51
|
Killeen GF, Reed TE. The portfolio effect cushions mosquito populations and malaria transmission against vector control interventions. Malar J 2018; 17:291. [PMID: 30097031 PMCID: PMC6086012 DOI: 10.1186/s12936-018-2441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Portfolio effects were first described as a basis for mitigating against financial risk by diversifying investments. Distributing investment across several different assets can stabilize returns and reduce risks by statistical averaging of individual asset dynamics that often correlate weakly or negatively with each other. The same simple probability theory is equally applicable to complex ecosystems, in which biological and environmental diversity stabilizes ecosystems against natural and human-mediated perturbations. Given the fundamental limitations to how well the full complexity of ecosystem dynamics can be understood or anticipated, the portfolio effect concept provides a simple framework for more critical data interpretation and pro-active conservation management. Applied to conservation ecology purposes, the portfolio effect concept informs management strategies emphasizing identification and maintenance of key ecological processes that generate complexity, diversity and resilience against inevitable, often unpredictable perturbations. IMPLICATIONS Applied to the reciprocal goal of eliminating the least valued elements of global biodiversity, specifically lethal malaria parasites and their vector mosquitoes, simply understanding the portfolio effect concept informs more cautious interpretation of surveillance data and simulation model predictions. Malaria transmission mediated by guilds of multiple vectors in complex landscapes, with highly variable climatic and meteorological conditions, as well as changing patterns of land use and other human behaviours, will systematically tend to be more resilient to attack with vector control than it appears based on even the highest quality surveillance data or predictive models. CONCLUSION Malaria vector control programmes may need to be more ambitious, interpret their short-to-medium term assessments of intervention impact more cautiously, and manage stakeholder expectations more conservatively than has often been the case thus far.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Western Road, Cork, Republic of Ireland
| |
Collapse
|
52
|
Sougoufara S, Thiaw O, Cailleau A, Diagne N, Harry M, Bouganali C, Sembène PM, Doucoure S, Sokhna C. The Impact of Periodic Distribution Campaigns of Long-Lasting Insecticidal-Treated Bed Nets on Malaria Vector Dynamics and Human Exposure in Dielmo, Senegal. Am J Trop Med Hyg 2018; 98:1343-1352. [PMID: 29557325 DOI: 10.4269/ajtmh.17-0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The implementation of long-lasting insecticidal-treated bed nets (LLINs) has contributed to halving the mortality rate due to malaria since 2000 in sub-Saharan Africa. These tools are highly effective against indoor-feeding malaria vectors. Thus, to achieve the World Health Assembly's new target to reduce the burden of malaria over the next 15 years by 90%, it is necessary to understand how the spatiotemporal dynamics of malaria vectors and human exposure to bites is modified in the context of scaling up global efforts to control malaria transmission. This study was conducted in Dielmo, a Senegalese village, after the introduction of LLINs and two rounds of LLINs renewals. Data analysis showed that implementation of LLINs correlated with a significant decrease in the biting densities of the main malaria vectors, Anopheles gambiae s.l. and Anopheles funestus, reducing malaria transmission. Other environment factors likely contributed to the decrease in An. funestus, but this trend was enhanced with the introduction of LLINs. The bulk of bites occurred during sleeping hours, but the residual vector populations of An. gambiae s.l. and An. funestus had an increased propensity to bite outdoors, so a risk of infectious bites remained for LLINs users. These results highlight the need to increase the level and correct use of LLINs and to combine this intervention with complementary control measures against residual exposure, such as spatial repellents and larval source management, to achieve the goal of eliminating malaria transmission.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Aix Marseille University, Institut de Recherche pour le Développement (IDR) (Dakar, Marseille, Papeete), AP-HM, Institut Hospitalo-Universitaire-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France.,Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Sénégal
| | - Omar Thiaw
- Aix Marseille University, Institut de Recherche pour le Développement (IDR) (Dakar, Marseille, Papeete), AP-HM, Institut Hospitalo-Universitaire-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Aurélie Cailleau
