51
|
Kumari P, Tarighi S, Braun T, Ianni A. The complex role of SIRT7 in p53 stabilization: nucleophosmin joins the debate. Mol Cell Oncol 2021; 8:1896349. [PMID: 34027038 PMCID: PMC8128210 DOI: 10.1080/23723556.2021.1896349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Release of nucleophosmin (NPM) from nucleoli following stress promotes rapid stabilization of the tumor suppressor p53 (TP53, best known as p53). Nucleoplasmic NPM binds to the ubiquitin ligase mouse double minute 2 (MDM2) and prevents MDM2-dependent p53 degradation. We recently demonstrated that sirtuin 7 (SIRT7) activates this pathway by directly deacetylating NPM following ultraviolet irradiation, indicating tumor-suppressive functions of SIRT7.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
52
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
53
|
Raj S, Dsouza LA, Singh SP, Kanwal A. Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease. Front Pharmacol 2020; 11:598326. [PMID: 33442387 PMCID: PMC7797778 DOI: 10.3389/fphar.2020.598326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sirtuins, NAD + dependent proteins belonging to class III histone deacetylases, are involved in regulating numerous cellular processes including cellular stress, insulin resistance, inflammation, mitochondrial biogenesis, chromatin silencing, cell cycle regulation, transcription, and apoptosis. Of the seven mammalian sirtuins present in humans, Sirt6 is an essential nuclear sirtuin. Until recently, Sirt6 was thought to regulate chromatin silencing, but new research indicates its role in aging, diabetes, cardiovascular disease, lipid metabolism, neurodegenerative diseases, and cancer. Various murine models demonstrate that Sirt6 activation is beneficial in alleviating many disease conditions and increasing lifespan, showing that Sirt6 is a critical therapeutic target in the treatment of various disease conditions in humans. Sirt6 also regulates the pathogenesis of multiple diseases by acting on histone proteins and non-histone proteins. Endogenous and non-endogenous modulators regulate both activation and inhibition of Sirt6. Few Sirt6 specific non-endogenous modulators have been identified. Hence the identification of Sirt6 specific modulators may have potential therapeutic roles in the diseases described above. In this review, we describe the development of Sirt6, the role it plays in the human condition, the functional role and therapeutic importance in disease processes, and specific modulators and molecular mechanism of Sirt6 in the regulation of metabolic homeostasis, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Swapnil Raj
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Liston Augustine Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shailendra Pratap Singh
- Department of Biomedical Engineering, School of Engineering and Technology, Central University of Rajasthan, Kishangarh, India
| | - Abhinav Kanwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
54
|
Chang Y, Jeong SW, Young Jang J, Jae Kim Y. Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:E8165. [PMID: 33142892 PMCID: PMC7662786 DOI: 10.3390/ijms21218165] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Transarterial chemoembolization (TACE) is a standard treatment for intermediate-stage hepatocellular carcinoma (HCC). In this review, we summarize recent updates on the use of TACE for HCC. TACE can be performed using two techniques; conventional TACE (cTACE) and drug-eluting beads using TACE (DEB-TACE). The anti-tumor effect of the two has been reported to be similar; however, DEB-TACE carries a higher risk of hepatic artery and biliary injuries and a relatively lower risk of post-procedural pain than cTACE. TACE can be used for early stage HCC if other curative treatments are not feasible or as a neoadjuvant treatment before liver transplantation. TACE can also be considered for selected patients with limited portal vein thrombosis and preserved liver function. When deciding to repeat TACE, the ART (Assessment for Retreatment with TACE) score and ABCR (AFP, BCLC, Child-Pugh, and Response) score can guide the decision process, and TACE refractoriness needs to be considered. Studies on the combination therapy of TACE with other treatment modalities, such as local ablation, radiation therapy, or systemic therapy, have been actively conducted and are still ongoing. Recently, new prognostic models, including analysis of the neutrophil-lymphocyte ratio, radiomics, and deep learning, have been developed to help predict survival after TACE.
