51
|
Bohálová N, Cantara A, Bartas M, Kaura P, Šťastný J, Pečinka P, Fojta M, Mergny JL, Brázda V. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie 2021; 186:13-27. [PMID: 33839192 DOI: 10.1016/j.biochi.2021.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
G-quadruplexes contribute to the regulation of key molecular processes. Their utilization for antiviral therapy is an emerging field of contemporary research. Here we present comprehensive analyses of the presence and localization of putative G-quadruplex forming sequences (PQS) in all viral genomes currently available in the NCBI database (including subviral agents). The G4Hunter algorithm was applied to a pool of 11,000 accessible viral genomes representing 350 Mbp in total. PQS frequencies differ across evolutionary groups of viruses, and are enriched in repeats, replication origins, 5'UTRs and 3'UTRs. Importantly, PQS presence and localization is connected to viral lifecycles and corresponds to the type of viral infection rather than to nucleic acid type; while viruses routinely causing persistent infections in Metazoa hosts are enriched for PQS, viruses causing acute infections are significantly depleted for PQS. The unique localization of PQS identifies the importance of G-quadruplex-based regulation of viral replication and life cycle, providing a tool for potential therapeutic targeting.
Collapse
Affiliation(s)
- Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Alessio Cantara
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Patrik Kaura
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jiří Šťastný
- Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896/2, 616 69, Brno, Czech Republic; Department of Informatics, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
52
|
Rotavirus Gastroenteritis Hospitalizations Among Under-5 Children in Northern India. Indian J Pediatr 2021; 88:28-34. [PMID: 33533006 DOI: 10.1007/s12098-020-03621-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To study epidemiological profile, prevalence, and molecular epidemiology of RVGE in hospitalized under-5 children at a tertiary care teaching rural hospital located in sub-Himalayan belt of Northern India. METHODS This was a hospital-based surveillance study done over 4 y (2016-2019) including under-5 children hospitalized with acute gastroenteritis (AGE). Demographic and clinical parameters were recorded in a pre-designed performa. After consent, stool samples were collected and sent to Christian Medical College (CMC), Vellore for RV screening by enzyme immunoassay (EIA). Each EIA-positive sample was further subjected to G and P typing using published methods. RESULTS Out of total 851 included children, rotavirus gastroenteritis (RVGE) was detected in 23.03% (196/851) cases by EIA. The highest incidence for RVGE-positive cases (40.43%) was observed in 2016 with gradual decline over next 3 y. Maximum cases of diarrhea were observed in 12-23 mo age group along with highest rotavirus detection. G3P[8] was most common genotype (46.94%) found, followed by G1P[8] (13.78%), G2P[4] (4.59%), G1P[6] (8.16%) and G9P[4] (3.57%). Mixed genotype was seen in 13.78% of total cases. CONCLUSION This study summarizes the changing trends in the epidemiology of RVGE in Northern India along with the major circulating genotypes postvaccine introduction.
Collapse
|
53
|
Pasittungkul S, Lestari FB, Puenpa J, Chuchaona W, Posuwan N, Chansaenroj J, Mauleekoonphairoj J, Sudhinaraset N, Wanlapakorn N, Poovorawan Y. High prevalence of circulating DS-1-like human rotavirus A and genotype diversity in children with acute gastroenteritis in Thailand from 2016 to 2019. PeerJ 2021; 9:e10954. [PMID: 33680579 PMCID: PMC7919534 DOI: 10.7717/peerj.10954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Human rotavirus A (RVA) infection is the primary cause of acute gastroenteritis (AGE) in infants and young children worldwide, especially in children under 5 years of age and is a major public health problem causing severe diarrhea in children in Thailand. This study aimed to investigate the prevalence, genotype diversity, and molecular characterization of rotavirus infection circulating in children under 15 years of age diagnosed with AGE in Thailand from January 2016 to December 2019. Methods A total of 2,001 stool samples were collected from children with gastroenteritis (neonates to children <15 years of age) and tested for RVA by real-time polymerase chain reaction (RT-PCR). Amplified products were sequenced and submitted to an online genotyping tool for analysis. Results Overall, 301 (15.0%) stool samples were positive for RVA. RVA occurred most frequently among children aged 0-24 months. The seasonal incidence of rotavirus infection occurred typically in Thailand during the winter months (December-March). The G3P[8] genotype was identified as the most prevalent genotype (33.2%, 100/301), followed by G8P[8] (10.6%, 32/301), G9P[8] (6.3%, 19/301), G2P[4] (6.0%, 18/301), and G1P[6] (5.3%, 16/301). Uncommon G and P combinations such as G9P[4], G2P[8], G3P[4] and G3P[9] were also detected at low frequencies. In terms of genetic backbone, the unusual DS-1-like G3P[8] was the most frequently detected (28.2%, 85/301), and the phylogenetic analysis demonstrated high nucleotide identity with unusual DS-1-like G3P[8] detected in Thailand and several countries. Conclusions A genetic association between RVA isolates from Thailand and other countries ought to be investigated given the local and global dissemination of rotavirus as it is crucial for controlling viral gastroenteritis, and implications for the national vaccination programs.
