51
|
Research updates on the clinical implication of long noncoding RNA in digestive system cancers and chemoresistance. 3 Biotech 2021; 11:423. [PMID: 34603923 DOI: 10.1007/s13205-021-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.
Collapse
|
52
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|
53
|
Jiang PC, Bao TY, Zhi JM, Bu SR. Prognostic value and immunological characteristics of a novel autophagy-related signature in pancreatic cancer. J Biosci 2021. [DOI: 10.1007/s12038-021-00189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
54
|
Cen X, Pan X, Zhang B, Huang W, Pei F, Luo T, Huang X, Liu J, Zhao Z. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res Ther 2021; 12:421. [PMID: 34294156 PMCID: PMC8296686 DOI: 10.1186/s13287-021-02501-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background Human dental pulp stem cells (hDPSCs) are the preferable choice of seed cells for craniomaxillofacial bone tissue regeneration. As a member of the miR-17-92 cluster, miR-20a-5p functions as an important regulator during bone remodeling. This study aimed to investigate the roles and mechanisms of miR-20a-5p during osteogenesis of hDPSCs. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-20a-5p during osteogenesis of hDPSCs. We interfered with the expression of miR-20a-5p in hDPSCs to clarify the function of miR-20a-5p on osteogenesis both in vitro and vivo. Direct bind sites between miR-20a-5p and BAMBI were confirmed by dual-luciferase reporter assay, and the underlying mechanisms were investigated with cell co-transfections. Results The expression of miR-20a-5p was showed to be upregulated during osteogenesis of hDPSCs. Inhibition of miR-20a-5p could weaken the intensity of ALP/ARS staining and downregulate the expression of mRNAs and proteins of osteogenic markers, while overexpression of miR-20a-5p could enhance the intensity of ALP/ARS staining and the expression of osteogenic markers. Both micro-CT reconstruction images and histological results showed that miR-20a-5p could promote the regeneration of calvarial defects. miR-20a-5p directly targeted bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), and the latter one was an inhibitor of hDPSC osteogenesis. Silencing BAMBI partially reversed the suppression effect of miR-20a-5p knockdown on osteogenesis. Phosphorylation of Smad5 and p38 was decreased when miR-20a-5p was silenced, whereas p-Smad5 and p-p38 were upregulated when miR-20a-5p was overexpressed or BAMBI was silenced. Conclusions It is demonstrated that miR-20a-5p functioned as a regulator of BAMBI to activate the phosphorylation of Smad5 and p38 during osteogenic differentiation of hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02501-8.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Luo
- Department of Stomatology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Qi B, Liu H, Zhou Q, Ji L, Shi X, Wei Y, Gu Y, Mizushima A, Xia S. An immune-related lncRNA signature for the prognosis of pancreatic adenocarcinoma. Aging (Albany NY) 2021; 13:18806-18826. [PMID: 34285140 PMCID: PMC8351726 DOI: 10.18632/aging.203323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that aberrant expression of long non-coding RNA (lncRNA) can drive the initiation and progression of malignancies. However, little is known about the prognostic potential of lncRNA. We aimed at constructing a lncRNA-based signature to improve the prognosis prediction of pancreatic adenocarcinoma (PAAD). The PAAD samples with clinical information were obtained from The Cancer Genome Atlas and International Cancer Genome Consortium. We established an eight-IRlncRNA signature in a training cohort. The prognostic value of eight-IRlncRNA signature was validated in two distinct cohorts when compared to other four prognostic models. We continued to analyze its independence in subgroups by univariate and multivariate Cox regression. We constructed a nomogram for clinicopathologic features and 1-, 3-, and 5-year overall survival performance. Moreover, Gene set enrichment analysis and Gene Set Variation Analysis distinguished the typical functions between high- and low-risk groups. In addition, we further observed the different correlations of immune cell between eight IRlncRNAs. Eight-IRlncRNA signature appears to be a good performer to predict the survival capability of PAAD patients, and the nomogram will enable PAAD patients to be more accurately managed in clinical practice.
Collapse
Affiliation(s)
- Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Han Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Li Ji
- Department of Gastroenterology, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China
| | - Xueying Shi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yushan Wei
- Department of Scientific Research, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Yajun Gu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300000, Tianjin, China
| | - Akio Mizushima
- Department of Palliative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
56
|
Lu J, Wang X, Zhang B, Li P, Du X, Qi F. The lncRNA PVT1 regulates autophagy in regulatory T cells to suppress heart transplant rejection in mice by targeting miR-146a. Cell Immunol 2021; 367:104400. [PMID: 34214903 DOI: 10.1016/j.cellimm.2021.104400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Regulatory T cells (Tregs) are indispensable for the maintenance of immune tolerance. The purpose of this study was to investigate the effect of the interaction of the lncRNA PVT1 and miR-146a on Treg autophagy and reveal the mechanism to alleviate transplant rejection. PVT1 and miR-146a expression levels were analyzed by qRT-PCR. Bioinformatic analysis and methylation profiling were used to determine the relationship between PVT1 and miR-146a. Altered autophagic status in Tregs was detected by western blotting. The effect of autophagy on Treg function was assessed in cell coculture in vitro and in animal models. Our results showed that PVT1 expression was reduced in Tregs during rejection and negatively correlated with miR-146a expression. Higher PVT1 expression was associated with higher autophagy in Tregs. Further, highly autophagic Tregs had stronger inhibitory effects on CD4+ T cells in vitro, prolonged allograft survival and alleviated rejection in vivo. Mechanistic studies showed that overexpression of PVT1 enhanced TNF receptor-associated factor (TRAF) 6 expression by directly targeting miR-146a. MiR-146a overexpression reversed PVT1-induced Treg autophagy and inhibited PVT1-induced TRAF6 expression. The present study shows a novel regulatory pathway of the autophagy program that comprises PVT1, miR-146a, and TRAF6. Our findings may provide potential targets and new therapeutic strategies for transplant rejection.
Collapse
Affiliation(s)
- Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
57
|
Chen W, Huang F, Huang J, Li Y, Peng J, Zhuang Y, Huang X, Lu L, Zhu Z, Zhang S. SLC45A4 promotes glycolysis and prevents AMPK/ULK1-induced autophagy in TP53 mutant pancreatic ductal adenocarcinoma. J Gene Med 2021; 23:e3364. [PMID: 34010493 PMCID: PMC8459293 DOI: 10.1002/jgm.3364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background Somatic mutations of the TP53 gene occur frequently in pancreatic ductal adenocarcinoma (PDA). Solute carrier family 45 member A4 (SLC45A4) is a H+‐dependent sugar cotransporter. The role of SLC45A4 in PDA, especially in TP53 mutant PDA, remains poorly understood. Methods We explored the TCGA datasets to identify oncogenes in TP53 mutant PDA. MTS [3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium], colony formation and 5‐ethynyl‐2′‐deoxyuridine (Edu) assays were performed to investigate the function of SLC45A4 in vitro. Glucose consumption, lactate production and ATP production were detected to evaluate glucose utilization. Extracellular acidification rate and oxygen consumption rate assays were used to evaluate glycolysis and oxidative phosphorylation. The subcutaneous xenotransplantation models were conducted to explore the function of SLC45A4 in vivo. RNA‐sequencing and gene set enrichment analysis were employed to explore the biological alteration caused by SLC45A4 knockdown. Western blotting was performed to evaluate the activation of glycolysis, as well as the AMPK pathway and autophagy. Results SLC45A4 was overexpressed in PDA for which the expression was significantly higher in TP53 mutant PDA than that in wild‐type PDA tissues. Moreover, high level of SLC45A4 expression was tightly associated with poor clinical outcomes in PDA patients. Silencing SLC45A4 inhibited proliferation in TP53 mutant PDA cells. Knockdown of SLC45A4 reduced glucose uptake and ATP production, which led to activation of autophagy via AMPK/ULK1 pathway. Deleting SLC45A4 in TP53 mutant HPAF‐II cells inhibited the growth of xenografts in nude mice. Conclusions The present study found that SLC45A4 prevents autophagy via AMPK/ULK1 axis in TP53 mutant PDA, which may be a promising biomarker and therapeutic target in TP53 mutant PDA.
Collapse
Affiliation(s)
- Wenying Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengting Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Huang
- Department of General Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanhua Li
- Department of Gastroenterology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, China
| | - Juanfei Peng
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xianxian Huang
- Center of Digestive Endoscopy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liting Lu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Zhu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
58
|
Missing links - epigenetic regulators of the pancreatic cancer-associated inflammation. Clin Sci (Lond) 2021; 135:1289-1293. [PMID: 34047338 DOI: 10.1042/cs20210181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a hostile tumor microenvironment (TME) that renders it remarkably resistant to most therapeutic interventions. Consequently, survival remains among the poorest compared with other gastrointestinal cancers. Concerted efforts are underway to decipher the complex PDAC TME, break down barriers to efficacious therapies and identify novel treatment strategies. In the recent Clinical Science, Li and colleagues identify the long noncoding RNA KLHDC7B-DT as a crucial epigenetic regulator of IL-6 transcription in PDAC and illustrate its potent influences on the pancreatic TME. In this commentary, we introduce epigenetics in pancreatic cancer and put the findings by Li et al. in context with current knowledge.