Collapse
Affiliation(s)
- Young Chang
- Department of Internal Medicine, Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul 04401, Korea; (Y.C.); (J.Y.J.)
| | - Soung Won Jeong
- Department of Internal Medicine, Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul 04401, Korea; (Y.C.); (J.Y.J.)
| | - Jae Young Jang
- Department of Internal Medicine, Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul 04401, Korea; (Y.C.); (J.Y.J.)
| | - Yong Jae Kim
- Department of Radiology, Soonchunhyang University College of Medicine, Seoul 04401, Korea;
| |
Collapse
|
55
|
Lee SJ, Kwon OS. O-GlcNAc Transferase Inhibitor Synergistically Enhances Doxorubicin-Induced Apoptosis in HepG2 Cells. Cancers (Basel) 2020; 12:cancers12113154. [PMID: 33121131 PMCID: PMC7693581 DOI: 10.3390/cancers12113154] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/31/2023] Open
Abstract
Simple Summary We found that the combination treatment of doxorubicin (DOX) and O-GlcNAc transferase (OGT) inhibitor OSMI-1 has synergic therapeutic efficacy in the treatment of liver cancer. Our data show that DOX displayed cytotoxicity via the activation of p53 and the inflammatory NF-κB signaling pathway, while OSMI-1 evoked the ER stress response and inhibited NF-κB signaling. Therefore, DOX in combination with the OSMI-1 group showed a 20-fold reduction of tumor formation, whereas the DOX alone group reduced by 1.8-fold compared with control in a HepG2 cell xenograft model. Abstract The combination of chemotherapy with chemosensitizing agents is a common approach to enhance anticancer activity while reducing the dose-dependent adverse side effects of cancer treatment. Herein, we investigated doxorubicin (DOX) and O-GlcNAc transferase (OGT) inhibitor OSMI-1 combination treatment, which significantly enhanced apoptosis in hepatocellular carcinoma cells (HepG2) as a result of synergistic drug action in disparate stress signaling pathways. Treatment with a low dose of DOX or a suboptimal dose of OSMI-1 alone did not induce apoptotic cell death in HepG2 cells. However, the combination of DOX with OSMI-1 in HepG2 cells synergistically increased apoptotic cell death through the activation of both the p53 and mitochondrial Bcl2 pathways compared to DOX alone. We also demonstrated that the combination of DOX and OSMI-1 stimulated cell death, dramatically reducing cell proliferation and tumor growth in vivo using a HepG2 xenograft mouse model. These findings indicate that OSMI-1 acts as a potential chemosensitizer by enhancing DOX-induced cell death. This study provides insight into a possible mechanism of chemotherapy resistance, identifies potential novel drug targets, and suggests that OGT inhibition could be utilized in clinical applications to treat hepatocellular carcinoma as well as other cancer types.
Collapse
|
56
|
Dong L, Yu L, Li H, Shi L, Luo Z, Zhao H, Liu Z, Yin G, Yan X, Lin Z. An NAD +-Dependent Deacetylase SIRT7 Promotes HCC Development Through Deacetylation of USP39. iScience 2020; 23:101351. [PMID: 32711345 PMCID: PMC7387830 DOI: 10.1016/j.isci.2020.101351] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin specific protease 39 (USP39), an ortholog of Sad1p in yeast, is essential for spliceosome assembly during pre-mRNA splicing in human. Although it is known that USP39 is upregulated and plays an oncogenic role in hepatocellular carcinoma (HCC), the underlying mechanism remains unknown. The results of this study demonstrated that USP39 can be acetylated by the histone acetyltransferase MYST1, which is required for its proteasome-mediated degradation by Von Hippel-Lindau protein. In HCC cells, USP39 interacts with and is deacetylated by the lysine deacetylase sirtuin 7 (SIRT7). Notably, the deacetylation of USP39 by SIRT7 promotes its stability and thereby accelerates HCC cell proliferation and tumorigenesis in vitro and in vivo. Our data demonstrated a novel mechanism by which SIRT7 modulates the deacetylation of USP39 to promote HCC development, thus providing an effective anti-tumor therapeutic strategy for HCC. SIRT7 modulates the deacetylation of USP39 MYST1 promotes the acetyl binding of USP39 USP39 acetylation induces its instability
Collapse
Affiliation(s)
- Ling Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Le Yu
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Hui Li
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Huakan Zhao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, P.R. China
| | - Guobing Yin
- Department of Breast, Thyroid, Pancreatic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, P.R. China.
