phosphorylation of AKT and PI3K. The WFEA had a significant inhibitory effect on lung adenocarcinoma cells, which could inhibit cell proliferation, invasion and metastasis, and induce cell apoptosis. The mechanism of action of WFEA may be involved in the regulation of the PI3K-AKT signaling pathway in the lung adenocarcinoma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Rencheng District, Jining City, 272113, Shandong Province, China
| | - Xiangyu Han
- Emergency Medicine, Jining No. 1 People's Hospital, Jining City, Shandong Province, China
| | - Hui Li
- Department of Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Rencheng District, Jining City, 272113, Shandong Province, China
| | - Chuanfeng Lv
- Pharmacy Department, Jining No. 1 People's Hospital, Jining City, Shandong Province, China
| | - Meng Wang
- Department of Medicine, Jining No. 1 People's Hospital, No. 6 Jiankang Road, Rencheng District, Jining City, 272113, Shandong Province, China.
| |
Collapse
|
54
|
Rajasegaran T, How CW, Saud A, Ali A, Lim JCW. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals (Basel) 2023; 16:ph16030451. [PMID: 36986550 PMCID: PMC10051080 DOI: 10.3390/ph16030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths. Lung cancers can be classified as small-cell (SCLC) or non-small cell (NSCLC). About 84% of all lung cancers are NSCLC and about 16% are SCLC. For the past few years, there have been a lot of new advances in the management of NSCLC in terms of screening, diagnosis and treatment. Unfortunately, most of the NSCLCs are resistant to current treatments and eventually progress to advanced stages. In this perspective, we discuss some of the drugs that can be repurposed to specifically target the inflammatory pathway of NSCLC utilizing its well-defined inflammatory tumor microenvironment. Continuous inflammatory conditions are responsible to induce DNA damage and enhance cell division rate in lung tissues. There are existing anti-inflammatory drugs which were found suitable for repurposing in non-small cell lung carcinoma (NSCLC) treatment and drug modification for delivery via inhalation. Repurposing anti-inflammatory drugs and their delivery through the airway is a promising strategy to treat NSCLC. In this review, suitable drug candidates that can be repurposed to treat inflammation-mediated NSCLC will be comprehensively discussed together with their administration via inhalation from physico-chemical and nanocarrier perspectives.
Collapse
Affiliation(s)
- Thiviyadarshini Rajasegaran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Anoosha Saud
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azhar Ali
- Cancer Science Institute Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
55
|
The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo. J Ginseng Res 2023; 47:173-182. [PMID: 36926617 PMCID: PMC10014223 DOI: 10.1016/j.jgr.2022.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.
Collapse
|
56
|
Li Q, He J, Li S, Tian C, Yang J, Yuan H, Lu Y, Fagone P, Nicoletti F, Xiang M. The combination of gemcitabine and ginsenoside Rh2 enhances the immune function of dendritic cells against pancreatic cancer via the CARD9-BCL10-MALT1 / NF-κB pathway. Clin Immunol 2023; 248:109217. [PMID: 36581220 DOI: 10.1016/j.clim.2022.109217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Cold tumor immune microenvironment (TIME) of pancreatic cancer (PC) with minimal dendritic cell (DC) and T cell infiltration can result in insufficient immunotherapy and chemotherapy. While gemcitabine (GEM) is a first-line chemotherapeutic drug for PC, its efficacy is reduced by immunosuppression and drug resistance. Ginsenoside Rh2 (Rh2) is known to have anti-cancer and immunomodulatory properties. Combining GEM with Rh2 may thus overcome immunosuppression and induce lasting anti-tumor immunity in PC. Here, we showed that after GEM-Rh2 therapy, there was significantly greater tumor infiltration by DCs. Caspase recruitment domain-containing protein 9 (CARD9), a central adaptor protein, was strongly up-regulated DCs with GEM-Rh2 therapy and promoted anti-tumor immune responses by DCs. CARD9 was found to be a critical target for Rh2 to enhance DC function. However, GEM-Rh2 treatment did not achieve the substantial anti-PC efficacy in CARD9-/- mice as in WT mice. The adoptive transfer of WT DCs to DC-depleted PC mice treated with GEM-Rh2 elicited strong anti-tumor immune responses, although CARD9-/- DCs were less effective than WT DCs. Our results showed that GEM-Rh2 may reverse cold TIME by enhancing tumor immunogenicity and decreasing the levels of immunosuppressive factors, reactivating DCs via the CARD9-BCL10-MALT1/ NF-κB pathway. Our findings suggest a potentially feasible and safe treatment strategy for PC, with a unique mechanism of action. Thus, Rh2 activation of DCs may remodel the cold TIME and optimize GEM chemotherapy for future therapeutic use.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jialuo He
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy.
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
57
|
Xia Y, Han H, Gu R, Tao R, Lu K, Sun Z, Shen S, Wang A, Lu Y. The Efficacy and Hemorheological Indexes of Ginseng and Its Active Components for Patients with Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2023; 2023:3144086. [PMID: 36844875 PMCID: PMC9957625 DOI: 10.1155/2023/3144086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is still a slightly less orphan disease after immunotherapy, and routine treatment has low efficiency and adverse events. Ginseng is commonly used in the treatment of NSCLC. The purpose of this study is to assess the efficacy and hemorheological indexes of ginseng and its active components in patients with non-small cell lung cancer. Methods A comprehensive literature search was performed in PubMed, the Cochrane Library, Medline (Ovid), the Web of Science, Embase, CKNI, Wan Fang, VIP, and SinoMed up to July 2021. Only randomized controlled trials evaluating ginseng in combination with chemotherapy versus chemotherapy alone in NSCLC patients were included. Primary outcomes included patients' condition after using ginseng or its active components. Secondary outcomes included changes in immune cells, cytokines, and secretions in serum. Data were extracted by two independent individuals, and the Cochrane Risk of Bias tool version 2.0 was applied for the included studies. Systematic review and meta-analysis were performed by RevMan 5.3 software. Results The results included 1480 cases in 17 studies. The results of the integration of clinical outcomes showed that the treatment of ginseng (or combination of ginseng with chemotherapy) can improve the quality of life for patients with NSCLC. Analysis of immune cell subtypes revealed that ginseng and its active ingredients can upregulate the percentages of antitumor immunocyte subtypes and downregulate the accounts of immunosuppressive cells. In addition, a reduction of the inflammatory level and an increase of antitumor indicators in serum were reported. Meta-analysis showed that Karnofsky score: WMD = 16, 95% CI (9.52, 22.47); quality-of-life score: WMD = 8.55, 95%CI (6.08, 11.03); lesion diameter: WMD = -0.45, 95% CI (-0.75, -0.15); weight: WMD = 4.49, 95% CI (1.18, 7.80); CD3+: WMD = 8.46, 95% CI (5.71, 11.20); CD4+: WMD = 8.45, 95% CI (6.32, 10.57)+; CD8+: WMD = -3.76, 95% CI (-6.34, -1.18); CD4+/CD8+: WMD = 0.32, 95% CI (0.10, 0.53); MDSC: WMD = -2.88, 95% CI (-4.59, -1.17); NK: WMD = 3.67, 95% CI (2.63, 4.71); Treg: WMD = -1.42, 95% CI (-2.33, -0.51); CEA: WMD = -4.01, 95% CI (-4.12, -3.90); NSE: WMD = -4.00, 95% CI (-4.14, -3.86); IL-2: WMD = 9.45, 95% CI (8.08, 10.82); IL-4: WMD = -9.61, 95% CI (-11.16, -8.06); IL-5: WMD = -11.95, 95% CI (-13.51, -10.39); IL-6: WMD = -7.65, 95% CI (-8.70, -6.60); IL-2/IL-5: WMD = 0.51, 95% CI (0.47, 0.55); IFN-γ: WMD = 15.19, 95% CI (3.16, 27.23); IFN-γ/IL-4: WMD = 0.91, 95% CI (0.85, 0.97); VEGF: WMD = -59.29, 95% CI (-72.99, -45.58); TGF-α: WMD = -10.09, 95% CI (-12.24, -7.94); TGF-β: WMD = -135.62, 95% CI (-147.00, -124.24); TGF-β1: WMD = -4.22, 95% CI (-5.04, -3.41); arginase: WMD = -1.81, 95% CI (-3.57, -0.05); IgG: WMD = 1.62, 95% CI (0.18, 3.06); IgM: WMD = -0.45, 95% CI (-0.59, -0.31). All results are statistically significant. No adverse events were reported in the included articles. Conclusion It is a reasonable choice to use ginseng and its active components as adjuvant therapy for NSCLC. Ginseng is helpful for NSCLC patients' conditions, immune cells, cytokines, and secretions in the serum.