Collapse
|
59
|
Chen G, Yang G, Long J, Yang J, Qin C, Luo W, Qiu J, Zhao F, You L, Zhang T, Zhao Y. Comprehensive Analysis of Autophagy-Associated lncRNAs Reveal Potential Prognostic Prediction in Pancreatic Cancer. Front Oncol 2021; 11:596573. [PMID: 34123773 PMCID: PMC8188897 DOI: 10.3389/fonc.2021.596573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor in the digestive system. Both long noncoding RNAs (lncRNAs) and autophagy play vital roles in the development and progress of PC. Here, we constructed a prognostic risk score system based on the expression profile of autophagy-associated lncRNAs for prognostic prediction in PC patients. Firstly, we extracted the expression profile of lncRNA and clinical information from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The autophagy-associated genes were from The Human Autophagy Database. Through Cox regression and survival analysis, we screened out seven autophagy-associated lncRNAs and built the risk score system in which the patients with PC were distinguished into high- and low-risk groups in both training and validation datasets. PCA plot displayed distinct discrimination, and risk score system displayed independently predictive value for PC patient survival time by multivariate Cox regression. Then, we built a lncRNA and mRNA co-expression network via Cytoscape and Sankey diagram. Finally, we analyzed the function of lncRNAs in high- and low-risk groups by gene set enrichment analysis (GSEA). The results showed that autophagy and metabolism might make significant effects on PC patients of low-risk groups. Taken together, our study provides a new insight to understand the role of autophagy-associated lncRNAs and finds novel therapeutic and prognostic targets in PC.
Collapse
Affiliation(s)
- Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
60
|
Zou W, Wang Z, Wang F, Li L, Liu R, Hu M. A metabolism-related 4-lncRNA prognostic signature and corresponding mechanisms in intrahepatic cholangiocarcinoma. BMC Cancer 2021; 21:608. [PMID: 34034689 PMCID: PMC8152356 DOI: 10.1186/s12885-021-08322-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) plays a critical role in the malignant progression of intrahepatic cholangiocarcinoma (iCCA). This study aimed to establish a 4-lncRNA prognostic signature and explore corresponding potential mechanisms in patients with iCCA. Methods The original lncRNA-seq and clinical data were collected from the TCGA and GEO databases. Overlapping and differentially expressed lncRNAs (DE-lncRNAs) were further identified from transcriptome data. Univariate regression analysis was performed to screen survival-related DE-lncRNAs, which were further selected to develop an optimal signature to predict prognosis using multivariate regression analysis. The Kaplan-Meier survival curve visualized the discrimination of the signature on overall survival (OS). The area under the curve (AUC) and C-index were used to verify the predictive accuracy of the signature. Combined with clinical data, multivariate survival analysis was used to reveal the independent predictive capability of the signature. In addition, a prognostic nomogram was constructed. Finally, the common target genes of 4 lncRNAs were predicted by the co-expression method, and the corresponding functions were annotated by GO and KEGG enrichment analysis. Gene set enrichment analysis (GSEA) was also performed to explore the potential mechanism of the signature. Quantitative real-time PCR was used to evaluated the expression of 4 lncRNAs in an independent cohort. Results We identified and constructed a 4-lncRNA (AC138430.1, AGAP2-AS1, AP001783.1, and AP005233.2) prognostic signature using regression analysis, and it had the capability to independently predict prognosis. The AUCs were 0.952, 0.909, and 0.882 at 1, 2, and 3 years, respectively, and the C-index was 0.808, which showed good predictive capability. Subsequently, combined with clinical data, we constructed a nomogram with good clinical application. Finally, 252 target genes of all four lncRNAs were identified by the co-expression method, and functional enrichment analysis showed that the signature was strongly correlated with metabolism-related mechanisms in tumourigenesis. The same results were also validated via GSEA. Conclusion We demonstrated that a metabolism-related 4-lncRNA prognostic signature could be a novel biomarker and deeply explored the target genes and potential mechanism. This study will provide a promising therapeutic strategy for patients with intrahepatic cholangiocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08322-5.
Collapse
Affiliation(s)
- Wenbo Zou
- Medical School of Chinese PLA, Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Zizheng Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Fei Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Lincheng Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China. .,Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China.
| | - Minggen Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China. .,Key Laboratory of Digital Hepetobiliary Surgery, PLA, Beijing, China.
| |
Collapse
|
61
|
Liu H, Yin Y, Liu T, Gao Y, Ye Q, Yan J, Ha F. Long non-coding RNA PVT1 regulates the migration of hepatocellular carcinoma HepG2 cells via miR-3619-5p/MKL1 axis. Bosn J Basic Med Sci 2021; 21:187-197. [PMID: 32156248 PMCID: PMC7982070 DOI: 10.17305/bjbms.2020.4641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common malignant tumor of the digestive system. Plasma cell tumor heterotopic gene 1 (PVT1) is an intergenic long non-coding RNA that is aberrantly expressed in different cancers. Myocardin-related transcription factor A or megakaryoblastic leukemia 1 (MKL1) is a transcriptional coactivator of serum response factor that has been shown to promote cancer cell migration and invasion. In this study, we investigated the relationship between PVT1 and MKL1 as a novel regulatory mechanism underlying HCC progression. We used HepG2 and Cos-7 cell lines. Transfection experiments with miR-3619-5p mimics/inhibitor, PVT1, siRNA-PVT1, MKL1, or siRNA-MKL1 were performed. RNA and protein levels were analyzed by quantitative reverse transcription PCR and Western blot, respectively. Cell migration was assessed by transwell assay. Luciferase assays, RNA-FISH, RNA immunoprecipitation, and chromatin immunoprecipitation assays were performed to confirm the interaction between PVT1, miR-3619-5p, and MKL1 in HCC cells. Overexpression of PVT1 was positively correlated with MKL1 upregulation, which promoted HepG2 cell migration. miR-3619-5p inhibited MKL1 expression in HCC cells by acting on its 3′-UTR. Furthermore, PVT1 promoted MKL1 expression and migration in HCC cells by directly binding to miR-3619-5p. In a positive feedback loop, MKL1 could activate PVT1 transcription by binding to the CArG box in the promoter region. Our findings may provide a basis for the development of novel targeted therapies in HCC.
Collapse
Affiliation(s)
- Hua Liu
- The Third Central Hospital of Tianjin, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yan Yin
- Respiratory and Critical Care Medicine of Tianjin Chest Hospital, Tianjin, China
| | - Ting Liu
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Yanying Gao
- The Third Central Hospital of Tianjin, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Qing Ye
- The Third Central Hospital of Tianjin, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junqing Yan
- The Third Central Hospital of Tianjin, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Fushuang Ha
- The Third Central Hospital of Tianjin, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
62
|
Cui Y, Zheng M, Chen J, Xu N. Autophagy-Related Long Non-coding RNA Signature as Indicators for the Prognosis of Uveal Melanoma. Front Genet 2021; 12:625583. [PMID: 33868366 PMCID: PMC8047156 DOI: 10.3389/fgene.2021.625583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop an autophagy-associated long non-coding RNA (lncRNA) signature to predict the prognostic outcomes of uveal melanoma (UM). The data of UM from The Cancer Genome Atlas (TCGA) were enrolled to obtain differentially expressed genes (DEGs) between metastasizing and non-metastasizing UM patients. A total of 13 differentially expressed autophagy genes were identified and validated in Gene Expression Omnibus, and 11 autophagy-related lncRNAs were found to be associated with overall survival. Through performing least absolute shrinkage and selection operator regression analyses, a six-autophagy-related lncRNA signature was built, and its efficacy was confirmed by receiver-operating characteristic, Kaplan–Meier analysis, and univariate and multivariate Cox regression analyses. A comprehensive nomogram was established and its clinical net benefit was validated by decision curve analysis. GSEA revealed that several biological processes and signaling pathways including Toll-like receptor signaling pathway, natural killer cell-mediated cytotoxicity, and B- and T-cell receptor signaling pathway were enriched in the high-risk group. CIBERSORT results showed that the signature was related to the immune response especially HLA expression. This signature could be deployed to assist clinicians to identify high-risk UM patients and help scientists to explore the molecular mechanism of autophagy-related lncRNAs in UM pathogenesis.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Mi Zheng
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jing Chen
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
63
|
Sun Z, Jing C, Xiao C, Li T. An autophagy-related long non-coding RNA prognostic signature accurately predicts survival outcomes in bladder urothelial carcinoma patients. Aging (Albany NY) 2021; 12:15624-15637. [PMID: 32805727 PMCID: PMC7467376 DOI: 10.18632/aging.103718] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
In this study, we analyzed the prediction accuracy of an autophagy-related long non-coding RNA (lncRNA) prognostic signature using bladder urothelial carcinoma (BLCA) patient data from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analyses showed significant correlations between five autophagy-related lncRNAs, LINC02178, AC108449.2, Z83843.1, FAM13A-AS1 and USP30-AS1, and overall survival (OS) among BCLA patients. The risk scores based on the autophagy-related lncRNA prognostic signature accurately distinguished high- and low-risk BCLA patients that were stratified according to age; gender; grade; and AJCC, T, and N stages. The autophagy-related lncRNA signature was an independent prognostic predictor with an AUC value of 0.710. The clinical nomogram with the autophagy-related lncRNA prognostic signature showed a high concordance index of 0.73 and accurately predicted 1-, 3-, and 5-year survival times among BCLA patients in the high- and low-risk groups. The lncRNA-mRNA co-expression network contained 77 lncRNA-mRNA links among 5 lncRNAs and 49 related mRNAs. Gene set enrichment analysis showed that cancer- and autophagy-related pathways were significantly enriched in the high-risk group, and immunoregulatory pathways were enriched in the low-risk group. These findings demonstrate that an autophagy-related lncRNA signature accurately predicts the prognosis of BCLA patients.