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China.
| |
Collapse
|
57
|
Li Y, Shi H, Yuan J, Qiao L, Dong L, Wang Y. Downregulation of circular RNA circPVT1 restricts cell growth of hepatocellular carcinoma through downregulation of Sirtuin 7 via microRNA-3666. Clin Exp Pharmacol Physiol 2020; 47:1291-1300. [PMID: 32017171 DOI: 10.1111/1440-1681.13273] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) have been identified recently as pivotal regulators in the development and progression of cancers, generally by acting as competing endogenous RNAs of microRNAs (miRNAs) to regulate gene expression. The dysregulation of circRNAs in hepatocellular carcinoma (HCC) has attracted much attention, but the precise role of circRNAs in HCC remains largely unknown. In this study, we aimed to investigate the potential role of circular RNA PVT1 (circPVT1), a newly identified cancer-related circRNA, in HCC. Herein, we found that circPVT1 expression was significantly upregulated in HCC tissues and cell lines. Knockdown of circPVT1 significantly reduced the growth and colony formation, and increased cell apoptosis, of HCC cells. Our results further identified circPVT1 as a sponge for miR-3666. Knockdown of circPVT1 significantly increased miR-3666 expression in HCC cells. Moreover, miR-3666 expression was significantly downregulated in HCC tissues and was inversely correlated with circPVT1 expression. In addition, the overexpression of miR-3666 inhibited the growth of HCC cells by targeting Sirtuin 7 (SIRT7). Notably, miR-3666 inhibition or SIRT7 overexpression partially reversed the circPVT1 knockdown-mediated inhibitory effect on HCC cell growth. Overall, these results demonstrate that downregulation of circPVT1 represses HCC cell growth by upregulating miR-3666 to inhibit SIRT7, suggesting circPVT1 as a potential therapeutic target for HCC. Our study highlights the involvement of circPVT1/miR-3666/SIRT7 in regulating HCC cell growth.
Collapse
Affiliation(s)
- Yong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Yuan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Qiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
58
|
Yanai M, Kurata M, Muto Y, Iha H, Kanao T, Tatsuzawa A, Ishibashi S, Ikeda M, Kitagawa M, Yamamoto K. Clinicopathological and molecular analysis of SIRT7 in hepatocellular carcinoma. Pathology 2020; 52:529-537. [PMID: 32586688 DOI: 10.1016/j.pathol.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
Abstract
Sirtuin 7 (SIRT7) is a NAD+ (nicotinamide adenine dinucleotide) dependent deacetylase that is reported to contribute to tumour growth and invasion by selectively acting on histone H3K18. It is overexpressed in several cancers including hepatocellular carcinoma (HCC). In this study, we investigated the relationship between SIRT7 expression, proliferation (Ki-67 index) in human HCC tissues, and patient prognosis. We analysed 219 HCC samples obtained retrospectively, for clinicopathological features, and with immunohistochemistry. SIRT7 overexpression was observed in 73 cases (33%) and correlated with vascular invasion and poor differentiation of HCC. Ki-67 labelling index was observed to be significantly higher in SIRT7 overexpressing cases. Interestingly, the Ki-67 labelling index was higher in SIRT7 overexpressing cases regardless of the differentiation status of HCC. Multivariate analysis demonstrated SIRT7 overexpression as an independent factor predictive of poor prognosis (p=0.016). In vitro, SIRT7 knockdown led to reduced growth in cells and resulted in a lower percentage of G0/G1 cells compared to controls. In addition, the ratio of apoptotic cells following sorafenib treatment was significantly higher in SIRT7 knockdown cells than control cells (p=0.040), implying that SIRT7 knockdown potentiated the effect of sorafenib. In conclusion, our study showed that overexpression of SIRT7 was associated with increased proliferative activity in HCC and predictive of poor prognosis. In addition, our in vitro model showed that SIRT7 knockdown was associated with reduced proliferation, and suggested abrogation of SIRT7 may potentiate the effect of sorafenib. Therefore, we propose that SIRT7 expression by HCC may be used as a prognostic biomarker, and that SIRT7 may be a potential target for new therapeutic modalities.
