51
|
Tao S, Chen H, Li N, Liang W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect Drug Resist 2022; 15:4155-4168. [PMID: 35942309 PMCID: PMC9356603 DOI: 10.2147/idr.s370869] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence and global epidemic of antimicrobial resistance (AMR) poses a serious threat to global public health in recent years. AMR genes are shared between bacterial pathogens mainly via horizontal gene transfer (HGT) on mobile genetic elements (MGEs), thereby accelerating the spread of antimicrobial resistance (AMR) and increasing the burden of drug resistance. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are an RNA-guided adaptive immune system in prokaryotes that recognizes and defends against invasive genetic elements such as phages and plasmids. Because of its specifically target and cleave DNA sequences encoding antibiotic resistance genes, CRISPR/Cas system has been developed into a new gene-editing tool for the prevention and control of bacterial drug resistance. CRISPR-Cas plays a potentially important role in controlling horizontal gene transfer and limiting the spread of antibiotic resistance. In this review, we will introduce the structure and working mechanism of CRISPR-Cas systems, followed by delivery strategies, and then focus on the relationship between antimicrobial resistance and CRISPR-Cas. Moreover, the challenges and prospects of this research field are discussed, thereby providing a reference for the prevention and control of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, 233030, People’s Republic of China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| |
Collapse
|
52
|
Riaz A, Kanwal F, Ahmad I, Ahmad S, Farooq A, Madsen CK, Brinch-Pedersen H, Bekalu ZE, Dai F, Zhang G, Alqudah AM. New Hope for Genome Editing in Cultivated Grasses: CRISPR Variants and Application. Front Genet 2022; 13:866121. [PMID: 35923689 PMCID: PMC9340155 DOI: 10.3389/fgene.2022.866121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) mediated genome editing, crop improvement has progressed significantly in recent years. In this genome editing tool, CRISPR-associated Cas nucleases are restricted to their target of DNA by their preferred protospacer adjacent motifs (PAMs). A number of CRISPR-Cas variants have been developed e.g. CRISPR-Cas9, -Cas12a and -Cas12b, with different PAM requirements. In this mini-review, we briefly explain the components of the CRISPR-based genome editing tool for crop improvement. Moreover, we intend to highlight the information on the latest development and breakthrough in CRISPR technology, with a focus on a comparison of major variants (CRISPR-Cas9, -Cas12a, and -Cas12b) to the newly developed CRISPR-SpRY that have nearly PAM-less genome editing ability. Additionally, we briefly explain the application of CRISPR technology in the improvement of cultivated grasses with regard to biotic and abiotic stress tolerance as well as improving the quality and yield.
Collapse
Affiliation(s)
- Asad Riaz
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Farah Kanwal
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Iqrar Ahmad
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Farooq
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Claus Krogh Madsen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Zelalem Eshetu Bekalu
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ahmad M. Alqudah
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| |
Collapse
|
53
|
Van Huffel K, Stock M, Ruttink T, De Baets B. Covering the Combinatorial Design Space of Multiplex CRISPR/Cas Experiments in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:907095. [PMID: 35795354 PMCID: PMC9251496 DOI: 10.3389/fpls.2022.907095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, CRISPR/Cas-mediated genome editing has revolutionized plant genetic studies and crop breeding. Specifically, due to its ability to simultaneously target multiple genes, the multiplex CRISPR/Cas system has emerged as a powerful technology for functional analysis of genetic pathways. As such, it holds great potential for application in plant systems to discover genetic interactions and to improve polygenic agronomic traits in crop breeding. However, optimal experimental design regarding coverage of the combinatorial design space in multiplex CRISPR/Cas screens remains largely unexplored. To contribute to well-informed experimental design of such screens in plants, we first establish a representation of the design space at different stages of a multiplex CRISPR/Cas experiment. We provide two independent computational approaches yielding insights into the plant library size guaranteeing full coverage of all relevant multiplex combinations of gene knockouts in a specific multiplex CRISPR/Cas screen. These frameworks take into account several design parameters (e.g., the number of target genes, the number of gRNAs designed per gene, and the number of elements in the combinatorial array) and efficiencies at subsequent stages of a multiplex CRISPR/Cas experiment (e.g., the distribution of gRNA/Cas delivery, gRNA-specific mutation efficiency, and knockout efficiency). With this work, we intend to raise awareness about the limitations regarding the number of target genes and order of genetic interaction that can be realistically analyzed in multiplex CRISPR/Cas experiments with a given number of plants. Finally, we establish guidelines for designing multiplex CRISPR/Cas experiments with an optimal coverage of the combinatorial design space at minimal plant library size.