- Centre Suisse de Recherches Scientifiques en Cote d'Ivoire (CSRS), Yopougon, Abidjan, Côte d'Ivoire.,Unité d'Entomologie Médicale (UME), Institut Pasteur Dakar, Dakar, Sénégal
| | - Nafissatou Diagne
- Aix Marseille University, Institut de Recherche pour le Développement (IDR) (Dakar, Marseille, Papeete), AP-HM, Institut Hospitalo-Universitaire-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Myriam Harry
- UMR Évolution, Génomes, Comportement, Écologie (EGCE) Centre National de la Recherche Scientifique (CNRS), IRD-University Paris-Sud, IDEEV, University Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Charles Bouganali
- Aix Marseille University, Institut de Recherche pour le Développement (IDR) (Dakar, Marseille, Papeete), AP-HM, Institut Hospitalo-Universitaire-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Pape M Sembène
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Sénégal
| | - Souleymane Doucoure
- Aix Marseille University, Institut de Recherche pour le Développement (IDR) (Dakar, Marseille, Papeete), AP-HM, Institut Hospitalo-Universitaire-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Cheikh Sokhna
- Aix Marseille University, Institut de Recherche pour le Développement (IDR) (Dakar, Marseille, Papeete), AP-HM, Institut Hospitalo-Universitaire-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| |
Collapse
|
53
|
Prussing C, Moreno M, Saavedra MP, Bickersmith SA, Gamboa D, Alava F, Schlichting CD, Emerson KJ, Vinetz JM, Conn JE. Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-Iquitos, Amazonian Peru. Malar J 2018; 17:86. [PMID: 29463241 PMCID: PMC5819687 DOI: 10.1186/s12936-018-2234-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Loreto Department, Peru, a successful 2005-2010 malaria control programme (known as PAMAFRO) included massive distribution of long-lasting insecticidal nets (LLINs). Additional local distribution of LLINs occurred in individual villages, but not between 2012 and 2015. A 2011-2012 study of the primary regional malaria vector Anopheles darlingi detected a trend of increased exophagy compared with pre-PAMAFRO behaviour. For the present study, An. darlingi were collected in three villages in Loreto in 2013-2015 to test two hypotheses: (1) that between LLIN distributions, An. darlingi reverted to pre-intervention biting behaviour; and, (2) that there are separate sub-populations of An. darlingi in Loreto with distinct biting behaviour. RESULTS In 2013-2015 An. darlingi were collected by human landing catch during the rainy and dry seasons in the villages of Lupuna and Cahuide. The abundance of An. darlingi varied substantially across years, villages and time periods, and there was a twofold decrease in the ratio of exophagic:endophagic An. darlingi over the study period. Unexpectedly, there was evidence of a rainy season population decline in An. darlingi. Plasmodium-infected An. darlingi were detected indoors and outdoors throughout the night, and the monthly An. darlingi human biting rate was correlated with the number of malaria cases. Using nextRAD genotyping-by-sequencing, 162 exophagic and endophagic An. darlingi collected at different times during the night were genotyped at 1021 loci. Based on model-based and non-model-based analyses, all genotyped An. darlingi belonged to a homogeneous population, with no evidence for genetic differentiation by biting location or time. CONCLUSIONS This study identified a decreasing proportion of exophagic An. darlingi in two villages in the years between LLIN distributions. As there was no evidence for genetic differentiation between endophagic and exophagic An. darlingi, this shift in biting behaviour may be the result of behavioural plasticity in An. darlingi, which shifted towards increased exophagy due to repellence by insecticides used to impregnate LLINs and subsequently reverted to increased endophagy as the nets aged. This study highlights the need to target vector control interventions to the biting behaviour of local vectors, which, like malaria risk, shows high temporal and spatial heterogeneity.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, NY, USA
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Carl D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Kevin J Emerson
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
54
|
St Laurent B, Sukowati S, Burton TA, Bretz D, Zio M, Firman S, Sumardi, Sudibyo H, Safitri A, Suwito, Asih PB, Kosasih S, Shinta, Hawley WA, Burkot TR, Collins FH, Syafruddin D, Lobo NF. Comparative evaluation of anopheline sampling methods in three localities in Indonesia. Malar J 2018; 17:13. [PMID: 29310656 PMCID: PMC5759267 DOI: 10.1186/s12936-017-2161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/23/2017] [Indexed: 12/02/2022] Open
Abstract