Collapse
Affiliation(s)
- Zhuolun Sun
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.,Equal contribution
| | - Changying Jing
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Equal contribution
| | - Chutian Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Tengcheng Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
64
|
Li JR, Liu L, Luo H, Chen ZG, Wang JH, Li NF. Long Noncoding RNA DUXAP8 Promotes Pancreatic Carcinoma Cell Migration and Invasion Via Pathway by miR-448/WTAP/Fak Signaling Axis. Pancreas 2021; 50:317-326. [PMID: 33625109 PMCID: PMC8041564 DOI: 10.1097/mpa.0000000000001751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Pancreatic carcinoma (PC) has become the fourth leading cause of cancer deaths. Long noncoding RNA DUXAP8 has also been reported to play a regulatory role in PC progression. However, its molecular mechanism in PC is not fully elucidated. METHODS Quantitative real-time polymerase chain reaction was used to detect the levels of DUXAP8, microRNA (miR)-448, Wilms tumor 1-associating protein (WTAP), focal adhesion kinase (Fak), and matrix metallopeptidase 2/9. Western blotting was carried out to detect matrix metallopeptidase 2/9, WTAP, Fak, and p-Fak. The interaction between DUXAP8 and miR-448 as well as WTAP and miR-448 was validated by bioinformatics and dual-luciferase reporter assays. Transwell assay was used to analyze cell invasion and migration. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was used to analyze cell proliferation. RESULTS DUXAP8 was upregulated, whereas miR-448 was downregulated in PC tissue and cells. Meanwhile, DUXAP8 knockdown or miR-448 overexpression inhibited migration, invasion, and proliferation of PC cells. DUXAP8 directly targeted miR-448, and miR-448 directly bound to WTAP. Downregulation of miR-448 reversed the inhibition of migration and invasion of PC cells by DUXAP8 knockdown. CONCLUSIONS DUXAP8 sponges miR-448 to modulate migration, invasion, and proliferation of PC cells, indicating a novel mechanistic role of DUXAP8 in the regulation of PC progression.
Collapse
|
65
|
Balihodzic A, Barth DA, Prinz F, Pichler M. Involvement of Long Non-Coding RNAs in Glucose Metabolism in Cancer. Cancers (Basel) 2021; 13:977. [PMID: 33652661 PMCID: PMC7956509 DOI: 10.3390/cancers13050977] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid and uncontrolled proliferation of cancer cells is supported by metabolic reprogramming. Altered glucose metabolism supports cancer growth and progression. Compared with normal cells, cancer cells show increased glucose uptake, aerobic glycolysis and lactate production. Byproducts of adjusted glucose metabolism provide additional benefits supporting hallmark capabilities of cancer cells. Long non-coding RNAs (lncRNAs) are a heterogeneous group of transcripts of more than 200 nucleotides in length. They regulate numerous cellular processes, primarily through physical interaction with other molecules. Dysregulated lncRNAs are involved in all hallmarks of cancer including metabolic alterations. They may upregulate metabolic enzymes, modulate the expression of oncogenic or tumor-suppressive genes and disturb metabolic signaling pathways favoring cancer progression. Thus, lncRNAs are not only potential clinical biomarkers for cancer diagnostics and prediction but also possible therapeutic targets. This review summarizes the lncRNAs involved in cancer glucose metabolism and highlights their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Amar Balihodzic
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
- BioTechMed-Graz, 8010 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
66
|
Bi Y, Zeng DX, Ye W, Xiao M, Yang QL, Ling Y. LncRNA PVT1 promotes cells proliferation via PI3K–AKT–mTOR Pathway in gastrointestinal stromal tumor. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1889685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- YanZhi Bi
- Department of Medical Oncology, The Third Affiliated Hospital of Soochow University, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Dong Xiang Zeng
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Wei Ye
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Min Xiao
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Quan Liang Yang
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Yang Ling
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
67
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
68
|
Wang C, Zou H, Chen A, Yang H, Yu X, Yu X, Wang Y. C-Myc-activated long non-coding RNA PVT1 enhances the proliferation of cervical cancer cells by sponging miR-486-3p. J Biochem 2021; 167:565-575. [PMID: 31943014 DOI: 10.1093/jb/mvaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynecological malignancies. Although the functions of long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and c-Myc in tumorigenesis have been acknowledged, the roles of c-Myc and lncRNA-PVT1 in the proliferation of cervical cancer are still unclear. Our study is designed to demonstrate the regulatory network involving c-Myc and lncRNA-PVT1 in cervical cancer. Quantitative real-time PCR and western blot assays were performed in our research to estimate the expression levels of RNA and proteins. CCK8 assays were applied to demonstrate the viability of HeLa and SiHa cells. Immunofluorescence assay was then used to investigate the co-localization of lncRNA-PVT1 and miR-486-3p. Binding of c-Myc to the promoter region of PVT1 was identified by ChIP-assay. Functionally, upregulation of lncRNA-PVT1 enhanced the proliferation and viability of cervical cancer cells. Mechanistically, lncRNA-PVT1 sponged miR-486-3p and released its repression of extracellular matrix protein 1. Besides, c-Myc functioned as an activator of lncRNA-PVT1 and upregulated its expression by binding to the promoter of PVT1 in cervical cancer cells. lncRNA-PVT1 was upregulated by c-Myc and thus enhanced the proliferation of cervical cancer cells by sponging miR-486-3p.
Collapse
Affiliation(s)
- Chang Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Aiping Chen
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Hongjuan Yang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Xinping Yu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Xiao Yu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Yankui Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| |
Collapse
|
69
|
Zhang H, Niu Q, Liang K, Li X, Jiang J, Bian C. Effect of LncPVT1/miR-20a-5p on Lipid Metabolism and Insulin Resistance in NAFLD. Diabetes Metab Syndr Obes 2021; 14:4599-4608. [PMID: 34848984 PMCID: PMC8627263 DOI: 10.2147/dmso.s338097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is closely related to lipid metabolism and insulin resistance. The current research mainly attempted to verify the clinical value of LncRNA plasmacytoma variant translocation 1 (PVT1), and whether microRNA regulates lipid metabolism and insulin resistance to participate in NAFLD. PATIENTS AND METHODS 81 patients with NAFLD and 78 healthy individuals were enrolled in this study. In addition, C57BL/6 mice were fed a high-fat diet to establish NAFLD model in vivo. Serum PVT1 and miR-20a-5p expression in NAFLD patients and mice were assessed by RT-qPCR. ROC curves determine the diagnostic value of PVT1 and miR-20a-5p. NAFLD mice were subjected to IPGTT to detect changes in insulin sensitivity, and the common indicators of lipid metabolism and insulin resistance were also evaluated. Dual-luciferase reporter assay verified the regulation mechanism of PVT1 and miR-20a-5p. RESULTS PVT1 was upregulated in NAFLD patients and mice, while miR-20a-5p was decreased. Their expression trends were similar in patients with HOMA-IR ≥2.5. What's more, miR-20a-5p, FBG, ALT, and HOMA-IR were independently correlated with PVT1. And PVT1 and miR-20a-5p show high clinical diagnostic value. Bodyweight, insulin sensitivity, lipid metabolism inductors were increased in NAFLD mice, but these increases were attenuated by PVT1 elimination. Finally, miR-20a-5p might function as the possible miRNA target of PVT1 via the binding sites at 3'-UTR and negatively regulated by it. CONCLUSION PVT1 and miR-20a-5p are potential clinical biomarkers of NAFLD, and PVT1 promotes the occurrence of NAFLD by regulating insulin sensitivity and lipid metabolism, which may be achieved by targeting miR-20a-5p.
Collapse
Affiliation(s)
- Han Zhang
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Qinghui Niu
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
- Correspondence: Qinghui Niu Department of Liver Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, People’s Republic of ChinaTel +86-0532-82915998 Email
| | - Kun Liang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xuesen Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Jing Jiang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Cheng Bian
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
70
|
Chu C, Xu G, Li X, Duan Z, Tao L, Cai H, Yang M, Zhang X, Chen B, Zheng Y, Shi H, Li X. Sustained expression of MCP-1 induced low wall shear stress loading in conjunction with turbulent flow on endothelial cells of intracranial aneurysm. J Cell Mol Med 2020; 25:110-119. [PMID: 33332775 PMCID: PMC7810920 DOI: 10.1111/jcmm.15868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real‐time PCR (qRT‐PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs‐493 and monocyte chemoattractant protein‐1 (MCP‐1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP‐1 were significantly up‐regulated while miR‐493 was significantly down‐regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR‐493 expression and elevate the MCP‐1 expression, and miR‐493 was shown to respectively target AC007362 and MCP‐1. Moreover, shear stress in HUVECs led to the down‐regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR‐493 and MCP‐1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP‐1 was enhanced by sponging the expression of miR‐493.