Collapse
Affiliation(s)
- Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Renjun Gu
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiguang Sun
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Biomedical Science Building BMS-1021, Dangan, Upper Newcastle, Galway, Ireland
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
58
|
Tumor Suppressor miR-613 Alleviates Non-Small Cell Lung Cancer Cell via Repressing M2 Macrophage Polarization. JOURNAL OF ONCOLOGY 2023; 2023:2311231. [PMID: 36844868 PMCID: PMC9950322 DOI: 10.1155/2023/2311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 02/18/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a crucial crux of cancer-related death, and M2 macrophage polarization facilitates NSCLC development. MicroRNA-613 (miR-613) is a tumor suppressor. This research aimed to clarify the miR-613 function in NSCLC and its impact on M2 macrophage polarization. Methods. miR-613 expressions in NSCLC tissues and cells were evaluated using quantitative real-time PCR. For miR-613 function in NSCLC, cell proliferation analysis, cell counting kit-8, flow cytometry, western blot, transwell, and wound-healing were conducted. Meanwhile, the miR-613 impact on M2 macrophage polarization was assessed by the NSCLC models. Results. miR-613 was lessened in NSCLC cells and tissues. It was corroborated that miR-613 overexpression retrained NSCLC cell proliferation, invasion, and migration but facilitated cell apoptosis. Moreover, miR-613 overexpression restrained NSCLC development by repressing M2 macrophage polarization. Conclusion Tumor suppressor miR-613 ameliorated NSCLC by restraining M2 macrophage polarization.
Collapse
|
59
|
Jung DH, Nahar J, Mathiyalagan R, Rupa EJ, Ramadhania ZM, Han Y, Yang DC, Kang SC. A Focused Review on Molecular Signalling Mechanisms of Ginsenosides Anti-Lung Cancer and Anti-inflammatory Activities. Anticancer Agents Med Chem 2023; 23:3-14. [PMID: 35319393 DOI: 10.2174/1871520622666220321091022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ginseng (Panax ginseng Meyer) is a cultivated medicinal herb that has been widely available in the Asian region since the last century. Ginseng root is used worldwide in Oriental medicine. Currently, the global mortality and infection rates for lung cancer and inflammation are significantly increasing. Therefore, various preventative methods related to the activity of ginsenosides have been used for lung cancer as well as inflammation. METHODS Web-based searches were performed on Web of Science, Springer, PubMed, and Scopus. A cancer statistical analysis was also conducted to show the current ratio of affected cases and death from lung cancer around the world. RESULTS Ginsenosides regulate the enzymes that participate in tumor growth and migration, such as nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), extracellular signalregulated kinases 1/2 (ERK1/2), the gelatinase network metalloproteinase-2 (MMP-2/9) and activator protein 1 (AP-1). In addition, ginsenosides also possess anti-inflammatory effects by inhibiting the formation of proinflammatory cytokines (tumor necrosis factor-α) (TNF-α) and interleukin-1β (IL-1β) and controlling the activities of inflammatory signalling pathways, such as NF-κB, Janus kinase2/signal transducer, and activator of transcription 3 (Jak2/Stat3). CONCLUSION In several in vitro and in vivo models, P. ginseng showed potential beneficial effects in lung cancer and inflammation treatment. In this review, we provide a detailed and up-to-date summary of research evidence for antilung cancer and anti-inflammatory protective effects of ginsenosides and their potential molecular mechanisms.
Collapse
Affiliation(s)
- Dae-Hyo Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Esrat Jahan Rupa
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Zelika Mega Ramadhania
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yaxi Han
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
60
|
Anemoside A3 Inhibits Macrophage M2-Like Polarization to Prevent Triple-Negative Breast Cancer Metastasis. Molecules 2023; 28:molecules28041611. [PMID: 36838599 PMCID: PMC9967222 DOI: 10.3390/molecules28041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) exhibits the characteristics of strong metastatic ability and a high recurrence rate, and M2-type macrophages play an important role in this process. Previous research data suggested that Anemoside A3 (A3), a monomeric component of Pulsatilla Chinensis, could prevent and treat TNBC by converting M0 macrophages into M1 immunogen phenotypes. This study showed that A3 significantly restrained the lung metastases of 4 T1-Luc cells with bioluminescence imaging in vivo and Hematoxylin and Eosin (H&E) staining. Meanwhile, the percentage of M2-type macrophages (CD206+ labeled cells) in the lung tissues was evidently decreased through immunohistochemical assay. We further proved that A3 markedly prevented M2-type polarization induced by IL-4 in vitro, as illustrated by the down-regulated expression of the cell surface marker CD206 protein by FACS and Arg-1, and of the Fizz1 and Ym1 genes by RT-PCR in M2-type macrophages. Furthermore, the invasion and migration of 4 T1 cells, which was promoted by the conditioned medium from M2-type macrophages, could be suppressed by A3. Luminex assay demonstrated that A3 treatment resulted in a reduction of the levels of CCL2, VEGF, CCL7, and MMP-9 in conditioned medium. Additionally, the expression of phosphorylated-STAT3 protein was inhibited by A3, which resulted in the macrophage M2-type polarization arrest, while no significant difference in JAK2 phosphorylation was detected. SiRNA transfection experiments suggested that STAT3 might be the target of A3 inhibiting M2-type polarization of macrophages. In conclusion, these results indicate that A3 could attenuate the metastasis of TNBC by inhibiting the M2-type polarization of macrophages, which may be related to the STAT3 pathway.
Collapse
|
61
|
M2 macrophage-derived exosomal miR-1911-5p promotes cell migration and invasion in lung adenocarcinoma by down-regulating CELF2 -activated ZBTB4 expression. Anticancer Drugs 2023; 34:238-247. [PMID: 36730375 DOI: 10.1097/cad.0000000000001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most aggressive, lethal cancers, comprising around 40% of lung cancer cases. Metastases are the primary cause of LUAD deaths. The mechanism underlying metastatic LUAD and tumor microenvironment remain largely unknown. To explore the effect of M2 macrophage-derived exosomes on LUAD progression. Quantitative-PCR (q-PCR) and western blot were used to measure the expression of RNAs and proteins separately. Co-culture experiments wound healing and Transwell invasion assays were performed to evaluate the effect of M2 macrophage-derived exosomes on LUAD cell migration and invasion. RNA pulldown and luciferase reporter, RNA-binding immunoprecipitation (RIP), and mRNA stability assays were conducted to explore the downstream mechanism of exosomal microRNA-1911-5p (miR-1911-5p). M2 macrophage-derived exosomes accelerated the migration and invasion of LUAD cells. M2 macrophages-secreted exosomal miR-1911-5p enhanced cell migration and invasion in LUAD. Mechanically, miR-1911-5p targeted CUGBP- and ETR-3-like family 2 (CELF2) to downregulate zinc finger and BTB domain containing 4 (ZBTB4) in LUAD. Additionally, miR-1911-5p promoted LUAD progression via ZBTB4. The present study demonstrated that M2 macrophage-derived exosomal miR-1911-5p facilitates the migration and invasion of LUAD cells by inhibiting CELF2-activated ZBTB4, which might offer insight into LUAD treatment.