Background The effectiveness of vector control efforts can vary based on the interventions used and local mosquito behaviour and adaptability. In many settings, biting patterns of Anopheles mosquitoes can shift in response to interventions targeting indoor-biting mosquitoes, often resulting in higher proportions of mosquitoes feeding outside or at times when people are not protected. These behaviourally resistant mosquitoes have been shown to sustain residual malaria transmission and limit control efforts. Therefore, it is important to accurately sample mosquitoes to understand their behaviour. Methods A variety of traps were evaluated in three geographically diverse sites in malaria-endemic Indonesia to investigate local mosquito feeding behaviour and determine effective traps for surveillance. Results Eight traps were evaluated in three sites: Canti village, Lampung, Kaliharjo village, Purworejo, and Saketa village, Halmahera, Indonesia, including the gold standard human landing collection (HLC) and a variety of traps targeting host-seeking and resting mosquitoes both indoors and outdoors. Trapping, using indoor and outdoor HLC, the Ifakara tent trap C, goat and human-occupied tents, resting pots and boxes, and CDC miniature light traps was conducted for 16 nights in two sites and 8 nights in a third site, using a Latin square design. Trap efficacy varied by site, with outdoor HLC yielding the highest catch rates in Canti and Kaliharjo and a goat-baited tent trap proving most effective in Saketa. In Canti village, anthropophilic Anopheles sundaicus were caught indoors and outdoors using HLCs, peaking in the early morning. In Kaliharjo, a variety of mosquitoes were caught, mostly outdoors throughout the night. HLC was ineffective in Saketa, the only site where a goat-baited tent trap was tested. This trap was effective in catching zoophilic vectors outdoors before midnight. Conclusions Different trapping methods were suitable for different species, likely reflecting differences in behaviour among species. The three villages, each located on a different island in the Indonesian archipelago, contained mosquito populations with unique behaviours. These data suggest that the effectiveness of specific vector monitoring and control measures may vary by location. Electronic supplementary material The online version of this article (10.1186/s12936-017-2161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandyce St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA. .,National Institutes of Health, Bethesda, MD, USA.
| | - Supratman Sukowati
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - David Bretz
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Mulyadi Zio
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Syah Firman
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Sumardi
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Heru Sudibyo
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Amalia Safitri
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Suwito
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - Puji B Asih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Sully Kosasih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Shinta
- National Institute of Health Research and Development, Jakarta, Indonesia
| | - William A Hawley
- Centers for Disease Control and Prevention, Atlanta, GA, USA.,Unicef, Jakarta, Indonesia
| | - Thomas R Burkot
- Queensland Tropical Health Alliance, James Cook University, Australian Institute of Tropical Health and Medicine, Cairns, Australia
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
55
|
Degefa T, Yewhalaw D, Zhou G, Lee MC, Atieli H, Githeko AK, Yan G. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J 2017; 16:443. [PMID: 29110670 PMCID: PMC5674686 DOI: 10.1186/s12936-017-2098-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background The widespread use of indoor-based malaria vector control interventions has been shown to alter the behaviour of vectors in Africa. There is an increasing concern that such changes could sustain residual transmission. This study was conducted to assess vector species composition, feeding behaviour and their contribution to indoor and outdoor malaria transmission in western Kenya. Methods Anopheles mosquito collections were carried out from September 2015 to April 2016 in Ahero and Iguhu sites, western Kenya using CDC light traps (indoor and outdoor), pyrethrum spray catches (PSCs) (indoor) and pit shelters (outdoor). Species within Anopheles gambiae s.l. and Anopheles funestus s.l. were identified using polymerase chain reaction (PCR). Enzyme-linked immunosorbent assay (ELISA) was used to determine mosquito blood meal sources and sporozoite infections. Results A total of 10,864 female Anopheles mosquitoes comprising An. gambiae s.l. (71.4%), An. funestus s.l. (12.3%), Anopheles coustani (9.2%) and Anopheles pharoensis (7.1%) were