Collapse
Affiliation(s)
- Cheng Chu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaocong Li
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lihong Tao
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongxia Cai
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ming Yang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Chen
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanyu Zheng
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
71
|
Han T, Zhuo M, Yuan C, Xiao X, Cui J, Qin G, Wang L, Jiao F. Coordinated silencing of the Sp1-mediated long noncoding RNA MEG3 by EZH2 and HDAC3 as a prognostic factor in pancreatic ductal adenocarcinoma. Cancer Biol Med 2020; 17:953-969. [PMID: 33299646 PMCID: PMC7721101 DOI: 10.20892/j.issn.2095-3941.2019.0427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: Pancreatic ductal adenocarcinoma (PDAC) is a disease with high mortality. Many so-called “junk” noncoding RNAs need to be discovered in PDAC. The purpose of this study was therefore to investigate the function and regulatory mechanism of the long noncoding RNA MEG3 in PDAC. Methods: The Gene Expression Omnibus database (GEO database) was used to determine the differential expression of long noncoding RNAs in PDAC, and MEG3 was selected for subsequent verification. Tissue and cell samples were used to verify MEG3 expression, followed by functional detection in vitro and in vivo. Microarrays were used to characterize long noncoding RNA and mRNA expression profiles. Competing endogenous RNA analyses were used to detect differential MEG3 and relational miRNA expression in PDAC. Finally, promoter analyses were conducted to explain the downregulation of MEG3 PDAC. Results: We generated a catalogue of PDAC-associated long noncoding RNAs in the GEO database. The ectopic expression of MEG3 inhibited PDAC growth and metastasis in vitro and in vivo, which was statistically significant (P < 0.05). Microarray analysis showed that multiple microRNAs interacted with MEG3. We also showed that MEG3, as a competing endogenous RNA, directly sponged miR-374a-5p to regulate PTEN expression. The transcription factor, Sp1, recruited EZH2 and HDAC3 to the promoter and transcriptionally repressed MEG3 expression. Finally, clinical data showed that MEG3 and miR-374a-5p expressions were correlated with clinicopathological features. Statistically, Sp1, EZH2, HDAC3, and miR-374a-5p were negatively correlated with MEG3 (P < 0.05). Conclusions: Reduced MEG3 levels played a crucial role in the PDAC malignant phenotype, which provided insight into novel and effective molecular targets of MEG3 for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ting Han
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Meng Zhuo
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Cuncun Yuan
- Department of Pathology, Fudan University Eye Ear Nose and Throat Hospital, Shanghai 201114, China
| | - Xiuying Xiao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jiujie Cui
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Guangrong Qin
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China
| | - Liwei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Feng Jiao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
72
|
Lai C, Wu Z, Shi J, Li K, Zhu J, Chen Z, Liu C, Xu K. Autophagy-related long noncoding RNAs can predict prognosis in patients with bladder cancer. Aging (Albany NY) 2020; 12:21582-21596. [PMID: 33175697 PMCID: PMC7695412 DOI: 10.18632/aging.103947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/08/2020] [Indexed: 01/29/2023]
Abstract
We investigated whether autophagy-related long noncoding RNAs (lncRNAs) can predict prognosis in bladder cancer. We obtained bladder cancer lncRNA data from The Cancer Genome Atlas and autophagy-related genes from the Human Autophagy Database. Fifteen autophagy-related lncRNAs with prognostic significance were identified. Multivariate Cox analysis was used to construct a risk score model, which divided bladder cancer patients into high-risk and low-risk groups. We found that patients in the low-risk group had better survival than those in the high-risk group. Subgroup analysis showed that patients in the high-risk group also had worse OS than that in the low-risk group in subgroups based on age, gender, clinical stage, and TNM stage. We next established a nomogram according to the results of multivariate Cox regression, which included age, gender, clinical stage, TNM stage, and risk score. The area under the curve for 3- and 5-year overall survival predicted by the nomogram were 0.711 and 0.719, respectively. Bioinformatics analysis demonstrated that the 15 identified lncRNAs are involved in the cell cycle, DNA replication, cell adhesion, cancer pathway, WNT signaling pathway, and oxidative stress. These findings confirm that autophagy-related lncRNAs are predictive of prognosis in bladder cancer patients and may affect tumor progression.
Collapse
Affiliation(s)
- Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenyu Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juanyi Shi
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiamin Zhu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenhong Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Liu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kewei Xu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
73
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
74
|
Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020; 12:cancers12102926. [PMID: 33050642 PMCID: PMC7600306 DOI: 10.3390/cancers12102926] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chemoresistance and metastasis are the main causes of treatment failure in cancers. Autophagy contribute to the survival and metastasis of cancer cells. Competing endogenous RNA (ceRNA), particularly long non-coding RNAs and circular RNA (circRNA), can bridge the interplay between autophagy and chemoresistance or metastasis in cancers via sponging miRNAs. This review aims to discuss on the function of ceRNA-mediated autophagy in the process of metastasis and chemoresistance in cancers. ceRNA network can sequester the targeted miRNA expression to indirectly upregulate the expression of autophagy-related genes, and thereof participate in autophagy-mediated chemoresistance and metastasis. Our clarification of the mechanism of autophagy regulation in metastasis and chemoresistance may greatly improve the efficacy of chemotherapy and survival in cancer patients. The combination of the tissue-specific miRNA delivery and selective autophagy inhibitors, such as hydroxychloroquine, is attractive to treat cancer patients in the future. Abstract Chemoresistance and metastasis are the main causes of treatment failure and unfavorable outcome in cancers. There is a pressing need to reveal their mechanisms and to discover novel therapy targets. Autophagy is composed of a cascade of steps controlled by different autophagy-related genes (ATGs). Accumulating evidence suggests that dysregulated autophagy contributes to chemoresistance and metastasis via competing endogenous RNA (ceRNA) networks including lncRNAs and circRNAs. ceRNAs sequester the targeted miRNA expression to indirectly upregulate ATGs expression, and thereof participate in autophagy-mediated chemoresistance and metastasis. Here, we attempt to summarize the roles of ceRNAs in cancer chemoresistance and metastasis through autophagy regulation.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China;
| | - Bingjian Lu
- Department of Surgical Pathology and Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China
- Correspondence: ; Tel.: +86-571-89991702
| |
Collapse
|
75
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
76
|
Liang S, Li X, Gao C, Zhang L. microRNA-based autophagy inhibition as targeted therapy in pancreatic cancer. Biomed Pharmacother 2020; 132:110799. [PMID: 33035835 DOI: 10.1016/j.biopha.2020.110799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a malignancy with extremely low five-year survival rate. Pancreatic tumors maintain a high basal level of autophagy for survival and progression. Autophagy dysfunction leads to tumor progression in pancreatic cancer patients. Clinical trials with autophagy inhibitors, including hydroxychloroquine and chloroquine, showed no significant therapeutic benefit as monotherapy. Instead of using chemical inhibitors, microRNA may serve as an alternative approach for autophagy inhibition. In the context of pancreatic cancer, the feasibility of using the microRNA approach to target core autophagy-related genes has been shown, which results in suppression of initiation or flux blockage of autophagy. In addition, autophagy inhibition leads to increased sensitivity of pancreatic tumors to a variety of therapeutic approaches, including radiotherapy, chemotherapy and other targeted agents. Recent studies suggest microRNA-based autophagy inhibition can be a promising and feasible approach for the clinical care of pancreatic cancer patients. Here we reviewed the mechanism of autophagy and recent progress of autophagy inhibition in pancreatic cancer treatment. We particularly focus on the microRNA approach in autophagy inhibition in pancreatic cancer.
Collapse
Affiliation(s)
- Sanhong Liang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xin Li
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chao Gao
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lexing Zhang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
77
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Shao L, Zhang H. ATF2-Induced lncRNA GAS8-AS1 Promotes Autophagy of Thyroid Cancer Cells by Targeting the miR-187-3p/ATG5 and miR-1343-3p/ATG7 Axes. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:584-600. [PMID: 33230459 PMCID: PMC7562962 DOI: 10.1016/j.omtn.2020.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an essential regulatory role in multiple cancers. However, the role of lncRNAs in papillary thyroid carcinoma (PTC) is still unknown. Here, GAS8-AS1, a novel lncRNA that is significantly downregulated in PTC, was selected for further investigation. The roles of GAS8-AS1 in PTC cells were verified by gain- and loss-of-function experiments. The functional mechanism of GAS8-AS1 on the microRNA (miR)-187-3p/ATG5 axis and miR-1343-3p/ATG7 axis in PTC cells was evaluated using bioinformatics analysis, luciferase reporter assay, Cell Counting Kit-8 (CCK-8) assay, immunohistochemistry analysis, transmission electron microscopy, and immunofluorescence. We found that GAS8-AS1 was downregulated in PTC tissues and cell lines. In patients with PTC, low GAS8-AS1 expression was associated with higher tumor-node-metastasis (TNM) stage and lymph node metastasis (LNM). Functionally, GAS8-AS1 significantly promoted autophagy and inhibited PTC cell proliferation in vitro and promoted tumorigenesis in vivo. Mechanistically, GAS8-AS1 acted as a sponge of miR-187-3p and miR-1343-3p and upregulated ATG5 and ATG7 expression, respectively. The transcription factor ATF2 regulated GAS8-AS1 by binding to the GAS8-AS1 promoter. In conclusion, upregulation of ATF2 activated GAS8-AS1-promoted autophagy of PTC cells by sponging oncogenic miR-187-3p and miR-1343-3p and upregulating the expression of ATG5 and ATG7, respectively, making GAS8-AS1 a potential prognostic biomarker and therapeutic target for PTC.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Liang Shao
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| |
Collapse
|
78
|
Hu F, Tao X, Zhao L, Guo F, Zhou Q, Song H, Xiang H, Shang D. LncRNA-PVT1 aggravates severe acute pancreatitis by promoting autophagy via the miR-30a-5p/Beclin-1 axis. Am J Transl Res 2020; 12:5551-5562. [PMID: 33042437 PMCID: PMC7540137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Severe acute pancreatitis (SAP) is a serious abdominal disease associated with increased morbidity and high mortality rates. The initial pancreatic injury and inflammatory response, which begins within acinar cells, play vital roles in promoting SAP severity. Previous studies have indicated that overactivated autophagy in acinar cells increases the risk of SAP. Autophagy is affected by various signaling pathways, partially through long noncoding RNA (lncRNA)-PVT1. However, few studies have focused on the effect of lncRNA on autophagy in pancreatitis. Our results demonstrate that sodium taurocholate (STC) induces abnormal activation of the autophagic response in pancreatic acinar cells in vitro and in vivo. The lncRNA-PVT1 level was significantly upregulated in this process and was capable of targeting the miR-30a-5p/Beclin-1-mediated autophagy signaling pathway. Additionally, STC-induced pancreatic acinar cells injury and autophagy activation were all abrogated with the downregulation of lncRNA-PVT1 by shRNAs in vitro. Furthermore, we confirmed that the lncRNA-PVT1/miR-30a-5p/Beclin-1 axis induces abnormal autophagy in the pancreas of SAP rats. Collectively, these results demonstrate that the lncRNA-PVT1/miR-30a-5p/Beclin-1 axis is a potential target for improving SAP, thus providing a foundation for further development of therapeutics in the future.