Collapse
Affiliation(s)
- Kirsten Van Huffel
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Michiel Stock
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Melle, Belgium
| | - Bernard De Baets
- Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
54
|
Piskunen P, Latham R, West CE, Castronovo M, Linko V. Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. iScience 2022; 25:104389. [PMID: 35633938 PMCID: PMC9130510 DOI: 10.1016/j.isci.2022.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing with CRISPR/Cas paves the way for many biochemical, biotechnological, and medical applications, and consequently, it may enable treatment of already known and still-to-be-found genetic diseases. Meanwhile, another rapidly emerging field—structural DNA nanotechnology—provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective.
Collapse
|
55
|
Parsaeimehr A, Ebirim RI, Ozbay G. CRISPR-Cas technology a new era in genomic engineering. BIOTECHNOLOGY REPORTS 2022; 34:e00731. [PMID: 35686011 PMCID: PMC9171425 DOI: 10.1016/j.btre.2022.e00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
CRISPR-Cas systems offer a flexible and easy-to-use molecular platform to precisely modify and control organisms' genomes in a variety of fields, from agricultural biotechnology to therapeutics. With CRISPR technology, crop genomes can be precisely edited in a shorter and more efficient approach compared to traditional breeding or classic mutagenesis. CRISPR-Cas system can be used to manage the fermentation process by addressing phage resistance, antimicrobial activity, and genome editing. CRISPR-Cas technology has opened up a new era in gene therapy and other therapeutic fields and given hope to thousands of patients with genetic diseases. Anti-CRISPR molecules are powerful tools for regulating the CRISPR-Cas systems.
The CRISPR-Cas systems have offered a flexible, easy-to-use platform to precisely modify and control the genomes of organisms in various fields, ranging from agricultural biotechnology to therapeutics. This system is extensively used in the study of infectious, progressive, and life-threatening genetic diseases for the improvement of quality and quantity of major crops and in the development of sustainable methods for the generation of biofuels. As CRISPR-Cas technology continues to evolve, it is becoming more controllable and precise with the addition of molecular regulators, which will provide benefits for everyone and save many lives. Studies on the constant growth of CRISPR technology are important due to its rapid development. In this paper, we present the current applications and progress of CRISPR-Cas genome editing systems in several fields of research, we further highlight the applications of anti-CRISPR molecules to regulate CRISPR-Cas gene editing systems, and we discuss ethical considerations in CRISPR-Cas applications.
Collapse
|
56
|
Volke DC, Martino RA, Kozaeva E, Smania AM, Nikel PI. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat Commun 2022; 13:3026. [PMID: 35641501 PMCID: PMC9156665 DOI: 10.1038/s41467-022-30780-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
CRISPR/Cas technologies constitute a powerful tool for genome engineering, yet their use in non-traditional bacteria depends on host factors or exogenous recombinases, which limits both efficiency and throughput. Here we mitigate these practical constraints by developing a widely-applicable genome engineering toolset for Gram-negative bacteria. The challenge is addressed by tailoring a CRISPR base editor that enables single-nucleotide resolution manipulations (C·G → T·A) with >90% efficiency. Furthermore, incorporating Cas6-mediated processing of guide RNAs in a streamlined protocol for plasmid assembly supports multiplex base editing with >85% efficiency. The toolset is adopted to construct and deconstruct complex phenotypes in the soil bacterium Pseudomonas putida. Single-step engineering of an aromatic-compound production phenotype and multi-step deconstruction of the intricate redox metabolism illustrate the versatility of multiplex base editing afforded by our toolbox. Hence, this approach overcomes typical limitations of previous technologies and empowers engineering programs in Gram-negative bacteria that were out of reach thus far. Rapid engineering of bacterial genomes is a requisite for both fundamental and applied studies. Here the authors develop an enhanced, broad-host-range cytidine base editor that enables multiplexed and efficient genome editing of Gram-negative bacteria.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Román A Martino