Collapse
|
62
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
63
|
Hirahara N, Matsubara T, Kaji S, Hayashi H, Sasaki Y, Kawakami K, Hyakudomi R, Yamamoto T, Tajima Y. Novel inflammation-combined prognostic index to predict survival outcomes in patients with gastric cancer. Oncotarget 2023; 14:71-82. [PMID: 36719281 PMCID: PMC9888308 DOI: 10.18632/oncotarget.28353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We focused on the lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) and devised an inflammation-combined prognostic index (ICPI) as a prognostic marker of cancer-specific survival (CSS). METHODS We reviewed the clinicopathological data of 480 patients with gastric cancer undergoing curative laparoscopic gastrectomy between 2009 and 2019. This study examined the significance of LMR, NLR, PLR, and ICPI as cancer-specific prognostic markers. RESULTS In univariate analysis, tumor diameter, histological differentiation, pathological tumor-node-metastasis (pTNM) stage, LMR, NLR, PLR, C-reactive protein (CRP) level, carcinoembryonic antigen (CEA), and postoperative chemotherapy were significantly associated with CSS. In multivariate analysis, pTNM stage and CEA were the independent risk factors for CSS, although LMR, NLR, and PLR were not the independent risk factors for CSS. The ICPI formula was constructed using hazard ratios for three inflammation-based biomarkers with worse prognosis identified in the univariate analysis: LMR <4.315, NLR ≥2.344, and PLR ≥212.01, which were each scored as 1, with all remaining values pointed at 0. ICPI was calculated as follows: ICPI = 2.9 × LMR + 2.8 × NLR + 2.8 × PLR. The optimal cutoff value of ICPII was 2.9. On multivariate analysis, pTNM stage, CEA, and ICPI were independent prognostic factors for CSS. In the Kaplan-Meier survival analysis, CSS in the high ICPI group was significantly worse than that in the low ICPI group. CONCLUSION ICPI was devised as a novel predictive index for prognosis, and its usefulness was clarified.
Collapse
Affiliation(s)
- Noriyuki Hirahara
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Takeshi Matsubara
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Shunsuke Kaji
- Department of Surgery, Matsue Red Cross Hospital, Matsue, Shimane 690-0886, Japan
| | - Hikota Hayashi
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Yohei Sasaki
- Department of Surgery, Masuda Red Cross Hospital, Masuda, Shimane 698-8501, Japan
| | - Koki Kawakami
- Department of Surgery, Matsue Red Cross Hospital, Matsue, Shimane 690-0886, Japan
| | - Ryoji Hyakudomi
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Tetsu Yamamoto
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
64
|
Nan Y, Su H, Zhou B, Liu S. The function of natural compounds in important anticancer mechanisms. Front Oncol 2023; 12:1049888. [PMID: 36686745 PMCID: PMC9846506 DOI: 10.3389/fonc.2022.1049888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The existence of malignant tumors has been a threat to human life, health, and safety. Although the rapid development of radiotherapy, drug therapy, surgery, and local therapy has improved the quality of life of tumor patients, there are still some risks. Natural compounds are widely used in cancer because they are easy to obtain, have a good curative effects and have no obvious side effects, and play a vital role in the prevention and treatment of various cancers. Phenolic, flavonoids, terpenoids, alkaloids, and other natural components of traditional Chinese medicine have certain anti-tumor activities, which can promote apoptosis, anti-proliferation, anti-metastasis, inhibit angiogenesis, change the morphology of cancer cells and regulate immune function, etc., and have positive effects on breast cancer, liver cancer, lung cancer, gastric cancer, rectal cancer and so on. To better understand the effects of natural compounds on cancer, this paper screened out four important pathways closely related to cancer, including cell death and immunogenic cell death, immune cells in the tumor microenvironment, inflammation and related pathways and tumor metastasis, and systematically elaborated the effects of natural compounds on cancer.
Collapse
Affiliation(s)
- Yang Nan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Hongchan Su
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Bo Zhou
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Shumin Liu
- Chinese Medicine Research Institute, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China,*Correspondence: Shumin Liu,
| |
Collapse
|
65
|
Collery P, Desmaële D, Harikrishnan A, Veena V. Remarkable Effects of a Rhenium(I)-diselenoether Drug on the Production of Cathepsins B and S by Macrophages and their Polarizations. Curr Pharm Des 2023; 29:2396-2407. [PMID: 37859327 DOI: 10.2174/0113816128268963231013074433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/OBJECTIVE Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages. METHODS Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 μM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry. RESULTS A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated. CONCLUSION The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaële
- Department of Chemistry, Institut Galien, Université Paris-Saclay, 91400 Orsay, France
| | - Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Science, Vinayaka Mission Research Foundation- AV Campus, Chennai 560064, India
| | - Vijay Veena
- School of Allied Healthcare and Sciences, Jain University, Bangalore 560066, India
| |
Collapse
|
66
|
Hwang MA, Won M, Im JY, Kang MJ, Kweon DH, Kim BK. TNF-α Secreted from Macrophages Increases the Expression of Prometastatic Integrin αV in Gastric Cancer. Int J Mol Sci 2022; 24:ijms24010376. [PMID: 36613819 PMCID: PMC9820470 DOI: 10.3390/ijms24010376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The tumor microenvironment comprising blood vessels, fibroblasts, immune cells, and the extracellular matrix surrounding cancer cells, has recently been targeted for research in cancer therapy. We aimed to investigate the effect of macrophages on the invasive ability of gastric cancer cells, and studied their potential mechanism. In transcriptome analysis, integrin αV was identified as a gene increased in AGS cells cocultured with RAW264.7 cells. AGS cells cocultured with RAW264.7 cells displayed increased adhesion to the extracellular matrix and greater invasiveness compared with AGS cells cultured alone. This increased invasion of AGS cells cocultured with RAW264.7 cells was inhibited by integrin αV knockdown. In addition, the increase in integrin αV expression induced by tumor necrosis factor-α (TNF-α) or by coculture with RAW264.7 cells was inhibited by TNF receptor 1 (TNFR1) knockdown. The increase in integrin αV expression induced by TNF-α was inhibited by both Mitogen-activated protein kinase (MEK) inhibitor and VGLL1 S84 peptide treatment. Finally, transcription of integrin αV was shown to be regulated through the binding of VGLL1 and TEAD4 to the promoter of integrin αV. In conclusion, our study demonstrated that TNFR1-ERK-VGLL1 signaling activated by TNF-α secreted from RAW264.7 cells increased integrin αV expression, thereby increasing the adhesion and invasive ability of gastric cancer cells.
Collapse
Affiliation(s)
- Mi-Aie Hwang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
- KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- R&D Center, oneCureGEN, Daejeon 34141, Republic of Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (D.-H.K.); (B.-K.K.)
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
- KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- R&D Center, oneCureGEN, Daejeon 34141, Republic of Korea
- Correspondence: (D.-H.K.); (B.-K.K.)