Collapse
Affiliation(s)
- Siripat Pasittungkul
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Fajar Budi Lestari
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Faculty of Graduate School, Chulalongkorn University, Inter-Department of Biomedical Sciences, Bangkok, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Watchaporn Chuchaona
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Nawarat Posuwan
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Jira Chansaenroj
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - John Mauleekoonphairoj
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Natthinee Sudhinaraset
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand.,Faculty of Medicine, Chulalongkorn University, Division of Academic Affairs, Bangkok, Bangkok, Thailand
| | - Yong Poovorawan
- Faculty of Medicine, Chulalongkorn University, Center of Excellence in Clinical Virology, Bangkok, Bangkok, Thailand
| |
Collapse
|
54
|
Truong DTT, Kang JM, Tran NTH, Phan LT, Nguyen HT, Ho TV, Nguyen TTT, Hoang PL, Pham TMT, Nguyen TD, Hoang TA, Luong QC, Pham QD, Ahn JG, Yoon S, Nguyen TV, Yeom JS. Rotavirus genotype trends from 2013 to 2018 and vaccine effectiveness in southern Vietnam. Int J Infect Dis 2021; 105:277-285. [PMID: 33596479 DOI: 10.1016/j.ijid.2021.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Rotavirus (RV) genotypes vary geographically, and this can affect vaccine effectiveness (VE). This study investigated the genotype distribution of RV and explored VE before introducing the RV vaccine to the national immunization programme in Vietnam. METHODS This hospital-based surveillance study was conducted at Children's Hospital 1, Ho Chi Minh City in 2013-2018. Stool samples and relevant data, including vaccination history, were collected from children aged <5 years who were hospitalized with gastroenteritis. RV was detected using enzyme immunoassays and then genotyped. Children aged ≥6 months were included in the VE analysis. RESULTS Overall, 5176 children were included in this study. RV was detected in 2421 children (46.8%). RV positivity decreased over the study period and was associated with age, seasonality, location and previous vaccination. Among 1105 RV-positive samples, G3P[8] was the most prevalent genotype (43.1%), followed by G8P[8] (19.7%), G1P[8] (12.9%) and G2P[4] (12.9%). Overall VE was 69.7% [95% confidence interval (CI) 53.3-80.6%] in fully vaccinated children and 58.6% (95% CI 44.1-69.4%) in children who had received at least one dose of RV vaccine. VE was highest for G3P[8] (95% CI 75.1-84.5%) and lowest for G2P[4] (95% CI 32.4-57.2%). CONCLUSIONS RV remains a major cause of acute gastroenteritis requiring hospitalization in southern Vietnam. The RV vaccine is effective, but its effectiveness varies with RV genotype.
Collapse
Affiliation(s)
- Dung Thi Thuy Truong
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam; Department of Global Health Security, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Ji-Man Kang
- Department of Paediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Ngoc Thi Hong Tran
- Department of Gastroenterology, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Lan Trong Phan
- Directorial Board, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | - Thang Vinh Ho
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Thao Thi Thanh Nguyen
- Microbiology and Immunology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Phuc Le Hoang
- Department of Gastroenterology, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Trang Mai Thuy Pham
- Microbiology and Immunology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Thuy Dieu Nguyen
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Thang Anh Hoang
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Quang Chan Luong
- Department for Disease Control and Prevention, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Quang Duy Pham
- Planning Division, Pasteur Institute, Ho Chi Minh City, Vietnam; Training Centre, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Jong Gyun Ahn
- Department of Paediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangchul Yoon
- Department of Medical Humanities and Social Sciences, College of Medicine, Yonsei University, Seoul, South Korea
| | - Thuong Vu Nguyen
- Directorial Board, Pasteur Institute, Ho Chi Minh City, Vietnam.