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea M Smania
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
57
|
Le Y, Sun J. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:1-30. [PMID: 35461662 DOI: 10.1016/bs.aambs.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | - Jianzhong Sun
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
58
|
Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, Chikkaputtaiah C. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. PLANTA 2022; 255:109. [PMID: 35460444 DOI: 10.1007/s00425-022-03894-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Precise genome engineering approaches could be perceived as a second paradigm for targeted trait improvement in crop plants, with the potential to overcome the constraints imposed by conventional CRISPR/Cas technology. The likelihood of reduced agricultural production due to highly turbulent climatic conditions increases as the global population expands. The second paradigm of stress-resilient crops with enhanced tolerance and increased productivity against various stresses is paramount to support global production and consumption equilibrium. Although traditional breeding approaches have substantially increased crop production and yield, effective strategies are anticipated to restore crop productivity even further in meeting the world's increasing food demands. CRISPR/Cas, which originated in prokaryotes, has surfaced as a coveted genome editing tool in recent decades, reshaping plant molecular biology in unprecedented ways and paving the way for engineering stress-tolerant crops. CRISPR/Cas is distinguished by its efficiency, high target specificity, and modularity, enables precise genetic modification of crop plants, allowing for the creation of allelic variations in the germplasm and the development of novel and more productive agricultural practices. Additionally, a slew of advanced biotechnologies premised on the CRISPR/Cas methodologies have augmented fundamental research and plant synthetic biology toolkits. Here, we describe gene editing tools, including CRISPR/Cas and its imitative tools, such as base and prime editing, multiplex genome editing, chromosome engineering followed by their implications in crop genetic improvement. Further, we comprehensively discuss the latest developments of CRISPR/Cas technology including CRISPR-mediated gene drive, tissue-specific genome editing, dCas9 mediated epigenetic modification and programmed self-elimination of transgenes in plants. Finally, we highlight the applicability and scope of advanced CRISPR-based techniques in crop genetic improvement.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
59
|
He J, Biswas R, Bugde P, Li J, Liu DX, Li Y. Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050894. [PMID: 35631480 PMCID: PMC9147533 DOI: 10.3390/pharmaceutics14050894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, sequence-specific clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems have been widely used in genome editing of various cell types and organisms. The most developed and broadly used CRISPR-Cas system, CRISPR-Cas9, has benefited from the proof-of-principle studies for a better understanding of the function of genes associated with drug absorption and disposition. Genome-scale CRISPR-Cas9 knockout (KO) screen study also facilitates the identification of novel genes in which loss alters drug permeability across biological membranes and thus modulates the efficacy and safety of drugs. Compared with conventional heterogeneous expression models or other genome editing technologies, CRISPR-Cas9 gene manipulation techniques possess significant advantages, including ease of design, cost-effectiveness, greater on-target DNA cleavage activity and multiplexing capabilities, which makes it possible to study the interactions between membrane proteins and drugs more accurately and efficiently. However, many mechanistic questions and challenges regarding CRISPR-Cas9 gene editing are yet to be addressed, ranging from off-target effects to large-scale genetic alterations. In this review, an overview of the mechanisms of CRISPR-Cas9 in mammalian genome editing will be introduced, as well as the application of CRISPR-Cas9 in studying the barriers to drug delivery.
Collapse
Affiliation(s)
- Ji He
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Piyush Bugde
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Jiawei Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland 1010, New Zealand; (J.H.); (R.B.); (P.B.); (J.L.); (D.-X.L.)