| |
Collapse
|
67
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
68
|
Li DK, Wang GH. Asiaticoside reverses M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by TRAF6/NF-κB inhibition. PHARMACEUTICAL BIOLOGY 2022; 60:1635-1645. [PMID: 35989576 PMCID: PMC9415541 DOI: 10.1080/13880209.2022.2109688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT M2 phenotype macrophage polarization is an attractive target for therapeutic intervention. Asiaticoside (ATS) has multiple pharmacological functions. OBJECTIVE This study investigates the effect of ATS on M2 phenotype macrophage polarization in osteosarcoma. MATERIALS AND METHODS The differentiation of human THP-1 monocytes into M0 phenotype macrophages was induced by 100 nM phorbol myristate acetate for 24 h, and treated with 20 ng/mL IL-4 and 20 ng/mL IL-13 for 48 h to obtain M2 phenotype macrophages. The function of ATS on the growth and invasion was investigated by cell counting kit-8, transwell, and western blot under the co-culture of M2 phenotype macrophages and osteosarcoma cells for 24 h. The mechanism of ATS on osteosarcoma was assessed using molecular experiments. RESULTS ATS reduced the THP-1 cell viability with an IC50 of 128.67 μM. Also, ATS repressed the M2 phenotype macrophage polarization induced by IL-4/IL-13, and the effect was most notably at a 40 μM dose. ATS (40 μM) restrained the growth and invasion of osteosarcoma cells induced by M2 phenotype macrophages. In addition, ATS reduced the tumour necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB activity in osteosarcoma cells and the TRAF6 knockdown reduced the growth and invasion of osteosarcoma cells induced by M2 phenotype macrophages. TRAF6 (2 μg/mL) attenuated the inhibitory effect of ATS on the growth and invasion of osteosarcoma cells caused by M2 phenotype macrophages. In vivo studies further confirmed ATS (2.5, 5, or 10 mg/kg) repressed osteosarcoma tumour growth. DISCUSSION AND CONCLUSIONS ATS reversed M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by reducing TRAF6/NF-κB activity, suggesting ATS might be a promising drug for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dang-ke Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Qingdao, China
| | - Guang-hui Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
69
|
Yang Z, Wu X, Shen J, Gudamu A, Ma Y, Zhang Z, Hou M. Ginsenoside Rh1 regulates gastric cancer cell biological behaviours and transplanted tumour growth in nude mice via the TGF-β/Smad pathway. Clin Exp Pharmacol Physiol 2022; 49:1270-1280. [PMID: 36054718 DOI: 10.1111/1440-1681.13708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies of the digestive tract. Ginsenoside Rh1 was reported to exert effects on GC. The current study set out to explore the mechanism underlying Ginsenoside Rh1 effects on GC. With oxaliplatin (OXA) serving as the positive control, human GC cells AGS were treated with 0, 10, 25, 50, 74, or 100 μM of ginsenoside Rh1 for 48 h. Proliferation, migration, invasion, and apoptosis were subsequently assessed by means of MTT, scratch test, Transwell, and TUNEL, respectively. AGS cells were further jointly treated with Rh1 and the TGF-β/Smad pathway activator Kartogenin, followed by detection of TGF-β/Smad pathway effects on AGS biological behaviours. Moreover, TGF-β/Smad pathway activation was detected with a Western blot assay. Furthermore, xenograft tumour models were established and tumour growth was recorded. Ki-67 expression patterns and apoptosis were detected with immunohistochemistry and TUNEL, respectively. In vitro, Ginsenoside Rh1 repressed AGS cell proliferation, migration, and invasion, and further promoted apoptosis, with a concentration of 50 μM Rh1 exerting the equivalent effects as OXA. In vivo, Ginsenoside Rh1 inhibited GC proliferation and induced tumour cell apoptosis. Mechanistically, Ginsenoside Rh1 reduced TGF-β1 and TGF-β2 levels and Smad2 and Smad3 phosphorylation levels. Collectively, our findings highlighted that ginsenoside Rh1 inhibited GC cell growth and tumour growth in xenograft tumour models via inhibition of the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Zhiwen Yang
- Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junjie Shen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - A Gudamu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yongxiang Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zishu Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
70
|
Lang J, Guo Z, Xing S, Sun J, Qiu B, Shu Y, Wang Z, Liu G. Inhibitory role of puerarin on the A549 lung cancer cell line. Transl Cancer Res 2022; 11:4117-4125. [PMID: 36523310 PMCID: PMC9745364 DOI: 10.21037/tcr-22-2246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although more and more drugs had been proved to be effective in controlling tumor cells, lung cancer was still the leading cause of cancer-related deaths all over the world. This study aimed to investigate the effect and mechanism of puerarin on the invasion and metastasis of A549 lung cancer cell line. METHODS A medium containing puerarin was prepared according to the gradient concentration, and 10, 20, and 40 µmol/L were selected as the experimental group (low, medium, and high concentration groups, respectively) according to the cytotoxicity experiment. Meanwhile, 0 µmol/L was used as the control group. RESULTS Following administration, metastasis-related indexes were detected by the cell scratch test, cell migration test, gene difference detection, and western blotting. 24 hours after administration, the cell scratch and Transwell showed that the migration ability of A549 cells decreased with the increasing puerarin concentration. The polymerase chain reaction (PCR) and western blotting results demonstrated that the expression of the cell invasion and metastasis-related factor, matrix metallopeptidase 9 (MMP9), was negatively correlated with drug concentration. Further investigation demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was also inhibited. CONCLUSIONS Puerarin can inhibit the expression of invasion and metastasis-related factors by inhibiting the phosphorylation of ERK.
Collapse
Affiliation(s)
- Jie Lang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhizhen Guo
- Department of Nephrology, Kailuan General Hospital, Tangshan, China
| | - Shushan Xing
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Jian Sun
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Bin Qiu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Yu Shu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Guixiang Liu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| |
Collapse
|
71
|
Influence of Ginsenoside Rh2 on Cardiomyocyte Pyroptosis in Rats with Acute Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5194523. [PMID: 36276858 PMCID: PMC9581695 DOI: 10.1155/2022/5194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Objective This paper intends to verify through in vivo experiments whether ginsenoside Rh2 (G-Rh2) can play an anti-inflammatory role by modulating cardiomyocyte (CM) pyroptosis in rats with acute myocardial infarction (AMI), thereby alleviating myocardial injury. Methods Twenty SD rats were randomized into control, L-Rh2, M-Rh2, and H-Rh2 groups, among which the latter three groups were modeled for AMI and given an intraperitoneal injection of G-Rh2 (L-Rh2: 2 mg/kg; M-Rh2: 4 mg/kg; H-Rh2: 8 mg/kg), while the control group was only treated with thoracotomy and sodium chloride injection. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular end-diastolic pressure (LVEDP) were recorded by ultrasonic diagnosis. Rats were killed under anesthesia, and the morphological characteristics of ventricular tissue were observed by electron microscope. Additionally, cardiac blood and ventricular tissues were collected to quantify the contents of myocardial injury markers (creatine phosphate kinase (CK), creatine phosphokinase-MB isoenzyme (CK-MB), and lactate dehydrogenase (LDH) by ELISA, as well as the expression of pyroptosis-related genes cysteinyl aspartate specific proteinase 1 (Caspase-1), gasdermin D (GSDMD), interleukin (IL)-1β, and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) by qRT-PCR and Western blot). Results Ultrasonic examination identified lower HR, SBP, DBP, MAP, and LVSP in the three Rh2 injection groups compared with the control group (P < 0.05); and in comparison with M- and H-Rh2 groups, HR, SBP, DBP, MAP, and LVSP were all lower in L-Rh2 group, while LVEDP was higher (P < 0.05). Microscopically, CMs and organelles in the L-RH2, M-RH2, and H-RH2 groups were damaged to varying degrees compared with the control group, with those in the L-RH2 group being the most serious. CK, CK-MB, and LDH were also the highest in the L-Rh2 group and the lowest in the control group, while their levels were obviously reduced in M- and H-Rh2 groups (P < 0.05). Finally, GSDMD, IL-1β, NLRP3, and Caspase-1 were found to be reduced in the control group, while pyroptosis-related gene expression in the M-Rh2 group was improved markedly (P < 0.05). Conclusion G-Rh2 can inhibit the pathological development of AMI by relieving the focal death of CM and inhibiting the release of proinflammatory factors in the body, and the effect is significantly related to the dosage, which is expected to become a new treatment option for AMI in the future.
Collapse
|
72
|
Chen H, Zheng M, Zhang W, Long Y, Xu Y, Yuan M. Research Status of Mouse Models for Non-Small-Cell Lung Cancer (NSCLC) and Antitumor Therapy of Traditional Chinese Medicine (TCM) in Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6404853. [PMID: 36185084 PMCID: PMC9519343 DOI: 10.1155/2022/6404853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is known as one of the most lethal cancers, causing more than 1 million deaths annually worldwide. Therefore, the development of novel therapeutic drugs for NSCLC has become an urgent need. Herein, various mouse models provide great convenience not only for researchers but also for the development of antitumor drug. Meanwhile, TCM, as a valuable and largely untapped resource pool for modern medicine, provides research resources for the treatment of various diseases. Until now, cell-derived xenograft (CDX) model, patient-derived xenograft (PDX) model, syngeneic model, orthotopic model, humanized mouse model (HIS), and genetically engineered mouse models (GEMMs) have been reported in TCM evaluation. This review shows the role and current status of kinds of mouse models in antitumor research and summarizes the application progress of TCM including extracts, formulas, and isolated single molecules for NSCLC therapy in various mouse models; more importantly, it provides a theoretical exploration of what kind of mouse models is ideal for TCM efficacy evaluation in future. However, there are still huge challenges and limitations in the development of mouse models specifically for the TCM research, and none of the available models are perfectly matching the characteristics of TCM, which suppress the tumor growth through various mechanisms, especially by regulating immune function. Nevertheless, with fully functional immune system existing in syngeneic model and humanized mouse model (HIS), it is still suggested that these two models are more suitable for development of TCM especially for TCM extracts or formulas. Moreover, continued efforts are needed to generate more reliable mouse models to test TCM formulas in future research.