collected. The majority (61.8%) of the anopheline mosquitoes were collected outdoors. PCR result (n = 581) revealed that 98.9% An. arabiensis and 1.1% An. gambiae s.s. constituted An. gambiae s.l. in Ahero while this was 87% An. gambiae s.s. and 13% An. arabiensis in Iguhu. Of the 108 An. funestus s.l. analysed by PCR, 98.1% belonged to An. funestus s.s. and 1.9% to Anopheles leesoni. The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis was 2.5 and 73.1%, respectively. Anopheles gambiae s.s. had HBI and BBI of 50 and 28%, respectively. The HBI and BBI of An. funestus was 60 and 22.3%, respectively. Forage ratio estimate revealed that An. arabiensis preferred to feed on cattle, An. gambiae s.s. showed preference for both human and cattle, while An. funestus preferred human over other hosts. In Ahero, the sporozoite rates for An. arabiensis and An. funestus were 0.16 and 1.8%, respectively, whereas in Iguhu, the sporozoite rates for An. gambiae s.s. and An. funestus were 2.3 and 2.4%, respectively. In Ahero, the estimated indoor and outdoor entomological inoculation rate (EIR) was 108.6 infective bites/person/year (79.0 from An. funestus and 29.6 from An. arabiensis) and 43.5 infective bites/person/year (27.9 from An. arabiensis and 15.6 from An. funestus), respectively. In Iguhu, the estimated indoor and outdoor EIR was 24.5 infective bites/person/year (18.8 from An. gambiae s.s. and 5.7 from An. funestus) and 5.5 infective bites/person/year (all from An. gambiae s.s.), respectively. Conclusion Anopheles gambiae s.s. showed an increasing tendency to feed on cattle. Anopheles arabiensis was highly zoophagic, whereas An. funestus showed anthropophagic behaviour. While the majority of malaria transmission occurred indoor, the magnitude of outdoor transmission was considerably high. Additional control tools that complement the existing interventions are required to control residual transmission.
Collapse
Affiliation(s)
- Teshome Degefa
- Department of Medical Laboratory Sciences, College of Health Sciences, Jimma University, Jimma, Ethiopia.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Harrysone Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,School of Public Health, Maseno University, Kisumu, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
56
|
McCann RS, van den Berg H, Diggle PJ, van Vugt M, Terlouw DJ, Phiri KS, Di Pasquale A, Maire N, Gowelo S, Mburu MM, Kabaghe AN, Mzilahowa T, Chipeta MG, Takken W. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial. BMC Infect Dis 2017; 17:639. [PMID: 28938876 PMCID: PMC5610449 DOI: 10.1186/s12879-017-2749-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to outdoor and residual transmission and insecticide resistance, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) will be insufficient as stand-alone malaria vector control interventions in many settings as programmes shift toward malaria elimination. Combining additional vector control interventions as part of an integrated strategy would potentially overcome these challenges. Larval source management (LSM) and structural house improvements (HI) are appealing as additional components of an integrated vector management plan because of their long histories of use, evidence on effectiveness in appropriate settings, and unique modes of action compared to LLINs and IRS. Implementation of LSM and HI through a community-based approach could provide a path for rolling-out these interventions sustainably and on a large scale. METHODS/DESIGN We will implement community-based LSM and HI, as additional interventions to the current national malaria control strategies, using a randomised block, 2 × 2 factorial, cluster-randomised design in rural, southern Malawi. These interventions will be continued for two years. The trial catchment area covers about 25,000 people living in 65 villages. Community participation is encouraged by training community volunteers as health animators, and supporting the organisation of village-level committees in collaboration with The Hunger Project, a non-governmental organisation. Household-level cross-sectional surveys, including parasitological and entomological sampling, will be conducted on a rolling, 2-monthly schedule to measure outcomes over two years (2016 to 2018). Coverage of LSM and HI will also be assessed throughout the trial area. DISCUSSION Combining LSM and/or HI together with the interventions currently implemented by the Malawi National Malaria Control Programme is anticipated to reduce malaria transmission below the level reached by current interventions alone. Implementation of LSM and HI through a community-based approach provides an opportunity for optimum adaptation to the local ecological and social setting, and enhances the potential for sustainability. TRIAL REGISTRATION Registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.