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-9921-9999 (ext. 7109)
| |
Collapse
|
60
|
Hong KQ, Zhang J, Jin B, Chen T, Wang ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microb Cell Fact 2022; 21:56. [PMID: 35392910 PMCID: PMC8991567 DOI: 10.1186/s12934-022-01779-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli. Results The results showed that a synthetic glycine-OFF riboswitch (glyOFF6) and an increased-detection-range synthetic glycine-ON riboswitch (glyON14) were successfully screened from a library based on the Bacillus subtilis glycine riboswitch using fluorescence-activated cell sorting (FACS) and tetA-based dual genetic selection. The two synthetic glycine riboswitches were successfully used in tunable regulation of lactate synthesis, dynamic regulation of serine synthesis and directed evolution of alanine-glyoxylate aminotransferase in Escherichia coli, respectively. Mutants AGXT22 and AGXT26 of alanine-glyoxylate aminotransferase with an increase of 58% and 73% enzyme activity were obtained by using a high-throughput screening platform based on the synthetic glycine-OFF riboswitch, and successfully used to increase the 5-aminolevulinic acid yield of engineered Escherichia coli. Conclusions A synthetic glycine-OFF riboswitch and an increased-detection-range synthetic glycine-ON riboswitch were successfully designed and screened. The developed riboswitches showed broad application in tunable regulation, dynamic regulation and directed evolution of enzyme in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01779-4.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhi-Wen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China. .,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
61
|
Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim NY, Li CZ, Kumar Mishra Y, Kaushik A. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:833-864. [PMID: 35194511 PMCID: PMC8853211 DOI: 10.1007/s40097-022-00472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 05/02/2023]
Abstract
Biomedical researchers have subsequently been inspired the development of new approaches for precisely changing an organism's genomic DNA in order to investigate customized diagnostics and therapeutics utilizing genetic engineering techniques. Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) is one such technique that has emerged as a safe, targeted, and effective pharmaceutical treatment against a wide range of disease-causing organisms, including bacteria, fungi, parasites, and viruses, as well as genetic abnormalities. The recent discovery of very flexible engineered nucleic acid binding proteins has changed the scientific area of genome editing in a revolutionary way. Since current genetic engineering technique relies on viral vectors, issues about immunogenicity, insertional oncogenesis, retention, and targeted delivery remain unanswered. The use of nanotechnology has the potential to improve the safety and efficacy of CRISPR/Cas9 component distribution by employing tailored polymeric nanoparticles. The combination of two (CRISPR/Cas9 and nanotechnology) offers the potential to open new therapeutic paths. Considering the benefits, demand, and constraints, the goal of this research is to acquire more about the biology of CRISPR technology, as well as aspects of selective and effective diagnostics and therapies for infectious illnesses and other metabolic disorders. This review advocated combining nanomedicine (nanomedicine) with a CRISPR/Cas enabled sensing system to perform early-stage diagnostics and selective therapy of specific infectious disorders. Such a Nano-CRISPR-powered nanomedicine and sensing system would allow for successful infectious illness control, even on a personal level. This comprehensive study also discusses the current obstacles and potential of the predicted technology. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40097-022-00472-7.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Nanobiocel Research Group, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Nam-Young Kim
- Department of Electronics Engineering, RFIC Bio Centre, NDAC Centre, RFIC Bio Centre, NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897 South Korea
| | - Chen-zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112 USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112 USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL-33805 USA
| |
Collapse
|
62
|
Vuong P, Wise MJ, Whiteley AS, Kaur P. Small investments with big returns: environmental genomic bioprospecting of microbial life. Crit Rev Microbiol 2022; 48:641-655. [PMID: 35100064 DOI: 10.1080/1040841x.2021.2011833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms and their natural products are major drivers of ecological processes and industrial applications. Microbial bioprospecting has been critical for the advancement in various fields such as pharmaceuticals, sustainable industries, food security and bioremediation. Next generation sequencing has been paramount in the exploration of diverse environmental microbiomes. It presents a culture-independent approach to investigating hitherto uncultured taxa, resulting in the creation of massive sequence databases, which are available in the public domain. Genome mining searches available (meta)genomic data for target biosynthetic genes, and combined with the large-scale public data, this in-silico bioprospecting method presents an efficient and extensive way to uncover microbial bioproducts. Bioinformatic tools have progressed to a stage where we can recover genomes from the environment; these metagenome-assembled genomes present a way to understand the metabolic capacity of microorganisms in a physiological and ecological context. Environmental sampling been extensive across various ecological settings, including microbiomes with unique physicochemical properties that could influence the discovery of novel functions and metabolic pathways. Although in-silico methods cannot completely substitute in-vitro studies, the contextual information it provides is invaluable for understanding the ecological and taxonomic distribution of microbial genotypes and to form effective strategies for future microbial bioprospecting efforts.