Collapse
Affiliation(s)
- Hongkui Chen
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yuan Long
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
73
|
Zhang X, Wu X, Huang H, Du K, Nie Y, Su P, Li Y. Research into the biological differences and targets in lung cancer patients with diverse immunotherapy responses. Front Immunol 2022; 13:1014333. [PMID: 36189290 PMCID: PMC9523410 DOI: 10.3389/fimmu.2022.1014333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immunotherapy has gradually become an important therapy option for lung cancer patients. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were responsible for all the public data. Results In our study, we firstly identified 22 characteristic genes of NSCLC immunotherapy response using the machine learning algorithm. Molecule subtyping was then conducted and two patient subtypes were identified Cluster1 and Cluster2. Results showed that Cluster1 patients had a lower TIDE score and were more sensitive to immunotherapy in both TCGA and combined GEO cohorts. Biological enrichment analysis showed that pathways of epithelial-mesenchymal transition (EMT), apical junction, KRAS signaling, myogenesis, G2M checkpoint, E2F targets, WNT/β-catenin signaling, hedgehog signaling, hypoxia were activated in Cluster2 patients. Genomic instability between Cluster1 and Cluster2 patients was not significantly different. Interestingly, we found that female patients were more adaptable to immunotherapy. Biological enrichment revealed that compared with female patients, pathways of MYC target, G2M checkpoints, mTORC1 signaling, MYC target, E2F target, KRAS signaling, oxidative phosphorylation, mitotic spindle and P53 pathway were activated. Meanwhile, monocytes might have a potential role in affecting NSCLC immunotherapy and underlying mechanism has been explored. Finally, we found that SEC14L3 and APCDD1L were the underlying targets affecting immunotherapy, as well as patients survival. Conclusions These results can provide direction and guidance for future research focused on NSCLC immunotherapy.
Collapse
Affiliation(s)
- Xunlang Zhang
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinhui Wu
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Huang
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kangming Du
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Nie
- Department of Ophthalmology, Ineye Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyuan Su
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peiyuan Su, ; Yuefei Li,
| | - Yuefei Li
- Department of Anesthesiology Operating Room, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peiyuan Su, ; Yuefei Li,
| |
Collapse
|
74
|
Li LG, Peng XC, Yu TT, Xu HZ, Han N, Yang XX, Li QR, Hu J, Liu B, Yang ZY, Xu X, Chen X, Wang MF, Li TF. Dihydroartemisinin remodels macrophage into an M1 phenotype via ferroptosis-mediated DNA damage. Front Pharmacol 2022; 13:949835. [PMID: 36034842 PMCID: PMC9403990 DOI: 10.3389/fphar.2022.949835] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer recruits tumor-associated macrophages (TAMs) massively, whose predominantly pro-tumor M2 phenotype leads to immunosuppression. Dihydroartemisinin (DHA) has been proven to remodel TAM into an anti-tumor M1 phenotype at certain concentrations in the present study, which was hypothesized to facilitate anti-lung cancer immunotherapy. However, how DHA remodels the TAM phenotype has not yet been uncovered. Our previous work revealed that DHA could trigger ferroptosis in lung cancer cells, which may also be observed in TAM thereupon. Sequentially, in the current study, DHA was found to remodel TAM into the M1 phenotype in vitro and in vivo. Simultaneously, DHA was observed to trigger ferroptosis in TAM and cause the DNA damage response and NF-κB activation. Conversely, the DHA-induced DNA damage response and NF-κB activation in TAM were attenuated after the inhibition of ferroptosis in TAM using an inhibitor of ferroptosis. Importantly, a ferroptosis inhibitor could also abolish the DHA-induced phenotypic remodeling of TAM toward the M1 phenotype. In a nutshell, this work demonstrates that DHA-triggered ferroptosis of TAM results in DNA damage, which could activate downstream NF-κB to remodel TAM into an M1 phenotype, providing a novel strategy for anti-lung cancer immunotherapy. This study offers a novel strategy and theoretical basis for the use of traditional Chinese medicine monomers to regulate the anti-tumor immune response, as well as a new therapeutic target for TAM phenotype remodeling.
Collapse
Affiliation(s)
- Liu-Gen Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xing-Chun Peng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ting-Ting Yu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ning Han
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiao-Xin Yang
- School Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qi-Rui Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Jun Hu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Bin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zi-Yi Yang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiang Xu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Mei-Fang Wang, ; Tong-Fei Li,
| | - Tong-Fei Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Mei-Fang Wang, ; Tong-Fei Li,
| |
Collapse
|
75
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
76
|
Zhou X, Wang X, Sun Q, Zhang W, Liu C, Ma W, Sun C. Natural compounds: A new perspective on targeting polarization and infiltration of tumor-associated macrophages in lung cancer. Biomed Pharmacother 2022; 151:113096. [PMID: 35567987 DOI: 10.1016/j.biopha.2022.113096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
With the development in tumor immunology, people are gradually understanding the complexity and diversity of the tumor microenvironment immune status and its important effect on tumors. Tumor-associated macrophages (TAMs), an important part of the tumor immune microenvironment, have a double effect on tumor growth and metastasis. Many studies have focused on lung cancer, especially non-small cell lung cancer and other "hot tumors" with typical inflammatory characteristics. The polarization and infiltration of TAMs is an important mechanism in the occurrence and development of malignant tumors, such as lung cancer, and in the tumor immune microenvironment. Therapeutic drugs designed for these reasons are key to targeting TAMs in the treatment of lung cancer. A large number of reports have suggested that natural compounds have a strong potential of affecting immunity by targeting the polarization and infiltration of TAMs to improve the immune microenvironment of lung cancer and exert a natural antitumor effect. This paper discusses the infiltration and polarization effects of natural compounds on lung cancer TAMs, provides a detailed classification and systematic review of natural compounds, and summarizes the bias of different kinds of natural compounds by affecting their antitumor mechanism of TAMs, with the aim of providing new perspectives and potential therapeutic drugs for targeted macrophages in the treatment of lung cancer.
Collapse
Affiliation(s)
- Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Chinese Medicine, Weifang Medical University, Weifang, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.
| |
Collapse
|
77
|
Lyu TJ, Zhang ZX, Chen J, Liu ZJ. Ginsenoside Rg1 ameliorates apoptosis, senescence and oxidative stress in ox‑LDL‑induced vascular endothelial cells via the AMPK/SIRT3/p53 signaling pathway. Exp Ther Med 2022; 24:545. [PMID: 35978936 PMCID: PMC9366316 DOI: 10.3892/etm.2022.11482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Coronary heart disease (CHD) mainly refers to coronary atherosclerotic heart disease and its pathogenesis is complex. Ginsenoside Rg1 (Rg1) has a wide range of pharmacological activities, such as antitumor effects, enhancing immunity and exerting protective effects on the vascular system. In the present study, the effect of Rg1 on vascular endothelial cells in CHD was investigated. Oxidized low-density lipoprotein (ox-LDL) was used to induce human umbilical vein endothelial cells (HUVECs) and cells were treated with 1, 5 or 10 µM Rg1. Cell Counting Kit-8 assay, TUNEL staining, western blot analysis of apoptosis-related proteins and senescence-related proteins, senescence-associated β-galactosidase staining, ELISA and other techniques including related kits of oxidative stress markers were used to detect the viability, apoptosis, oxidative stress, inflammatory cytokines including IL-1β, IL-6 and TNF-α and senescence of ox-LDL-induced HUVECs induced by Rg1. Western blot analysis was used to detect the expression levels of the AMP-activated protein kinase (AMPK)/sirtuin 3 (SIRT3)/p53 signaling pathway-related proteins. In addition, the associated mechanism was further determined using the AMPK pathway inhibitor compound C (CC). Rg1 increased the viability, and inhibited the apoptosis, senescence, oxidative stress and inflammation of ox-LDL-induced HUVECs. Pretreatment with CC partially reversed the protective effect of Rg1 on ox-LDL-induced HUVECs. In conclusion, Rg1 ameliorated apoptosis, senescence and oxidative stress of ox-LDL-induced HUVECs, at least in part, via the AMPK/SIRT3/p53 signaling pathway.