| | - Joon-Sup Yeom
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
55
|
Mukhopadhyay U, Banerjee A, Chawla-Sarkar M, Mukherjee A. Rotavirus Induces Epithelial-Mesenchymal Transition Markers by Transcriptional Suppression of miRNA-29b. Front Microbiol 2021; 12:631183. [PMID: 33679655 PMCID: PMC7930342 DOI: 10.3389/fmicb.2021.631183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023] Open
Abstract
Acute gastroenteritis (AGE) is a serious global health problem and has been known to cause millions of infant deaths every year. Rotavirus (RV), a member of the Reoviridae family, still majorly accounts for the AGE in children below 5 years of age in India and worldwide. The involvement of miRNAs in the pathogenesis of RV has been suggested to be of the proviral as well as the anti-viral nature. miRNAs that promote the RV pathogenesis are capable of targeting the cellular components to evade the host anti-viral strategies. On the other hand, miRNAs with anti-rotaviral properties are themselves incapacitated during the progression of the infection. The exploitation of the epithelial-mesenchymal transition (EMT) as a pro-rotaviral strategy has already been identified. Thus, miRNAs that proficiently target the intermediates of the EMT pathway may serve as anti-viral counterparts in the RV-host interactions. The role of microRNA-29b (miR-29b) in the majority of human cancers has been well demonstrated, but its significance in viral infections is yet to be elaborated. In this study, we have assessed the role of miR-29b in RV-induced EMT and RV replication. Our study on miR-29b provides evidence for the recruitment of RV non-structural protein NSP1 to control the trans-repression of miR-29b in a p53-dependent manner. The trans-repression of miR-29b modulates the EMT pathway by targeting tripartite motif-containing protein 44 (TRIM44) and cyclin E1 (CCNE1). SLUG and SNAIL transcription repressors (downstream of TRIM44 and CCNE1) regulate the expression of E-cadherin, an important marker of the EMT. Also, it is established that ectopic expression of miR-29b not only constrains the EMT pathway but also restricts RV replication. Therefore, miR-29b repression is a crucial event in the RV pathogenesis. Ectopic expression of miR-29b displays potential anti-viral properties against RV propagation.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | - Mamta Chawla-Sarkar
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
56
|
Sadiq A, Bostan N. Comparative Analysis of G1P[8] Rotaviruses Identified Prior to Vaccine Implementation in Pakistan With Rotarix™ and RotaTeq™ Vaccine Strains. Front Immunol 2020; 11:562282. [PMID: 33133073 PMCID: PMC7562811 DOI: 10.3389/fimmu.2020.562282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023] Open
Abstract
Group A rotavirus (RVA) is the leading cause of severe childhood diarrhea globally, even with all effective interventions, particularly in developing countries. Among the diverse genotypes of RVA, G1P[8] is a common genotype that has continued to pervade around the world, including Pakistan. Two universally accepted rotavirus vaccines-Rotarix™ and RotaTeq™ contain the genotype G1P[8]. The current work was aimed at identifying differences between antigenic epitopes of Pakistan’s G1P[8] strains and those of the two licensed vaccines. We sequenced 6 G1P[8] rotavirus strains previously reported in Rawalpindi, Islamabad, Pakistan in 2015 and 2016 for their outer capsid genes (VP7 and VP4). Phylogenetic analysis was then conducted in order to classify their specific lineages and to detect their association with strains isolated throughout world. Compared with the Rotarix™ and RotaTeq™ vaccine strains (G1-lineage II, P[8]-lineage III), our study G1-lineage I, P[8]-lineage IV strains showed 3 and 5 variations in the VP7 epitopes, respectively, and 13 and 11 variations in the VP4 epitopes, respectively. The G1 lineage II strains showed no single amino acid change compared to Rotarix™ (lineage II), but exhibited changes at 2 positions compared to RotaTeq™ (lineage III). So, this has been proposed that these G1 strains exist in our natural setting, or that they may have been introduced in Pakistan from other countries of the world. The distinct P[8]-lineage IV (OP354-like) strains showed twelve and thirteen amino acid variations, with Rotarix™ and RotaTeq™ (lineages II and III) strains, respectively. Such findings have shown that the VP4-P[8] component of the G1P[8] strains circulating in Pakistan differs considerably from that of the vaccine viruses compared to that of the VP7-G1. To monitor the long-term effects of vaccines on the emergence of G1P[8] strains with different lineages, routine and successful monitoring of these strains will be crucial.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| |