Collapse
Affiliation(s)
- Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Michael J Wise
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Andrew S Whiteley
- Centre for Environment & Life Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat, Australia
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| |
Collapse
|
63
|
Juma BS, Mukami A, Mweu C, Ngugi MP, Mbinda W. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:1009860. [PMID: 36388608 PMCID: PMC9644188 DOI: 10.3389/fpls.2022.1009860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 05/13/2023]
Abstract
Cassava is the world's most essential food root crop, generating calories to millions of Sub-Saharan African subsistence farmers. Cassava leaves and roots contain toxic quantities of the cyanogenic glycoside linamarin. Consumption of residual cyanogens results in cyanide poisoning due to conversion of the cyanogens to cyanide in the body. There is a need for acyanogenic cassava cultivars in order for it to become a consistently safe and acceptable food, and commercial crop. In recent years, the CRISPR/Cas system, has proven to be the most effective and successful genome editing tool for gene function studies and crop improvement. In this study, we performed targeted mutagenesis of the MeCYP79D1 gene in exon 3, using CRISPR/Cas9, via Agrobacterium-mediated transformation. The vector design resulted in knockout in cotyledon-stage somatic embryos regenerated under hygromycin selection. Eight plants were recovered and genotyped. DNA sequencing analysis revealed that the tested putative transgenic plants carried mutations within the MeCYP79D1 locus, with deletions and substitutions being reported upstream and downstream of the PAM sequence, respectively. The levels of linamarin and evolved cyanide present in the leaves of mecyp79d1 lines were reduced up to seven-fold. Nevertheless, the cassava linamarin and cyanide were not completely eliminated by the MeCYP79D1 knockout. Our results indicate that CRISPR/Cas9-mediated mutagenesis is as an alternative approach for development of cassava plants with lowered cyanide content.
Collapse
Affiliation(s)
- Bicko Steve Juma
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | - Asunta Mukami
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Cecilia Mweu
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Wilton Mbinda
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
- Department of Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- *Correspondence: Wilton Mbinda,
| |
Collapse
|
64
|
Singha DL, Das D, Sarki YN, Chowdhury N, Sharma M, Maharana J, Chikkaputtaiah C. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects. PLANTA 2021; 255:28. [PMID: 34962611 DOI: 10.1007/s00425-021-03811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
Collapse
Affiliation(s)
- Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Yogita N Sarki
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
65
|
Abstract
Genetic diseases present formidable hurdles in maintaining a good quality of life for those suffering from these ailments. Often, patients look to inadequate treatments to manage symptoms, which can result in harmful effects on the body. Through genetic engineering, scientists utilize the clustered regularly short palindromic repeat (CRISPR)-associated protein, known as Cas9, to treat the root of the problem. The Cas9 protein is often codelivered with guide RNAs or in ribonucleoprotein complexes (RNP) to ensure targeted delivery of the genetic tool as well as to limit off-target effects. This paper provides an overview of the current advances made toward the encapsulation and delivery of Cas9 to desired locations in the body through encapsulating nanoparticles. Several factors must be considered when employing the Cas9 system to allow gene editing to occur. Material selection is crucial to protect the payload of the delivery vector. Current literature indicates that lipid- and polymer-based nanoparticles show the most potential as delivery vessels for Cas9. Lipid nanoparticles greatly outpace polymer-based nanoparticles in the clinic, despite the benefits that polymers may introduce. When developing translatable systems, there are factors that have not yet been considered that are relevant to Cas9 delivery that are highlighted in this Viewpoint. The proper functioning of Cas9 is dependent on maintaining a proper internal environment; however, there are gaps in the literature regarding these optimal conditions. Interactions between charges of the Cas9 protein, codelivered molecules, and delivery vehicles could impact the effectiveness of the gene editing taking place. While the internal charges of nanoparticles and their effects on Cas9 are presently undetermined, nanoparticles currently offer the ideal delivery method for the Cas9 protein due to their adequate size, modifiable external charge, and ability to be modified. Overall, a cationic lipid-/polymer-based nanoparticle system was found to have the most prospects in Cas9 delivery thus far. By understanding the successes of other systems, translatable, polymer-based delivery vehicles may be developed.