Collapse
Affiliation(s)
- Tian-Jiao Lyu
- Department of Cardiology, Putuo Center Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zi-Xiu Zhang
- Department of Cardiology, Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, P.R. China
| | - Jun Chen
- Department of Cardiology, Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, P.R. China
| | - Zong-Jun Liu
- Department of Cardiology, Putuo Center Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
78
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
79
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
80
|
Yu TT, Han N, Li LG, Peng XC, Li QR, Xu HZ, Wang XY, Yang ZY, Chen X, Wang MF, Li TF. Chlorin e6-Induced Photodynamic Effect Polarizes the Macrophage Into an M1 Phenotype Through Oxidative DNA Damage and Activation of STING. Front Pharmacol 2022; 13:837784. [PMID: 35308251 PMCID: PMC8927874 DOI: 10.3389/fphar.2022.837784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
The tumor-associated macrophage (TAM) serves as an immunosuppressive agent in the malignant tumor microenvironment, facilitating the development and metastasis of lung cancer. The photodynamic effect destabilizes cellular homeostasis owing to the generation of reactive oxygen species (ROS), resulting in the enhanced pro-inflammatory function of immunocytes. In our previous study, the Ce6-mediated photodynamic effect was found to have kept the viability of macrophages and to remodel them into the M1 phenotype. However, the mechanism remains unrevealed. The present study now explores the mechanism of photodynamic therapy (PDT)-mediated reprogramming of macrophages. As expected, Ce6-mediated PDT was capable of generating reactive oxygen species, which was continuously degraded, causing "low intensity" damage to DNA and thereby triggering subsequent DNA damage response in macrophages. The autophagy was thus observed in Ce6-treated macrophages and was shown to protect cells from being photodynamically apoptotic. More importantly, Ce6 PDT could activate the stimulator of interferon genes (STING) molecule, a sensor of DNA damage, which could activate the downstream nuclear factor kappa-B (NF-κB) upon activation, mediating the polarization of macrophages towards the M1 phenotype thereupon. In addition, inhibition of ROS induced by PDT attenuated the DNA damage, STING activation, and M1-phenotype reprogramming. Furthermore, the silence of the STING weakened Ce6 treatment-mediated M1 remodeling of macrophages as well. Altogether, these findings indicate the Ce6-induced photodynamic effect polarizes macrophages into an M1 phenotype through oxidative DNA damage and subsequent activation of the STING. This work reveals the crucial mechanism by which photodynamic therapy regulates the macrophage phenotype and also provides a novel intervenable signaling target for remodeling macrophages into the M1 phenotype.
Collapse
Affiliation(s)
- Ting-Ting Yu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ning Han
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Liu-Gen Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xing-Chun Peng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Qi-Rui Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xi-Yong Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zi-Yi Yang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Tong-Fei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
81
|
Lee S, Lee A, Lim J, Lim JS. Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells. BMB Rep 2022. [PMID: 34743782 PMCID: PMC8891626 DOI: 10.5483/bmbrep.2022.55.2.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-overexpressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Aram Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jihyun Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
82
|
Identification of 20(S)-Ginsenoside Rh2 as a Potential EGFR Tyrosine Kinase Inhibitor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6119737. [PMID: 35111279 PMCID: PMC8803441 DOI: 10.1155/2022/6119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
As the main active ingredients of Panax ginseng, ginsenosides possess numerous bioactivities. Epidermal growth factor receptor (EGFR) was widely used as a valid target in anticancer therapy. Herein, the EGFR targeting activities of 20(S)-ginsenoside Rh2 (20(S)-Rh2) and the relationship of their structure-activity were investigated. Homogeneous time-resolved fluorescence assay showed that 20(S)-Rh2 significantly inhibited the activity against EGFR kinase. 20(S)-Rh2 was confirmed to effectively inhibited cell proliferation in a dose-dependent manner by MTT assay. Furthermore, quantitative real-time PCR and western blotting analysis revealed that 20(S)-Rh2 inhibited A549 cells growth via the EGFR-MAPK pathway. Meanwhile, 20(S)-Rh2 could promote cell apoptosis, block cell cycle, and reduce cell migration of A549 cells, respectively. In silico, the result suggested that both hydrophobic interactions and hydrogen-bonding interactions could contribute to stabilize their binding. Molecular dynamics simulation showed that the side chain sugar moiety of 20(S)-Rh2 was too flexible to be fixed at the active site of EGFR. Collectively, these findings suggested that 20(S)-Rh2 might serve as a potential EGFR tyrosine kinase inhibitor.
Collapse
|
83
|
Probable Mechanisms of Doxorubicin Antitumor Activity Enhancement by Ginsenoside Rh2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030628. [PMID: 35163891 PMCID: PMC8838402 DOI: 10.3390/molecules27030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
Abstract
Ginsenoside Rh2 increases the efficacy of doxorubicin (DOX) treatment in murine models of solid and ascites Ehrlich’s adenocarcinoma. In a solid tumor model (treatment commencing 7 days after inoculation), DOX + Rh2 co-treatment was significantly more efficacious than DOX alone. If treatment was started 24 h after inoculation, the inhibition of tumor growth of a solid tumor for the DOX + Rh2 co-treatment group was complete. Furthermore, survival in the ascites model was dramatically higher for the DOX + Rh2 co-treatment group than for DOX alone. Mechanisms underlying the combined DOX and Rh2 effects were studied in primary Ehrlich’s adenocarcinoma-derived cells and healthy mice’s splenocytes. Despite the previously established Rh2 pro-oxidant activity, DOX + Rh2 co-treatment revealed no increase in ROS compared to DOX treatment alone. However, DOX + Rh2 treatment was more effective in suppressing Ehrlich adenocarcinoma cell adhesion than either treatment alone. We hypothesize that the benefits of DOX + Rh2 combination treatment are due to the suppression of tumor cell attachment/invasion that might be effective in preventing metastatic spread of tumor cells. Ginsenoside Rh2 was found to be a modest activator in a Neh2-luc reporter assay, suggesting that Rh2 can activate the Nrf2-driven antioxidant program. Rh2-induced direct activation of Nrf2 might provide additional benefits by minimizing DOX toxicity towards non-cancerous cells.
Collapse
|
84
|
Li M, Wang X, Wang Y, Bao S, Chang Q, Liu L, Zhang S, Sun L. Strategies for Remodeling the Tumor Microenvironment Using Active Ingredients of Ginseng-A Promising Approach for Cancer Therapy. Front Pharmacol 2022; 12:797634. [PMID: 35002732 PMCID: PMC8727883 DOI: 10.3389/fphar.2021.797634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting the initiation and progression of tumors, leading to chemoradiotherapy resistance and immunotherapy failure. Targeting of the TME is a novel anti-tumor therapeutic approach and is currently a focus of anti-tumor research. Panax ginseng C. A. Meyer (ginseng), an ingredient of well-known traditional Asia medicines, exerts beneficial anti-tumor effects and can regulate the TME. Here, we present a systematic review that describes the current status of research efforts to elucidate the functions and mechanisms of ginseng active components (including ginsenosides and ginseng polysaccharides) for achieving TME regulation. Ginsenosides have variety effects on TME, such as Rg3, Rd and Rk3 can inhibit tumor angiogenesis; Rg3, Rh2 and M4 can regulate the function of immune cells; Rg3, Rd and Rg5 can restrain the stemness of cancer stem cells. Ginseng polysaccharides (such as red ginseng acidic polysaccharides and polysaccharides extracted from ginseng berry and ginseng leaves) can regulate TME mainly by stimulating immune cells. In addition, we propose a potential mechanistic link between ginseng-associated restoration of gut microbiota and the tumor immune microenvironment. Finally, we describe recent advances for improving ginseng efficacy, including the development of a nano-drug delivery system. Taken together, this review provides novel perspectives on potential applications for ginseng active ingredients as anti-cancer adjuvants that achieve anti-cancer effects by reshaping the tumor microenvironment.
Collapse
Affiliation(s)
- Mo Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China.,Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shunchao Bao
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Qing Chang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
85
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
86
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
87
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
88
|
Yang Y, Li N, Wang TM, Di L. Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910827. [PMID: 34639167 PMCID: PMC8509218 DOI: 10.3390/ijms221910827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide. Despite the undeniable progress in lung cancer research made over the past decade, it is still the leading cause of cancer-related deaths and continues to challenge scientists and researchers engaged in searching for therapeutics and drugs. The tumor microenvironment (TME) is recognized as one of the major hallmarks of epithelial cancers, including the majority of lung cancers, and is associated with tumorigenesis, progression, invasion, and metastasis. Targeting of the TME has received increasing attention in recent years. Natural products have historically made substantial contributions to pharmacotherapy, especially for cancer. In this review, we emphasize the role of the TME and summarize the experimental proof demonstrating the antitumor effects and underlying mechanisms of natural products that target the TME. We also review the effects of natural products used in combination with anticancer agents. Moreover, we highlight nanotechnology and other materials used to enhance the effects of natural products. Overall, our hope is that this review of these natural products will encourage more thoughts and ideas on therapeutic development to benefit lung cancer patients.