Collapse
Affiliation(s)
- Fenglin Hu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of TechnologyDalian 116024, China
| | - Liang Zhao
- Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
| | - Huiyi Song
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian 116044, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian 116011, China
| |
Collapse
|
79
|
Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M. The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188423. [PMID: 32871244 DOI: 10.1016/j.bbcan.2020.188423] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies with the lowest median and overall survival rate among all human malignancies. The major problems with the PDAC are the late diagnosis, metastasis, and acquired resistance to chemotherapeutic agents in the clinic. Over the last decade, the long non-coding RNAs (lncRNAs) have been discovered and occupies a significantly large proportion of the human genome. Recent studies have proved that lncRNAs can play a crucial role in the majority of key cellular processes involved in the maintenance of cellular homeostasis by regulating various molecular mechanisms. The deregulation of lncRNAs has been associated with various chronic diseases including human malignancies. Several lncRNAs have tumor-specific expression making them an ideal and excellent target for designing the novel therapeutic strategies against human malignancies. We have discussed how lncRNA expression can be used for the diagnosis and prognosis of PDAC. The current review discusses the potential role and molecular mechanism of lncRNA in regulating the prominent hallmarks of cancer including abnormal growth, survival, metastasis, and drug-resistance in PDAC. Importantly, we also highlight the possible application of various therapeutic strategies including small interfering RNA, CRISPR-Cas9, antisense oligonucleotides, locked nucleic acid Gapmers, small molecules, aptamers, lncRNA promoter to target the lncRNA as a novel and viable options for treatment of PDAC.
Collapse
Affiliation(s)
- Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
80
|
miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Clin Sci (Lond) 2020; 134:2223-2234. [PMID: 32808649 DOI: 10.1042/cs20200288] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Abstract
Exosomes have been shown to effectively regulate the biological functions of target cells. Here, we investigated the protective effect and mechanism of hypoxia-induced renal tubular epithelial cells (TECs)-derived exosomes on acute tubular injury. We found that in vitro hypoxia-induced tubular exosomes (Hy-EXOs) were protective in acute tubular injury by promoting TECs proliferation and improving mitochondrial functions. By using exosome miRNA sequencing, we identified miR-20a-5p was abundant and was a key mechanism for the protective effect of Hy-EXOs on tubular injury as up-regulation of miR-20a-5p enhanced but down-regulation of miR-20a-5p inhibited the protective effect of Hy-EXOs on tubular injury under hypoxia conditions. Further study in a mouse model of ischemia–reperfusion-induced acute kidney injury (IRI-AKI) also confirmed this notion as pre-treating mice with the miR-20a-5p agomir 48 h prior to AKI induction was capable of inhibiting IRI-AKI by lowering serum levels of creatinine and urea nitrogen, and attenuating the severity of tubular necrosis, F4/80(+) macrophages infiltration and vascular rarefaction. Mechanistically, the protective effect of miR-20a-5p on acute kidney injury (AKI) was associated with inhibition of TECs mitochondrial injury and apoptosis in vitro and in vivo. In conclusion, miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Results from the present study also reveal that miR-20a-5p may represent as a novel therapy for AKI.
Collapse
|
81
|
Moeng S, Son SW, Lee JS, Lee HY, Kim TH, Choi SY, Kuh HJ, Park JK. Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication. Biomedicines 2020; 8:biomedicines8080267. [PMID: 32756339 PMCID: PMC7459718 DOI: 10.3390/biomedicines8080267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance. In this review, we discuss the role of extracellular vesicles and their cargo molecules in pancreatic cancer. We also present the feasibility of the inhibition of extracellular biosynthesis and their itinerary (release and uptake) for a new attractive therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Jong Sun Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Han Yeoung Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Tae Hee Kim
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
82
|
Chen X, Wang J, Xie F, Mou T, Zhong P, Hua H, Liu P, Yang Q. Long noncoding RNA LINC01559 promotes pancreatic cancer progression by acting as a competing endogenous RNA of miR-1343-3p to upregulate RAF1 expression. Aging (Albany NY) 2020; 12:14452-14466. [PMID: 32678071 PMCID: PMC7425501 DOI: 10.18632/aging.103487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Background: An increasing number of studies have shown that lncRNAs are involved in the biological processes of pancreatic cancer (PC). Hence, we investigated the role of a novel noncoding RNA, LINC01559, involved in PC progression. Results: LINC01559 and RAF1 were highly expressed in PC, while miR-1343-3p had low expression. High expression of LINC01559 was significantly associated with large tumors, lymph node metastasis, and poor prognosis. Functional experiment results revealed that silencing of LINC01559 significantly suppressed PC cell proliferation and metastasis. Meanwhile, LINC01559 could act as a ceRNA to competitively sponge miR-1343-3p to up-regulate RAF1 and activate its downstream ERK pathway Conclusions: LINC01559 functions as an oncogene in PC progression through acting as a ceRNA of miR-1343-3p. Hence, LINC01559 is a potential diagnostic and therapeutic target. Methods: RT-qPCR was performed to determine the expression of LINC01559 and miR-1343-3p in PC. Individual patient data were collected to investigate the correlation between clinicopathological features and LINC01559 expression. Subsequently, the expression of LINC01559, miR-1343-3p, and RAF1 was altered using transfection of vectors or inhibitors. Gain- and loss-of-function assays and mechanistic assays were applied to verify the effects of LINC01559, miR-1343-3p, and RAF1 on PC cell proliferation and metastasis in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Osteology, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Fei Xie
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Tinggang Mou
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Qin Yang
- Department of Gastroenterology, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|
83
|
Lin Z, Ni X, Dai S, Chen H, Chen J, Wu B, Ao J, Shi K, Sun H. Screening and verification of long noncoding RNA promoter methylation sites in hepatocellular carcinoma. Cancer Cell Int 2020; 20:311. [PMID: 32684848 PMCID: PMC7362420 DOI: 10.1186/s12935-020-01407-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding ribonucleic acid (lncRNA) promoter methylation is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Thus, we aim to screen and verify the lncRNA promoter methylation sites associated with overall survival (OS), vascular invasion, pathological grade, and clinical stage in HCC. Methods Methylation-related data including clinical characteristic, transcriptome, methylation, and messenger RNA (mRNA) expression were taken from the Cancer Genome Atlas (TCGA) database. The OS, vascular invasion, pathological grade, and clinical stage-related lncRNA promoter methylation models were developed by the least absolute shrinkage and selection operator (LASSO) algorithm based on the lncRNA promoter methylation sites screened via R software. The Kaplan-Meier analysis, the area under the receiver operating characteristic (ROC) curve (AUC), the calibration curve (C-index) were performed to evaluate the performance of these models. Finally, the methylation-specific polymerase chain reaction (MS-PCR) was performed to verify the accuracy of these models based on 146 HCC tissues from our hospital. Results A total of 10 methylation sites were included in the OS-related lncRNA promoter methylation model that could effectively divide HCC patients into high-risk and low-risk groups (P < 0.0001) via survival analysis. COX univariable and multivariable regression analysis found that the OS-related model (P < 0.001, 95% CI 1.378-2.942) and T stage (P < 0.001, 95% CI 1.490-3.418) were independent risk factors affecting OS in HCC patients. The vascular invasion-related model contained 8 methylation sites with its AUC value of 0.657; the pathological grade-related model contained 22 methylation sites with its AUC value of 0.797; the clinical stage-related model contained 13 methylation sites with its AUC of 0.724. Target genes corresponded to vascular invasion-related lncRNA promoter methylation sites were involved in many kinds of biological processes in HCC such as PI3K-Akt signaling pathway. The accuracy of the vascular invasion-related model was consistent with our bioinformatics conclusion after being verified via MS-PCR. Conclusion The lncRNA promoter methylation sites are closely correlated with the process of HCC and can be utilized to improve the therapy and prognosis of HCC.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Jianhui Chen
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Chinese Academy of Sciences Shanghai Branch, Shanghai, People's Republic of China
| | - Boda Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Jianyang Ao
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Laboratory of Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| |
Collapse
|
84
|
Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM, Ma YS. Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:712-724. [PMID: 32771923 PMCID: PMC7412722 DOI: 10.1016/j.omtn.2020.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Long-chain non-coding RNAs (lncRNAs) are RNA molecules with a length greater than 200 nt and no function of encoding proteins. lncRNAs play a precise regulatory function at different levels of transcription and post-transcription, and they interact with various regulatory factors to regulate gene expression, and then participate in cell growth, differentiation, apoptosis, and other life processes. In recent years, studies have shown that the abnormal expression of lncRNAs is closely related to the occurrence and development of tumors, which is expected to become an effective biomarker in tumor diagnosis. The sequencing analysis of mutations in the whole tumor genome suggests that mutations in non-coding regions may play an important role in the occurrence and development of tumors. Therefore, in-depth study of lncRNAs is helpful to clarify the molecular mechanism of tumor occurrence and development and to provide new targets for tumor diagnosis and treatment. This review introduces the molecular mechanism and clinical application prospect of lncRNAs affecting tumor development from the perspective of gene expression and regulation.