Collapse
|
57
|
Zhou X, Wang YH, Pang BB, Chen N, Kobayashi N. Surveillance of Human Rotavirus in Wuhan, China (2011-2019): Predominance of G9P[8] and Emergence of G12. Pathogens 2020; 9:pathogens9100810. [PMID: 33023203 PMCID: PMC7600066 DOI: 10.3390/pathogens9100810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children worldwide. To learn the shift of genotypes and genetic characteristics of Rotavirus A (RVA) causing diarrhea in children and adults, a hospital-based surveillance of rotavirus was conducted in Wuhan, China from June 2011 through May 2019, and representative virus strains were phylogenetically analyzed. Among a total of 6733 stool specimens collected from both children and adults with acute gastroenteritis, RVA was detected in 25.5% (1125/4409) and 12.3% (285/2324) of specimens, respectively. G9P[8] was the most common genotype (74.5%), followed by G1P[8] (8.7%), G2P[4] (8.4%), and G3P[8] (7.3%), with G9P[8] increasing rapidly during the study period. The predominant genotype shifted from G1P[8] to G9P[8] in 2012-2013 epidemic season. G12P[6] strain RVA/Human-wt/CHN/Z2761/2019/G12P[6] was detected in April 2019 and assigned to G12-P[6]-I1-R1-C1-M1-A1-N1-T2-E1-H1 genotypes. Phylogenetic analysis revealed that VP7, VP4, VP6, VP3, NSP1, NSP2, and NSP5 genes of Z2761 clustered closely with those of Korean G12P[6] strain CAU_214, showing high nucleotide identities (98.0-98.8%). The NSP3 gene of Z2761 was closely related to those of G2P[4] and G12P[6] rotaviruses in Asia. All the eleven gene segments of Z2761 kept distance from those of cocirculating G9P[8], G1P[8], and G3P[8] strains detected in Wuhan during this study period. This is the first identification of G12 rotavirus in China. It is deduced that Z2761 is a reassortant having DS-1-like NSP3 gene in the background of G12P[6] rotavirus genetically close to CAU_214.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
| | - Yuan-Hong Wang
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
- Correspondence: ; Tel.: + 86-27-85801763
| | - Bei-Bei Pang
- Division of Microbiology, Wuhan Centers for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.-B.P.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
58
|
Chansaenroj J, Chuchaona W, Lestari FB, Pasittungkul S, Klinfueng S, Wanlapakorn N, Vongpunsawad S, Chirathaworn C, Poovorawan Y. High prevalence of DS-1-like rotavirus infection in Thai adults between 2016 and 2019. PLoS One 2020; 15:e0235280. [PMID: 32584905 PMCID: PMC7316273 DOI: 10.1371/journal.pone.0235280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
Rotavirus infection is the most common cause of viral diarrhea in infants and young children but uncommon and usually asymptomatic in adults. In the winter of 2017–2018, a large-scale outbreak of rotavirus in both children and adults was reported in Thailand. The current study focused on the prevalence, genotyping, and molecular characterization of rotavirus infections in Thai adults from July 2016 to December 2019. In 2,598 stool samples collected from adult residents of Bangkok (aged #x2265; 15 years) with acute gastroenteritis, rotavirus was detected via real-time RT-PCR analysis of the VP6 gene. G, P and I genotypes were determined by direct sequencing of VP7, VP4, and VP6 genes, respectively. Our results showed 8.7% (226/2,598) of stool samples were positive for rotavirus. The incidence of rotavirus was high during the winter season of 2017–2018 (17.7%) compared to another studied periods (4.5% between July 2016- October 2017 and 2.8% between March 2018- December 2019). Nucleotide sequencing of VP7 and VP4 revealed G3P[8] as the predominant strain (33.2%,75/226), followed by G9P[8] (17.3%,39/226), and G2P[4] (15.0%,34/226). Uncommon G and P combinations were additionally detected at low frequencies. VP6 sequencing was conducted to discriminate I genotype between the Wa and DS-1 genogroup. The unusual DS-1-like G3P[8] strain was most prevalent amomg rotavirus strains detected in this study (29.6%, 67/226), and the corresponding VP7 sequences showed high nucleotide identity with unusual DS-1-like globally circulating strains. Our study demonstrates that rotavirus outbreaks in adults are attributable not only to high prevalence of RV infection but also the unusual DS-like genogroup. The collective findings reinforce the importance of investigating rotavirus diagnosis in adults suffering from acute gastroenteritis and taking appropriate preventive measures.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Watchaporn Chuchaona
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Fajar Budi Lestari
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siripat Pasittungkul
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|