Collapse
Affiliation(s)
- Robert S McCann
- Wageningen University and Research, Wageningen, The Netherlands. .,College of Medicine, University of Malawi, Blantyre, Malawi. .,Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700, AA, Wageningen, The Netherlands.
| | | | | | - Michèle van Vugt
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dianne J Terlouw
- Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi-Liverpool Wellcome Trust, Blantyre, Malawi
| | - Kamija S Phiri
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Aurelio Di Pasquale
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Nicolas Maire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Steven Gowelo
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Monicah M Mburu
- Wageningen University and Research, Wageningen, The Netherlands.,College of Medicine, University of Malawi, Blantyre, Malawi
| | - Alinune N Kabaghe
- College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Michael G Chipeta
- College of Medicine, University of Malawi, Blantyre, Malawi.,Lancaster University, Lancaster, UK.,Malawi-Liverpool Wellcome Trust, Blantyre, Malawi
| | - Willem Takken
- Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
57
|
Zhang S, Guo S, Feng X, Afelt A, Frutos R, Zhou S, Manguin S. Anopheles Vectors in Mainland China While Approaching Malaria Elimination. Trends Parasitol 2017; 33:889-900. [PMID: 28734898 DOI: 10.1016/j.pt.2017.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 01/27/2023]
Abstract
China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission.
Collapse
Affiliation(s)
- Shaosen Zhang
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China; Université de Montpellier, IES-Institut d'Electronique et des Systèmes, UMR5214, CNRS-UM, 860 rue de Saint-Priest, Bât 5, 34095 Montpellier, France; Cirad, UMR 17, Intertryp, Campus international de Baillarguet, 34398 Montpellier, Cedex 5, France; Institut de Recherche pour le Développement (IRD France), LIPMC, UMR-MD3, Faculté de Pharmacie, 34093 Montpellier, France
| | - Shaohua Guo
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China; Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China
| | - Aneta Afelt
- Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Prosta 69, 00-838, Warsaw, Poland
| | - Roger Frutos
- Université de Montpellier, IES-Institut d'Electronique et des Systèmes, UMR5214, CNRS-UM, 860 rue de Saint-Priest, Bât 5, 34095 Montpellier, France; Cirad, UMR 17, Intertryp, Campus international de Baillarguet, 34398 Montpellier, Cedex 5, France
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Shanghai, China.
| | - Sylvie Manguin
- Institut de Recherche pour le Développement (IRD France), LIPMC, UMR-MD3, Faculté de Pharmacie, 34093 Montpellier, France
| |
Collapse
|
58
|
Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, Schlein Y, Traore SF, Doumbia S, Beier JC. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J 2017; 16:266. [PMID: 28673298 PMCID: PMC5496196 DOI: 10.1186/s12936-017-1920-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
Abstract
Background Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. Methods A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. Results In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. Conclusions The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Günter C Müller
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Whitney A Qualls
- Zoonosis Control Branch, Texas Department of State Health Services, Austin, TX, USA
| | - WayWay M Hlaing
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yosef Schlein
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Sekou F Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
59
|
Alout H, Labbé P, Chandre F, Cohuet A. Malaria Vector Control Still Matters despite Insecticide Resistance. Trends Parasitol 2017; 33:610-618. [PMID: 28499699 DOI: 10.1016/j.pt.2017.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance.