Collapse
Affiliation(s)
- Da Fu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ting-Miao Wu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Shui Ma
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
85
|
Wu L, Liu Y, Guo C, Shao Y. LncRNA OIP5-AS1 promotes the malignancy of pancreatic ductal adenocarcinoma via regulating miR-429/FOXD1/ERK pathway. Cancer Cell Int 2020; 20:296. [PMID: 32669972 PMCID: PMC7346488 DOI: 10.1186/s12935-020-01366-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a subtype of pancreatic cancer, is a malignant tumor with unfavorable prognosis. Despite accumulating researches have made efforts on finding novel therapeutic methods for this disease, the underlying mechanism of long non-coding RNAs (lncRNAs) remains elusive. OIP5 antisense RNA 1 (OIP5-AS1) has been reported to play important role in the occurrence and development of multiple human cancers. This study was aimed at unveiling the regulatory role of OIP5-AS1 in PDAC. METHODS RT-qPCR analysis revealed the OIP5-AS1 expression in PDAC tissues and adjacent normal ones. Kaplan-Meier method was applied to analyze the overall survival of patients with high or low level of OIP5-AS1. Gain- or loss-of function assays were performed to assess the effects of OIP5-AS1 knockdown on cell functions, including proliferation, migration and EMT process. Mechanism experiments, such as luciferase reporter and RNA pull-down assays proved the interaction between OIP5-AS1 and miR-429 as well as that between miR-429 and FOXD1. RESULTS OIP5-AS1 was up-regulated in PDAC tissues and cell lines, and high level of OIP5-AS1 indicated poor prognosis in PDAC patients. OIP5-AS1 knockdown hindered cell proliferation, migration and epithelial-mesenchymal transition (EMT) process, while overexpression of OIP5-AS1 caused the opposite results. OIP5-AS1 activated ERK pathway through up-regulating forkhead box D1 (FOXD1) expression by sponging miR-429. Furthermore, OIP5-AS1 facilitated cell growth in vivo. CONCLUSION OIP5-AS1 exerted oncogenic function in PDAC cells through targeting miR-429/FOXD1/ERK pathway.
Collapse
Affiliation(s)
- Liping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 Shaanxi China
| | - Yongcun Liu
- Department of Oncology, The First People’s Hospital of Xianyang, Xianyang, 712000 Shaanxi China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yuan Shao
- Department of E.N.T, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
86
|
Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers (Basel) 2020; 12:cancers12051245. [PMID: 32429086 PMCID: PMC7281179 DOI: 10.3390/cancers12051245] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term "lncRNA or long non-coding RNA" was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.
Collapse
|
87
|
Yuan B, Guan Q, Yan T, Zhang X, Xu W, Li J. LncRNA HCP5 Regulates Pancreatic Cancer Progression by miR-140-5p/CDK8 Axis. Cancer Biother Radiopharm 2020; 35:711-719. [PMID: 32407143 DOI: 10.1089/cbr.2019.3294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a leading cause of cancer-related deaths worldwide. Human leukocyte antigen complex P5 (HCP5), a member of long noncoding RNAs (lncRNAs), was reported to be associated with the poor prognosis of PC. However, the mechanism of HCP5 in regulating the progression of PC remains poorly defined. Materials and Methods: Quantitative real-time polymerase chain reaction was performed to detect the expression levels of HCP5, microRNA (miR)-140-5p, and cyclin-dependent kinase 8 (CDK8) in PC tissues and cells. Cell counting kit-8 (CCK-8) assay was utilized to check cell proliferation. Transwell assay was employed to evaluate the abilities of cell migration and invasion. Xenograft tumor model was established to investigate the biological role of HCP5 in PC in vivo. The interaction between miR-140-5p and HCP5 or CDK8 was predicted by starBase or TargetScan, respectively. The dual-luciferase reporter assay was conducted to corroborate the interaction. The protein level of CDK8 was measured by Western blot. Results: HCP5 and CDK8 were significantly upregulated in PC tissues and cells, opposite to the expression of miR-140-5p. High expression of HCP5 contributed to the low survival rate and HCP5 silencing inhibited proliferation, migration, and invasion of PC cells in vitro. Simultaneously, in vivo experiments indicated that downregulation of HCP5 suppressed tumor growth. In addition, miR-140-5p was a target of HCP5 and bound to the 3'-untranslated region (3'UTR) of CDK8. Further studies revealed that overexpression of CDK8 reversed the miR-140-5p-mediated inhibitory effect on PC progression. Moreover, downregulation of miR-140-5p or upregulation of CDK8 inverted the silencing-mediated repressive impact of HCP5 on PC progression. Conclusion: Downregulation of HCP5 impeded PC progression by downregulating CDK8 via sponging miR-140-5p.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Qiang Guan
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Tinghai Yan
- Department of Oncology, Wudi County People's Hospital, Binzhou, China
| | - Xiaobin Zhang
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Wuzhong Xu
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Jiangong Li
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| |
Collapse
|
88
|
Zhang Y, Mou C, Shang M, Jiang M, Xu C. Long noncoding RNA RP11-626G11.3 promotes the progression of glioma through miR-375-SP1 axis. Mol Carcinog 2020; 59:492-502. [PMID: 32128886 DOI: 10.1002/mc.23173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Gliomas are the most common malignant tumor in the central nervous system and are also one of the leading causes of death in cancer patients. Recently, mounting evidence suggested that both long noncoding RNAs (lncRNAs) and microRNAs play important roles in the proliferation and invasion of cancers, including gliomas. However, the role of lncRNA RP11-626G11.3 in glioma-genesis is still uncovered. Results indicated that lncRNA RP11-626G11.3 was up-regulated in glioma tissues and cell lines, moreover, its overexpression positively correlated with the poor prognosis and advanced pathological stages. Gain and loss of functional experiments demonstrated that lncRNA RP11-626G11.3 promoted the proliferation and invasion of glioma cells in vitro. The knockdown of lncRNA RP11-626G11.3 repressed the tumor growth in vivo. Mechanistically, lncRNA RP11-626G11.3 positively regulated the SP1 expression via competitively sponging with miR-375. Overall, our study shows that lncRNA RP11-626G11.3 promotes glioma progression by sponging miR-375 to regulate SP1 expression, which may provide a novel therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chengzhi Mou
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Miaomiao Shang
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meng Jiang
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunyang Xu
- Department of Surgical Intensive Care Unit, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
89
|
Meng Q, Wang L, Lv Y, Wu J, Shi W. Deletion of HNF1A-AS1 Suppresses the Malignant Phenotypes of Breast Cancer Cells In Vitro and In Vivo Through Targeting miRNA-20a-5p/TRIM32 Axis. Cancer Biother Radiopharm 2020; 36:23-35. [PMID: 32319789 DOI: 10.1089/cbr.2019.3168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Hepatocyte nuclear factor 1 homeobox A-antisense RNA 1 (HNF1A-AS1) is a long noncoding RNA and controls human tumor development and progression. However, its expression and role in breast cancer, the most overwhelmingly occurring malignancy in women globally, remain poorly illuminated. Materials and Methods: Expression of HNF1A-AS1, miRNA (miR)-20a-5p, and tripartite motif containing 32 (TRIM32) was detected using quantitative real-time polymerase chain reaction and Western blotting. Cell proliferation, apoptosis, migration, and invasion were measured by cellTiter 96 AQueous one solution cell proliferation assay kit, flow cytometry, and transwell assays, respectively. Epithelial-mesenchymal transition (EMT) was evaluated by Western blotting, analyzing E-cadherin, N-cadherin, and vimentin expression. Mice xenograft model was generated to investigate tumor growth in vivo. The target binding among miR-20a-5p, HNF1A-AS1, and TRIM32 was confirmed by dual-luciferase reporter assay. Results: Expression of HNF1A-AS1 and TRIM32 was upregulated and miR-20a-5p was downregulated in breast cancer tumors and cell lines. Deletion of HNF1A-AS1 induced cell apoptosis rate, but suppressed cell proliferation, EMT, migration, and invasion in MDA-MB-231 and MCF-7 cells. Furthermore, HNF1A-AS1 downregulation impeded tumor growth in vivo. Interestingly, miR-20a-5p overexpression elicited the similar suppressive effects in MDA-MB-231 and MCF-7 cells, which was partially reversed by TRIM32 upregulation; besides, miR-20a-5p silencing could abolish the antitumor role of HNF1A-AS1 deletion. Notably, HNF1A-AS1 positively modulated TRIM32 expression through acting as a molecular "sponge" for miR-20a-5p. Conclusions: Knockdown of HNF1A-AS1 suppressed breast carcinogenesis presumably through targeting miR-20a-5p/TRIM32 axis, suggesting that HNF1A-AS1 might be a promising therapy target for breast cancer.