Collapse
Affiliation(s)
| | - Ning Li
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| | | | - Lei Di
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| |
Collapse
|
89
|
Li ZH, Yu D, Huang NN, Wu JK, Du XW, Wang XJ. Immunoregulatory mechanism studies of ginseng leaves on lung cancer based on network pharmacology and molecular docking. Sci Rep 2021; 11:18201. [PMID: 34521875 PMCID: PMC8440634 DOI: 10.1038/s41598-021-97115-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Panax ginseng is one of the oldest and most generally prescribed herbs in Eastern traditional medicine to treat diseases. Several studies had documented that ginseng leaves have anti-oxidative, anti-inflammatory, and anticancer properties similar to those of ginseng root. The aim of this research was to forecast of the molecular mechanism of ginseng leaves on lung cancer by molecular docking and network pharmacology so as to decipher ginseng leaves' entire mechanism. The compounds associated with ginseng leaves were searched by TCMSP. TCMSP and Swiss Target Prediction databases were used to sort out the potential targets of the main chemical components. Targets were collected from OMIM, PharmGKB, TTD, DrugBank and GeneCards which related to immunity and lung cancer. Ginseng leaves exert its lung cancer suppressive function by regulating the several signaling proteins, such as JUN, STAT3, AKT1, TNF, MAPK1, TP53. GO and KEGG analyses indicated that the immunoreaction against lung cancer by ginseng leaves might be related to response to lipopolysaccharide, response to oxidative stress, PI3K-Akt, MAPK and TNF pathway. Molecular docking analysis demonstrated that hydrogen bonding was interaction's core forms. The results of CCK8 test and qRT-PCR showed that ginseng leaves inhibit cell proliferation and regulates AKT1 and P53 expression in A549. The present study clarifies the mechanism of Ginseng leaves against lung cancer and provides evidence to support its clinical use.
Collapse
Affiliation(s)
- Zao-Hui Li
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
- Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin, 132101, China
| | - Dan Yu
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Nan-Nan Huang
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Jun-Kai Wu
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiao-Wei Du
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| | - Xi-Jun Wang
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
90
|
Zhou D, Xia Z, Xie M, Gao Y, Yu Q, He B. Exosomal long non-coding RNA SOX2 overlapping transcript enhances the resistance to EGFR-TKIs in non-small cell lung cancer cell line H1975. Hum Cell 2021; 34:1478-1489. [PMID: 34244990 DOI: 10.1007/s13577-021-00572-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk between cancer cells and macrophages plays a crucial role in the development of cancer. In this study, our data showed that M1 macrophages attenuate, while M2 macrophages and tumor-associated macrophages enhance the EGFR-TKIs resistance in non-small cell lung cancer (NSCLC) cell line H1975. Next, long non-coding RNA SOX2 overlapping transcript (SOX2-OT) is highly expressed in NSCLC cells-derived exosomes. NSCLC cells-derived exosomes promote macrophages M2 polarization and inhibit M1 polarization through transferring SOX2-OT to macrophages. Subsequently, our results indicated that NSCLC cells-induced M2-polarized macrophages enhance the EGFR-TKIs resistance in H1975 cells. Furthermore, our data revealed that NSCLC cells-derived exosomes inhibit the expression of miR-627-3p, while promote Smads expression in THP-1 cells. SOX2-OT acts as miR-627-3p sponge to facilitate Smad2, Smad3 and Smad4 expression. Finally, our results indicated that NSCLC cells promote macrophages M2 polarization and suppress M1 polarization through targeting miR-627-3p/Smads signaling pathway by transferring exosomes to THP-1 cells. In conclusion, our data revealed that NSCLC cells promote macrophages M2 polarization through transferring exosomal SOX2-OT, thus to enhance its own EGFR-TKIs resistance. Mechanismly, NSCLC cells-derived exosomal SOX2-OT promotes macrophages M2 polarization via promoting Smads by sponging miR-627-3p. Our data provide a novel therapeutic target for EGFR-TKIs resistance in NSCLC.
Collapse
Affiliation(s)
- Dongbo Zhou
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
- Clinical Research Center for Geriatric Disorders National, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Xia
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
- Clinical Research Center for Geriatric Disorders National, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Mingxuan Xie
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
- Clinical Research Center for Geriatric Disorders National, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Ying Gao
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
- Clinical Research Center for Geriatric Disorders National, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Qiao Yu
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
- Clinical Research Center for Geriatric Disorders National, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Clinical Research Center for Geriatric Disorders National, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
91
|
Li P, Hao Z, Wu J, Ma C, Xu Y, Li J, Lan R, Zhu B, Ren P, Fan D, Sun S. Comparative Proteomic Analysis of Polarized Human THP-1 and Mouse RAW264.7 Macrophages. Front Immunol 2021; 12:700009. [PMID: 34267761 PMCID: PMC8276023 DOI: 10.3389/fimmu.2021.700009] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2) in the immune system, performing pro-inflammatory and anti-inflammatory functions, respectively. Human THP-1 and mouse RAW264.7 cell line models have been widely used in various macrophage-associated studies, while the similarities and differences in protein expression profiles between the two macrophage models are still largely unclear. In this study, the protein expression profiles of M1 and M2 phenotypes from both THP-1 and RAW264.7 macrophages were systematically investigated using mass spectrometry-based proteomics. By quantitatively analyzing more than 5,000 proteins among different types of macrophages (M0, M1 and M2) from both cell lines, we identified a list of proteins that were uniquely up-regulated in each macrophage type and further confirmed 43 proteins that were commonly up-regulated in M1 macrophages of both cell lines. These results revealed considerable divergences of each polarization type between THP-1 and RAW264.7 macrophages. Moreover, the mRNA and protein expression of CMPK2, RSAD2, DDX58, and DHX58 were strongly up-regulated in M1 macrophages for both macrophage models. These data can serve as important resources for further studies of macrophage-associated diseases in experimental pathology using human and mouse cell line models.
Collapse
Affiliation(s)
- Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, China
| | - Jun Li
- College of Life Science, Northwest University, Xi'an, China
| | - Rongxia Lan
- College of Life Science, Northwest University, Xi'an, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, China
| | - Pengyu Ren
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
92
|
Pu Z, Ge F, Wang Y, Jiang Z, Zhu S, Qin S, Dai Q, Liu H, Hua H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered 2021; 12:2398-2409. [PMID: 34130594 PMCID: PMC8806740 DOI: 10.1080/21655979.2021.1932211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ginsenoside Rg3, a natural compound, has been reported to function as an anticancer agent for hepatoma carcinoma, while the mechanisms underlying the anticancer effects are not clear. Therefore, the objective of our study was to explore the impact of RG3 on cell migration and invasion by regulating the lncRNA HOX antisense intergenic (HOTAIR) expression involving PI3K/AKT signaling pathway. qRT-PCR was utilized to measure the mRNA expression of HOTAIR. Furthermore, HOTAIR overexpression plasmids were transfected to SMMC-7721 and SK-Hep-1 cells. Additionally, MTT assay was used to evaluate the proliferation of transfected cells. The scratch and transwell assays were used to determine the migration and invasion ability of the cell. The protein levels were determined with Western blot. lncRNA HOTAIR was overexpressed in SMMC-7721 and SK-Hep-1 cells. Ginsenoside-Rg3 reduced the level of lncRNA HOTAIR. Overexpressed lncRNA HOTAIR offset ginsenoside-Rg3 inhibited proliferation, migration and invasion of HCC cells. Furthermore, ginsenoside-Rg3 decreased the expression of p-AKT, p-PI3K, matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9), which was reversed after the treatment of HOTAIR. LncRNA HOTAIR was overexpressed in SMMC-7721 cells. Ginsenoside-Rg3 could reduce the expression of lncRNA HOTAIR, resulting in the inhibited cell proliferation, migration and invasion. Furthermore, ginsenoside-Rg3 inhibited cell proliferation and invasion ability through the PI3k/AKT pathway. Thus, ginsenoside-Rg3 might be a potential and effective treatment for HCC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Fei Ge
- Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Ziyu Jiang
- Department of Oncology, Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Shukui Qin
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qijun Dai
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Haiqing Hua
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
93
|
Su H, Fan G, Huang J, Qiu X. YBX1 regulated by Runx3-miR-148a-3p axis facilitates non-small-cell lung cancer progression. Cell Signal 2021; 85:110049. [PMID: 34082012 DOI: 10.1016/j.cellsig.2021.110049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Y-box binding protein 1 (YBX1) is a common oncogene in non-small-cell lung cancer (NSCLC), which is regulated by microRNAs (miRNAs) and transcription factors. This research aims to explore the function of YBX1, miR-148a-3p and Runt-related transcription factor 3 (Runx3) in NSCLC development, and analyze their interactions. METHODS YBX1, miR-148a-3p and Runx3 levels were detected using quantitative reverse transcription polymerase chain reaction(RT-PCR), Western blotting or immunohistochemical staining. The functions of YBX1, miR-148a-3p and Runx3 were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing, transwell, flow cytometry, xenograft model and Western blotting analyses. The binding correlation was validated through dual-luciferase reporter analysis and chromatin immunoprecipitation (ChIP). RESULTS YBX1 expression was upregulated, and miR-148a-3p and Runx3 levels were reduced in NSCLC samples and cell lines. YBX1 silence restrained NSCLC cell proliferation, migration, invasion and tumor growth, and enhanced apoptosis. YBX1 was targeted via miR-148a-3p. MiR-148a-3p knockdown promoted cell proliferation, migration, invasion and tumor growth, and repressed apoptosis, and these effects were abolished by YBX1 silence. Runx3 upregulation restrained cell proliferation, migration, invasion and tumor growth, and facilitated apoptosis. Runx3 bound with miR-148a-3p promotor to regulate miR-148a-3p expression. Runx3 silence modulated YBX1 expression though miR-148a-3p to promote NSCLC progression by increasing Cyclin D1, Cyclin B1, Slug-1, MMP-2 and MMP-9 levels. CONCLUSION Runx3-miR-148a-3p axis targeted YBX1 to modulate NSCLC progression.