Collapse
Affiliation(s)
- Haoues Alout
- Institut des Sciences de l'Evolution de Montpellier, CNRS, IRD, University of Montpellier, ISEM - UMR 5554, Montpellier, France.
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier, CNRS, IRD, University of Montpellier, ISEM - UMR 5554, Montpellier, France
| | - Fabrice Chandre
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM-CNRS 5290 IRD 224, Montpellier, France
| | - Anna Cohuet
- Institut de recherche pour le développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UM-CNRS 5290 IRD 224, Montpellier, France.
| |
Collapse
|
60
|
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, Govella NJ. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob Health 2017; 2:e000212. [PMID: 28589023 PMCID: PMC5444085 DOI: 10.1136/bmjgh-2016-000212] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/04/2022] Open
Abstract
Residual malaria transmission can persist despite high coverage with effective long-lasting insecticidal nets (LLINs) and/or indoor residual spraying (IRS), because many vector mosquitoes evade them by feeding on animals, feeding outdoors, resting outdoors or rapidly exiting from houses after entering them. However, many of these behaviours that render vectors resilient to control with IRS and LLINs also make them vulnerable to some emerging new alternative interventions. Furthermore, vector control measures targeting preferred behaviours of mosquitoes often force them to express previously rare alternative behaviours, which can then be targeted with these complementary new interventions. For example, deployment of LLINs against vectors that historically fed predominantly indoors on humans typically results in persisting transmission by residual populations that survive by feeding outdoors on humans and animals, where they may then be targeted with vapour-phase insecticides and veterinary insecticides, respectively. So while the ability of mosquitoes to express alternative behaviours limits the impact of LLINs and IRS, it also creates measurable and unprecedented opportunities for deploying complementary additional approaches that would otherwise be ineffective. Now that more diverse vector control methods are finally becoming available, well-established entomological field techniques for surveying adult mosquito behaviours should be fully exploited by national malaria control programmes, to rationally and adaptively map out new opportunities for their effective deployment.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Samson S Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | | | - Lucy S Tusting
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Prosper P Chaki
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
61
|
Jacobson JO, Cueto C, Smith JL, Hwang J, Gosling R, Bennett A. Surveillance and response for high-risk populations: what can malaria elimination programmes learn from the experience of HIV? Malar J 2017; 16:33. [PMID: 28100237 PMCID: PMC5241929 DOI: 10.1186/s12936-017-1679-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022] Open
Abstract
To eliminate malaria, malaria programmes need to develop new strategies for surveillance and response appropriate for the changing epidemiology that accompanies transmission decline, in which transmission is increasingly driven by population subgroups whose behaviours place them at increased exposure. Conventional tools of malaria surveillance and response are likely not sufficient in many elimination settings for accessing high-risk population subgroups, such as mobile and migrant populations (MMPs), given their greater likelihood of asymptomatic infections, illegal risk behaviours, limited access to public health facilities, and high mobility including extended periods travelling away from home. More adaptive, targeted strategies are needed to monitor transmission and intervention coverage effectively in these groups. Much can be learned from HIV programmes’ experience with “second generation surveillance”, including how to rapidly adapt surveillance and response strategies to changing transmission patterns, biological and behavioural surveys that utilize targeted sampling methods for specific behavioural subgroups, and methods for population size estimation. This paper reviews the strategies employed effectively for HIV programmes and offers considerations and recommendations for adapting them to the malaria elimination context.
Collapse
Affiliation(s)
- Jerry O Jacobson
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Carmen Cueto
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Jennifer L Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Jimee Hwang
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA.,US President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA.
| |
Collapse
|