Collapse
Affiliation(s)
- Qingjie Meng
- Department of Thyroid Breast Surgery, the Affiliated Hospital of Northwest University, Xi'an NO.3 Hospital, Xi'an, Shaanxi, China
| | - Linlin Wang
- Department of Gynaecology and Obstetrics, Northwest Women and Children Hospital, Xi'an, Shaanxi, China
| | - Yonggang Lv
- Department of Thyroid Breast Surgery, the Affiliated Hospital of Northwest University, Xi'an NO.3 Hospital, Xi'an, Shaanxi, China
| | - Jiang Wu
- Department of Thyroid Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenlong Shi
- Department of Thyroid Breast and Vascular Surgery, First Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
90
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
91
|
Zou J, Chen S, Li Y, Zeng L, Lian G, Li J, Chen S, Huang K, Chen Y. Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer. NANOSCALE 2020; 12:4473-4490. [PMID: 32031201 DOI: 10.1039/c9nr04976b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
UNLABELLED Precise diagnosis and effective treatment are crucial to the prognosis of pancreatic ductal adenocarcinoma (PDAC). Magnetic iron oxide nanoparticles (IONPs) are superior magnetic resonance imaging (MRI) contrast agents, while antibodies are significant immunotherapy reagents. Herein, we firstly generated a novel nanocomposite combining triple single chain antibodies (scAbs) and IONPs for the detection and treatment of PDAC. METHODS Triple scAbs (scAbMUC4, scAbCEACAM6, scFvCD44v6, MCC triple scAbs) were conjugated to the surface of polyethylene glycol modified IONPs (IONPs-PEG), forming the IONPs-PEG-MCC triple scAbs nanocomposite. Characterization of the nanocomposite was performed, and its cytotoxicity, specificity, and apoptosis induction were evaluated. In vivo MRI study and anti-pancreatic cancer effect assessment were performed in tumor-bearing nude mice. RESULTS The size of the IONPs-PEG-MCC triple scAbs nanocomposite was about 23.6 nm. The nanocomposite was non-toxic to normal pancreatic ductal epithelial cells, and could specifically bind to and be internalized by MUC4/CEACAM6/CD44v6-expressing PDAC cells. With an r2 relaxivity of 104.2 mM-1 s-1, the IONPs-PEG-MCC triple scAbs nanocomposite could significantly shorten the MRI T2-weighted signal intensity both in vitro and in vivo. The IONPs-PEG-MCC triple scAbs nanocomposite also showed a favorable anti-pancreatic cancer effect. CONCLUSION In the present study, the IONPs-PEG-MCC triple scAbs nanocomposite was firstly confirmed as a bi-functional nanocomposite in both MRI and treatment, providing its critical clinical transformation potential in PDAC detection and treatment.
Collapse
Affiliation(s)
- Jinmao Zou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Liu S, Zhang D, Chen L, Gao S, Huang X. Long non-coding RNA BRM promotes proliferation and invasion of papillary thyroid carcinoma by regulating the microRNA-331-3p/SLC25A1 axis. Oncol Lett 2020; 19:3071-3078. [PMID: 32218861 PMCID: PMC7068577 DOI: 10.3892/ol.2020.11418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA BRM (lncBRM) was first identified in liver cancer stem cells and was reported to promote multiple cancer types. However, the function of lncBRM in papillary thyroid carcinoma (PTC) remains unclear. The primary focus of the present study was to determine the biological role of lncBRM in PTC. Reverse transcription-quantitative PCR assays revealed that lncBRM was upregulated in PTC tissues and cells. Cell Counting Kit-8, Transwell invasion and colony-formation assays were performed to assess cell proliferation, invasion and migration, respectively. Furthermore, high expression of lncBRM was associated with poor overall survival time in patients with PTC. lncBRM knockout significantly suppressed cell proliferation, migration and invasion. lncBRM was predicted to bind to microRNA (miR)-331-3p and targets SLC25A1. Overexpression of miR-331-3p or inhibition of SLC25A1 resulted in significantly suppressed proliferation, migration and invasion of PTC cells. Rescue assays demonstrated that inhibition of miR-331-3p significantly abrogated the effects of lncBRM knockout on PTC cell proliferation, migration and invasion. In conclusion, the present study suggests that lncBRM promotes PTC by regulating miR-331-3p and targeting SLC25A1.
Collapse
Affiliation(s)
- Shihong Liu
- Department of Nuclear Medicine, The People's Hospital of Tong Liang District, Chongqing 402560, P.R. China
| | - Deping Zhang
- Department of Nuclear Medicine, The People's Hospital of Tong Liang District, Chongqing 402560, P.R. China
| | - Li Chen
- Department of Nuclear Medicine, The People's Hospital of Tong Liang District, Chongqing 402560, P.R. China
| | - Shangfang Gao
- Department of Nuclear Medicine, The People's Hospital of Tong Liang District, Chongqing 402560, P.R. China
| | - Xiu Huang
- Department of Radiography, The People's Hospital of Tong Liang District, Chongqing 402560, P.R. China
| |
Collapse
|
93
|
Zhou W, Chen L, Li C, Huang R, Guo M, Ning S, Ji J, Guo X, Lou G, Jia X, Zhao J, Luo F, Li C, Qu Z, Yu S, Tai S. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell Int 2020; 20:41. [PMID: 32042268 PMCID: PMC7003405 DOI: 10.1186/s12935-020-1126-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related deaths worldwide. Due to the shortage of effective biomarkers for predicting survival and diagnosing PC, the underlying mechanism is still intensively investigated but poorly understood. Long noncoding RNAs (lncRNAs) provide biological functional diversity and complexity in protein regulatory networks. Scientific studies have revealed the emerging functions and regulatory roles of lncRNAs in PC behaviors. It is worth noting that some in-depth studies have revealed that lncRNAs are significantly associated with the initiation and progression of PC. As lncRNAs have good properties for both diagnostic and prognostic prediction due to their translation potential, we herein address the current understanding of the multifaceted roles of lncRNAs as regulators in the molecular mechanism of PC. We also discuss the possibility of using lncRNAs as survival biomarkers and their contributions to the development of targeted therapies based on the literature. The present review, based on what we know about current research findings, may help us better understand the roles of lncRNAs in PC.
Collapse
Affiliation(s)
- Wenjia Zhou
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Lu Chen
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Chao Li
- 3Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Huang
- 4Department of Colorectal Surgery, The second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- 5Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- 6College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingjing Ji
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Xiaorong Guo
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Ge Lou
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Xinqi Jia
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Junjie Zhao
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Feng Luo
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Chunlong Li
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Zhaowei Qu
- 7Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Yu
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Sheng Tai
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| |
Collapse
|
94
|
Yang D, Ding J, Wang Y, Yuan M, Xian S, Zhang L, Liu S, Dai F, Wang F, Zheng Y, Zhao X, Liao S, Cheng Y. YY1-PVT1 affects trophoblast invasion and adhesion by regulating mTOR pathway-mediated autophagy. J Cell Physiol 2020; 235:6637-6646. [PMID: 32003019 DOI: 10.1002/jcp.29560] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Insufficient trophoblast invasion is the key factor for the occurrence of recurrent spontaneous abortions (RSA). Our previous studies identified Yin Yang 1 (YY1) as a transcription factor involved in the regulation of trophoblast invasiveness at the maternal-fetal interface. Long noncoding RNAs (lncRNAs) can regulate gene expression and autophagy in many ways. The purpose of this study was to explore the relationship between YY1 and lncRNAs and the mechanism by which lncRNAs affect the biological behavior of trophoblasts. Bioinformatic analysis predicted that YY1 had three binding sites in the plasmacytoma variant translocation 1 (PVT1) promoter region. Chromatin immunoprecipitation experiments and electrophoretic mobility shift assays verified that YY1 can directly bind to the PVT1 promoter. Compared with its expression levels in human placental villi tissue samples from the normal pregnancy group, the PVT1 expression levels were significantly lower in tissues from the RSA group. PVT1 knockdown significantly reduced adhesion, invasion, autophagy, and mTOR expression in HTR-8/SVneo cells and greatly increased apoptosis in vitro. This study revealed a novel regulatory pathway in which YY1 can act directly on PVT1 promoter to regulate its transcription, which further affects trophoblast invasion and adhesion by regulating autophagy via the mTOR pathway, and these effects might be involved in RSA pathogenesis.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feiyan Wang
- Shanghai College of Clinical Dermatology, Anhui Medical University, Shanghai, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujie Liao
- Department of Gynecology and Obstetrics, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
95
|
Sun J, Zhang P, Yin T, Zhang F, Wang W. Upregulation of LncRNA PVT1 Facilitates Pancreatic Ductal Adenocarcinoma Cell Progression and Glycolysis by Regulating MiR-519d-3p and HIF-1A. J Cancer 2020; 11:2572-2579. [PMID: 32201527 PMCID: PMC7066006 DOI: 10.7150/jca.37959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
The long, noncoding RNA (lncRNA) PVT1, as an important epigenetic regulator, has a critical role in carcinogenesis. However, its role in pancreatic ductal adenocarcinoma (PDAC) has not been fully investigated. Here, the up-regulated expression of lncRNA PVT1 is found in our PDAC tumor samples. Knockdown of it suppressed PDCA cells growth and glycolysis. An inverse association between miR-519d-3p and PVT1 was found. RIP, RNA pulldown and luciferase assay showed that PVT1 directly targets miR-519d-3p by binding with microRNA binding site. Bioinformatics analysis and study indicated that HIF-1A is a target of miR-519d-3p. Collectively, our findings suggested that PVT1 could act as an oncogenic lncRNA, and promote tumor progression by regulating HIF-1A via competing with miR-519d-3p.