Collapse
|
66
|
Dong H, Cui Y, Zhang D. CRISPR/Cas Technologies and Their Applications in Escherichia coli. Front Bioeng Biotechnol 2021; 9:762676. [PMID: 34858961 PMCID: PMC8632213 DOI: 10.3389/fbioe.2021.762676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have revolutionized genome editing and greatly promoted the development of biotechnology. However, these systems unfortunately have not been developed and applied in bacteria as extensively as in eukaryotic organism. Here, the research progress on the most widely used CRISPR/Cas tools and their applications in Escherichia coli is summarized. Genome editing based on homologous recombination, non-homologous DNA end-joining, transposons, and base editors are discussed. Finally, the state of the art of transcriptional regulation using CRISPRi is briefly reviewed. This review provides a useful reference for the application of CRISPR/Cas systems in other bacterial species.
Collapse
Affiliation(s)
- Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yali Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
68
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
69
|
Liu W, Li L, Jiang J, Wu M, Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. PRECISION CLINICAL MEDICINE 2021; 4:179-191. [PMID: 34541453 PMCID: PMC8444435 DOI: 10.1093/pcmedi/pbab014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems (Cas) are efficient tools for targeting specific genes for laboratory research, agricultural engineering, biotechnology, and human disease treatment. Cas9, by far the most extensively used gene-editing nuclease, has shown great promise for the treatment of hereditary diseases, viral infection, cancers, and so on. Recent reports have revealed that some other types of CRISPR-Cas systems may also have surprising potential to join the fray as gene-editing tools for various applications. Despite the rapid progress in basic research and clinical tests, some underlying problems present continuous, significant challenges, such as editing efficiency, relative difficulty in delivery, off-target effects, immunogenicity, etc. This article summarizes the applications of CRISPR-Cas from bench to bedside and highlights the current obstacles that may limit the usage of CRISPR-Cas systems as gene-editing toolkits in precision medicine and offer some viewpoints that may help to tackle these challenges and facilitate technical development. CRISPR-Cas systems, as a powerful gene-editing approach, will offer great hopes in clinical treatments for many individuals with currently incurable diseases.
Collapse
Affiliation(s)
- Wenyi Liu
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luoxi Li
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202–9037, USA
| | - Ping Lin
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- Biological Science Research Center, Southwest University, Chongqing 400716, China
| |
Collapse
|
70
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
71
|
Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021; 15:353-361. [PMID: 34456559 PMCID: PMC8388126 DOI: 10.2147/btt.s326422] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and their associated protein (Cas-9) is the most effective, efficient, and accurate method of genome editing tool in all living cells and utilized in many applied disciplines. Guide RNA (gRNA) and CRISPR-associated (Cas-9) proteins are the two essential components in CRISPR/Cas-9 system. The mechanism of CRISPR/Cas-9 genome editing contains three steps, recognition, cleavage, and repair. The designed sgRNA recognizes the target sequence in the gene of interest through a complementary base pair. While the Cas-9 nuclease makes double-stranded breaks at a site 3 base pair upstream to protospacer adjacent motif, then the double-stranded break is repaired by either non-homologous end joining or homology-directed repair cellular mechanisms. The CRISPR/Cas-9 genome-editing tool has a wide number of applications in many areas including medicine, agriculture, and biotechnology. In agriculture, it could help in the design of new grains to improve their nutritional value. In medicine, it is being investigated for cancers, HIV, and gene therapy such as sickle cell disease, cystic fibrosis, and Duchenne muscular dystrophy. The technology is also being utilized in the regulation of specific genes through the advanced modification of Cas-9 protein. However, immunogenicity, effective delivery systems, off-target effect, and ethical issues have been the major barriers to extend the technology in clinical applications. Although CRISPR/Cas-9 becomes a new era in molecular biology and has countless roles ranging from basic molecular researches to clinical applications, there are still challenges to rub in the practical applications and various improvements are needed to overcome obstacles.