Collapse
Affiliation(s)
- Hongbo Su
- Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Guanzhi Fan
- Department of Pathology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, PR China
| | - Jin Huang
- Department of Radiotherapy, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
94
|
Immunotherapy Using Oxygenated Water and Tumor-Derived Exosomes Potentiates Antitumor Immune Response and Attenuates Malignancy Tendency in Mice Model of Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529484. [PMID: 34194604 PMCID: PMC8181112 DOI: 10.1155/2021/5529484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer is one of the most common type of tumor and the leading cause of death in the world's female population. Various therapeutic approaches have been used to treat tumors but have not led to complete recovery and have even damaged normal cells in the body. Moreover, metastatic tumors such as breast cancer are much more resistant to treatment, and current treatments have not been very successful in treating them and remain a challenge. Therefore, new approaches should be applied to overcome this problem. Given the importance of hypoxia in tumor survival, we aimed to test the antitumor effects of oxygenated water to decrease hypoxia along with tumor-derived exosomes to target tumor. The purpose of administering oxygenated water and tumor exosomes was to reduce hypoxia and establish an effective immune response against tumor antigens, respectively. For this purpose, the breast cancer mice model was induced using the 4T1 cell line in Balb/c mice and treated with oxygenated water via an intratumoral (IT) and/or intraperitoneal (IP) route and/or exosome (TEX). Oxygenation via the IT+IP route was more efficient than oxygenation via the IT or IP route. The efficiency of oxygenation via the two routes along with TEX led to the best therapeutic outcome. Antitumor immune responses directed by TEX became optimized when systemic (IP) and local (IT) oxygenation was applied compared to administration of TEX alone. Results demonstrated a significant reduction in tumor size and the highest levels of IFN-γ and IL-17 and the lowest levels of IL-4 FoxP3, HIF-1α, VEGF, MMP-2, and MMP-9 in the IT+IP+TEX-treated group. Oxygenated water on the one hand could reduce tumor size, hypoxia, angiogenesis, and metastasis in the tumor microenvironment and on the other hand increases the effective immune response against the tumor systemically. This therapeutic approach is proposed as a new strategy for devising vaccines in a personalized approach.
Collapse
|
95
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
96
|
Chen X, Liu W, Liu B. Ginsenoside Rh7 Suppresses Proliferation, Migration and Invasion of NSCLC Cells Through Targeting ILF3-AS1 Mediated miR-212/SMAD1 Axis. Front Oncol 2021; 11:656132. [PMID: 33996578 PMCID: PMC8116958 DOI: 10.3389/fonc.2021.656132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
It is reported that ginsenosides have a significant anti-tumor effect on a variety of tumors. However, the role and mechanism of Rh7 in non-small cell lung cancer (NSCLC) are unclear. In this study, we aimed to study the anti-tumor effect of Rh7 on the proliferation and progression of NSCLC. Bioinformatics analysis showed that ILF3-AS1 was regulated by ginsenoside Rh7 in NSCLC. Down-regulation of ILF3-AS1 could significantly inhibit the proliferation, metastasis and invasion of NSCLC. In addition, ILF3-AS1 negatively controlled miR-212, which in turn targeted SMAD1 expression, thereby regulating NSCLC cell viability and apoptosis. Our results indicate that ILF3-AS1 can be used as a diagnostic and therapeutic target for non-small cell lung cancer. It is discovered for the first time that ginsenoside Rh7 inhibits the expression of ILF3-AS1 and exerts antitumor effects.
Collapse
Affiliation(s)
| | - Wenguang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
97
|
Goliwas KF, Ashraf HM, Wood AM, Wang Y, Hough KP, Bodduluri S, Athar M, Berry JL, Ponnazhagan S, Thannickal VJ, Deshane JS. Extracellular Vesicle Mediated Tumor-Stromal Crosstalk Within an Engineered Lung Cancer Model. Front Oncol 2021; 11:654922. [PMID: 33968758 PMCID: PMC8103208 DOI: 10.3389/fonc.2021.654922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional in vitro studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME. Additionally, immune checkpoint inhibition in a 3D model that included T cells showed an inhibition of tumor growth and reduced hypoxia within the TME. Thus, perfused 3D tumor models incorporating diverse cell types provide novel insights into EV-mediated tumor-immune interactions and immune-modulation for existing and emerging cancer therapies.
Collapse
Affiliation(s)
- Kayla F Goliwas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hannah M Ashraf
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anthony M Wood
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandeep Bodduluri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Selvarangan Ponnazhagan
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
98
|
Li H, Zhou L, Zhou J, Li Q, Ji Q. Underlying mechanisms and drug intervention strategies for the tumour microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:97. [PMID: 33722297 PMCID: PMC7962349 DOI: 10.1186/s13046-021-01893-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Cancer occurs in a complex tissue environment, and its progression depends largely on the tumour microenvironment (TME). The TME has a highly complex and comprehensive system accompanied by dynamic changes and special biological characteristics, such as hypoxia, nutrient deficiency, inflammation, immunosuppression and cytokine production. In addition, a large number of cancer-associated biomolecules and signalling pathways are involved in the above bioprocesses. This paper reviews our understanding of the TME and describes its biological and molecular characterization in different stages of cancer development. Furthermore, we discuss in detail the intervention strategies for the critical points of the TME, including chemotherapy, targeted therapy, immunotherapy, natural products from traditional Chinese medicine, combined drug therapy, etc., providing a scientific basis for cancer therapy from the perspective of key molecular targets in the TME.
Collapse
Affiliation(s)
- Haoze Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
99
|
He XL, Xu XH, Shi JJ, Huang M, Wang Y, Chen X, Lu JJ. Anticancer Effects of Ginsenoside Rh2: A Systematic Review. Curr Mol Pharmacol 2021; 15:179-189. [PMID: 33687905 DOI: 10.2174/1874467214666210309115105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As one of the effective pharmacological constituents of Ginseng Radix et Rhizoma, ginsenoside Rh2 (Rh2) exerts a remarkable anticancer effect on various cancer cell lines in vitro and strongly inhibits tumor growth in vivo without severe toxicity. OBJECTIVE This article reviewed existing evidence supporting the anticancer effects of Rh2 to classify and conclude previous and current knowledge on the mechanisms and therapeutic effects of Rh2, as well as to promote the clinical application of this natural product. CONCLUSION This article reviewed the anticancer efficacies and mechanisms of Rh2, including the induction of cell cycle arrest and programmed cell death, repression of metastasis, alleviation of drug resistance, and regulation of the immune system. Finally, this paper discussed the research and application prospects of Rh2.
Collapse
Affiliation(s)
- Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122. China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao. China
| |
Collapse
|
100
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|