Collapse
Affiliation(s)
- Junwei Sun
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
| | - Pingping Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Affiliated Hubei Cancer Hospital of Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, Hubei 430079, China
| | - Tao Yin
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Affiliated Hubei Cancer Hospital of Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, Hubei 430079, China
| | - Feng Zhang
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Affiliated Hubei Cancer Hospital of Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, Hubei 430079, China
| | - Weixing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- ✉ Corresponding author: Weixing Wang (e-mail: )
| |
Collapse
|
96
|
Yu F, Dong B, Dong P, He Y, Zheng J, Xu P. Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway. Mol Cell Biochem 2019; 465:115-123. [PMID: 31893334 DOI: 10.1007/s11010-019-03672-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
Abstract
Increasing studies have indicated that hypoxia serves as a pivotal microenvironmental factor that facilitates activation of hepatic stellate cells (HSCs). However, the mechanism by which hypoxia activates HSCs is not clear. Here, we demonstrated that plasmacytoma variant translocation 1 (PVT1) and autophagy were overexpressed in liver fibrotic specimens. In primary mouse HSCs, both PVT1 and autophagy were induced by hypoxia. Further study showed that hypoxia-induced autophagy depended on expression of PVT1 and miR-152 in HSCs. Luciferase reporter assay indicated that autophagy-related gene 14 (ATG14) was a direct target of miR-152. In addition, inhibition of autophagy by 3-methyladenine and Beclin-1 siRNA impeded activation of HSCs cultured in 1% O2. Taken together, autophagy induction via the PVT1-miR-152-ATG14 signaling pathway contributes to activation of HSCs under hypoxia condition.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Gastroenterology, Shanghai Songjiang District Central Hospital, Shanghai, China
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
- Department of Gastroenterology, Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Shanghai, China
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buyuan Dong
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanghuan He
- Department of Gastroenterology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, China.
| | - Ping Xu
- Department of Gastroenterology, Shanghai Songjiang District Central Hospital, Shanghai, China.
- Department of Gastroenterology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China.
- Department of Gastroenterology, Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Shanghai, China.
| |
Collapse
|
97
|
Pan S, Shen M, Zhou M, Shi X, He R, Yin T, Wang M, Guo X, Qin R. Long noncoding RNA LINC01111 suppresses pancreatic cancer aggressiveness by regulating DUSP1 expression via microRNA-3924. Cell Death Dis 2019; 10:883. [PMID: 31767833 PMCID: PMC6877515 DOI: 10.1038/s41419-019-2123-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Dysfunction in long noncoding RNAs (lncRNAs) is reported to participate in the initiation and progression of human cancer; however, the biological functions and molecular mechanisms through which lncRNAs affect pancreatic cancer (PC) are largely unknown. Here, we report a novel lncRNA, LINC01111, that is clearly downregulated in PC tissues and plasma of PC patients and acts as a tumor suppressor. We found that the LINC01111 level was negatively correlated with the TNM stage but positively correlated with the survival of PC patients. The overexpression of LINC01111 significantly inhibited cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, the knockdown of LINC01111 enhanced cell proliferation, the cell cycle, and cell invasion and migration in vitro, as well as tumorigenesis and metastasis in vivo. Furthermore, we found that high expression levels of LINC01111 upregulated DUSP1 levels by sequestering miR-3924, resulting in the blockage of SAPK phosphorylation and the inactivation of the SAPK/JNK signaling pathway in PC cells and thus inhibiting PC aggressiveness. Overall, these data reveal that LINC01111 is a potential diagnostic biomarker for PC patients, and the newly identified LINC01111/miR-3924/DUSP1 axis can modulate PC initiation and development.
Collapse
Affiliation(s)
- Shutao Pan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Taoyuan Yin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, Hubei, China.
| |
Collapse
|
98
|
Lu Q, Meng Q, Qi M, Li F, Liu B. Shear-Sensitive lncRNA AF131217.1 Inhibits Inflammation in HUVECs via Regulation of KLF4. Hypertension 2019; 73:e25-e34. [PMID: 30905197 DOI: 10.1161/hypertensionaha.118.12476] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherosclerosis is one of the most common vascular diseases, and inflammation participates in all stages of its progression. Laminar shear stress protects arteries from atherosclerosis and reduces endothelial inflammation. Long noncoding RNAs have emerged as critical regulators in many diseases, including atherosclerosis. However, the expression and functions of long noncoding RNAs subjected to laminar shear stress in endothelial cells remain unclear. This study aimed to reveal the mechanism by which shear stress-regulated long noncoding RNAs contribute to anti-inflammation. In this study, we identified a novel long noncoding RNA AF131217.1, which was upregulated after laminar shear stress treatment in human umbilical vein endothelial cells. Knockdown of AF131217.1 inhibited flow-mediated reduction of monocyte adhesion VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression and inhibited flow-mediated enhancement of flow-responsive expression of KLF (Kruppel-like factor) 2 and eNOS (endothelial NO synthase). Furthermore, TNF-α (tumor necrosis factor-α) was used to induce an inflammatory response in human umbilical vein endothelial cells. Knockdown of AF131217.1 promoted ICAM-1 and VCAM-1 expression, as well as changes in monocyte adhesion and KLF2 and eNOS expression induced by TNF-α. Mechanistic investigations indicated that AF131217.1 acted as a competing endogenous RNA for miR-128-3p, leading to regulation of its target gene KLF4. In conclusion, our study demonstrates for the first time that laminar shear stress regulates the expression of AF131217.1 in human umbilical vein endothelial cells, and the AF131217.1/miR-128-3p/KLF4 axis plays a vital role in atherosclerosis development.
Collapse
Affiliation(s)
- Qing Lu
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Qingyu Meng
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Mingran Qi
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Fan Li
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, Jilin, China (B.L.)
| |
Collapse
|
99
|
Trypsteen W, White CH, Mukim A, Spina CA, De Spiegelaere W, Lefever S, Planelles V, Bosque A, Woelk CH, Vandekerckhove L, Beliakova-Bethell N. Long non-coding RNAs and latent HIV - A search for novel targets for latency reversal. PLoS One 2019; 14:e0224879. [PMID: 31710657 PMCID: PMC6844474 DOI: 10.1371/journal.pone.0224879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
The latent cellular reservoir of HIV is recognized as the major barrier to cure from HIV infection. Long non-coding RNAs (lncRNAs) are more tissue and cell type-specific than protein coding genes, and may represent targets of choice for HIV latency reversal. Using two in vitro primary T-cell models, we identified lncRNAs dysregulated in latency. PVT1 and RP11-347C18.3 were up-regulated in common between the two models, and RP11-539L10.2 was down-regulated. The major component of the latent HIV reservoir, memory CD4+ T-cells, had higher expression of these lncRNAs, compared to naïve T-cells. Guilt-by-association analysis demonstrated that lncRNAs dysregulated in latency were associated with several cellular pathways implicated in HIV latency establishment and maintenance: proteasome, spliceosome, p53 signaling, and mammalian target of rapamycin (MTOR). PVT1, RP11-347C18.3, and RP11-539L10.2 were down-regulated by latency reversing agents, suberoylanilide hydroxamic acid and Romidepsin, suggesting that modulation of lncRNAs is a possible secondary mechanism of action of these compounds. These results will facilitate prioritization of lncRNAs for evaluation as targets for HIV latency reversal. Importantly, our study provides insights into regulatory function of lncRNA during latent HIV infection.
Collapse
Affiliation(s)
- Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Cory H. White
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Amey Mukim
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
| | - Celsa A. Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
- Department of Pathology, University of California San Diego, La Jolla, CA, United States of America
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States of America
| | - Christopher H. Woelk
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Nadejda Beliakova-Bethell
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
100
|
Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging (Albany NY) 2019; 11:9581-9596. [PMID: 31699956 PMCID: PMC6874467 DOI: 10.18632/aging.102406] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022]
Abstract
Exosomes secreted by bone marrow mesenchymal stem cells (BMSCs) promote osteosarcoma cell proliferation and migration, while the underlying mechanism remains unknown. Since the long non-coding RNA PVT1 has been reported to be upregulated in osteosarcoma cells and contributes to its growth and metastasis, we aim to investigate whether BMSC-derived exosomes promote osteosarcoma growth and metastasis via transporting PVT1 into osteosarcoma cells. The PVT1 expression in BMSC-derived exosomes was markedly higher than that in osteosarcoma cell-derived exosomes. The co-culturing of BMSC-derived exosomes and osteosarcoma cells (Saos-2, MG-63, and MNNG/HOS cell lines) significantly raised PVT1 expression of osteosarcoma cells. The direct binding between PVT1 and the oncogenic protein ERG was confirmed using RNA immunoprecipitation and RNA pull-down assays, and the transported PVT1 promotes osteosarcoma cell proliferation and migration via inhibiting degradation and ubiquitination of ERG. PVT1 also increased ERG expression through sponging miR-183-5p. In summary, our findings indicated that BMSC-derived exosomes encapsulate PVTl and transport it into osteosarcoma cells, and the transported PVT1 promotes tumor growth and metastasis by inhibiting ubiquitination and promoting expression of ERG in osteosarcoma cells. These data provide a novel insight into the mechanism of BMSC-derived exosomes in affecting osteosarcoma progression.
Collapse
|