Collapse
Affiliation(s)
- Misganaw Asmamaw
- Division of Biochemistry, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Belay Zawdie
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
72
|
Razeghian E, Nasution MKM, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, Bokov DO, Suksatan W, Nakhaei P, Shariatzadeh S, Marofi F, Yazdanifar M, Shamlou S, Motavalli R, Khiavi FM. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther 2021; 12:428. [PMID: 34321099 PMCID: PMC8317439 DOI: 10.1186/s13287-021-02510-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
To date, two chimeric antigen receptors (CAR)-T cell products from autologous T cells have been approved by The United States Food and Drug Administration (FDA). The case-by-case autologous T cell generation setting is largely considered as a pivotal restraining cause for its large-scale clinical use because of the costly and prolonged manufacturing procedure. Further, activated CAR-T cells mainly express immune checkpoint molecules, including CTLA4, PD1, LAG3, abrogating CAR-T anti-tumor activity. In addition, CAR-T cell therapy potently results in some toxicity, such as cytokine releases syndrome (CRS). Therefore, the development of the universal allogeneic T cells with higher anti-tumor effects is of paramount importance. Thus, genome-editing technologies, in particular, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 are currently being used to establish "off-the-shelf" CAR-T cells with robust resistance to immune cell-suppressive molecules. In fact, that simultaneous ablation of PD-1, T cell receptor alpha constant (TRAC or TCR), and also β-2 microglobulin (B2M) by CRISPR-Cas9 technique can support the manufacture of universal CAR-T cells with robust resistance to PD-L1. . Indeed, the ablation of β2M or TARC can severely hinder swift elimination of allogeneic T cells those express foreign HLA-I molecules, and thereby enables the generation of CAR-T cells from allogeneic healthy donors T cells with higher persistence in vivo. Herein, we will deliver a brief overview of the CAR-T cell application in the context of tumor immunotherapy. More importantly, we will discuss recent finding concerning the application of genome editing technologies for preparing universal CAR-T cells or cells that can effectively counter tumor escape, with a special focus on CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St, 117997 Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, 109240 Russian Federation
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
73
|
Kozovska Z, Rajcaniova S, Munteanu P, Dzacovska S, Demkova L. CRISPR: History and perspectives to the future. Biomed Pharmacother 2021; 141:111917. [PMID: 34328110 DOI: 10.1016/j.biopha.2021.111917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
This review summarizes the information about the history and future of the CRISPR/Cas9 method. Genome editing can be perceived as a group of technologies that allow scientists to change the DNA of an organism. These technologies involve the deletion, insertion, or modification of the genome at a specific site in a DNA sequence. Gene therapy in humans has a perspective to be used to eliminate the gene responsible for a particular genetic disorder. The review focuses on the key elements of this promising method and the possibility of its application in the treatment of cancer and genetic diseases.
Collapse
Affiliation(s)
- Z Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - S Rajcaniova
- Department of Cell and Molecular Biology of Drugs Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - P Munteanu
- Institute of Biochemistry and Microbiology, Faculty of chemical and food technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia
| | - S Dzacovska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - L Demkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
74
|
Meliawati M, Schilling C, Schmid J. Recent advances of Cas12a applications in bacteria. Appl Microbiol Biotechnol 2021; 105:2981-2990. [PMID: 33754170 PMCID: PMC8053165 DOI: 10.1007/s00253-021-11243-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome engineering and related technologies have revolutionized biotechnology over the last decade by enhancing the efficiency of sophisticated biological systems. Cas12a (Cpf1) is an RNA-guided endonuclease associated to the CRISPR adaptive immune system found in many prokaryotes. Contrary to its more prominent counterpart Cas9, Cas12a recognizes A/T rich DNA sequences and is able to process its corresponding guide RNA directly, rendering it a versatile tool for multiplex genome editing efforts and other applications in biotechnology. While Cas12a has been extensively used in eukaryotic cell systems, microbial applications are still limited. In this review, we highlight the mechanistic and functional differences between Cas12a and Cas9 and focus on recent advances of applications using Cas12a in bacterial hosts. Furthermore, we discuss advantages as well as current challenges and give a future outlook for this promising alternative CRISPR-Cas system for bacterial genome editing and beyond. KEY POINTS: • Cas12a is a powerful tool for genome engineering and transcriptional perturbation • Cas12a causes less toxic side effects in bacteria than Cas9 • Self-processing of crRNA arrays facilitates multiplexing approaches.
Collapse
Affiliation(s)
- Meliawati Meliawati
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149, Münster, Germany
| | - Christoph Schilling
- Chair of Chemistry of Biogenic Resources, Campus for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Jochen Schmid
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149, Münster, Germany.
- Chair of Chemistry of Biogenic Resources, Campus for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
| |
Collapse
|