Collapse
Affiliation(s)
- Masae Yanai
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Muto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroto Iha
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pathology and Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Toshinori Kanao
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anna Tatsuzawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
59
|
Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov 2020; 6:53. [PMID: 32595984 PMCID: PMC7305227 DOI: 10.1038/s41420-020-0287-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the second most frequent cause of cancer-related death globally. The main histological subtype is hepatocellular carcinoma (HCC), which is derived from hepatocytes. According to the epidemiologic studies, the most important risk factors of HCC are chronic viral infections (HBV, HCV, and HIV) and metabolic disease (metabolic syndrome). Interestingly, these carcinogenic factors that contributed to HCC are associated with MDM2-p53 axis dysfunction, which presented with inactivation of p53 and overactivation of MDM2 (a transcriptional target and negative regulator of p53). Mechanically, the homeostasis of MDM2-p53 feedback loop plays an important role in controlling the initiation and progression of HCC, which has been found to be dysregulated in HCC tissues. To maintain long-term survival in hepatocytes, hepatitis viruses have lots of ways to destroy the defense strategies of hepatocytes by inducing TP53 mutation and silencing, promoting MDM2 overexpression, accelerating p53 degradation, and stabilizing MDM2. As a result, genetic instability, chronic ER stress, oxidative stress, energy metabolism switch, and abnormalities in antitumor genes can be induced, all of which might promote hepatocytes' transformation into hepatoma cells. In addition, abnormal proliferative hepatocytes and precancerous cells cannot be killed, because of hepatitis viruses-mediated exhaustion of Kupffer cells and hepatic stellate cells (HSCs) and CD4+T cells by disrupting their MDM2-p53 axis. Moreover, inefficiency of hepatic immune response can be further aggravated when hepatitis viruses co-infected with HIV. Unlike with chronic viral infections, MDM2-p53 axis might play a dual role in glucolipid metabolism of hepatocytes, which presented with enhancing glucolipid catabolism, but promoting hepatocyte injury at the early and late stages of glucolipid metabolism disorder. Oxidative stress, fatty degeneration, and abnormal cell growth can be detected in hepatocytes that were suffering from glucolipid metabolism disorder, and all of which could contribute to HCC initiation. In this review, we focus on the current studies of the MDM2-p53 axis in HCC, and specifically discuss the impact of MDM2-p53 axis dysfunction by viral infection and metabolic disease in the transformation of normal hepatocytes into hepatoma cells. We also discuss the therapeutic avenues and potential targets that are being developed to normalize the MDM2-p53 axis in HCC.
Collapse
Affiliation(s)
- Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Zhijun Wang
- Department of Traditional Chinese Medicine, Putuo People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Wang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Wei Zhang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| |
Collapse
|
60
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
61
|
Kiss A, Ráduly AP, Regdon Z, Polgár Z, Tarapcsák S, Sturniolo I, El-Hamoly T, Virág L, Hegedűs C. Targeting Nuclear NAD + Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells. Cancers (Basel) 2020; 12:cancers12051180. [PMID: 32392755 PMCID: PMC7281559 DOI: 10.3390/cancers12051180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall survival of OS patients. However, further research is needed to identify new therapeutic targets. Here we report that expression level of the nuclear NAD synthesis enzyme, nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1), increases in U-2OS cells upon exposure to DNA damaging agents, suggesting the involvement of the enzyme in the DNA damage response. Moreover, genetic inactivation of NMNAT1 sensitizes U-2OS osteosarcoma cells to cisplatin, doxorubicin, or a combination of these two treatments. Increased cisplatin-induced cell death of NMNAT1−/− cells showed features of both apoptosis and necroptosis, as indicated by the protective effect of the caspase-3 inhibitor z-DEVD-FMK and the necroptosis inhibitor necrostatin-1. Activation of the DNA damage sensor enzyme poly(ADP-ribose) polymerase 1 (PARP1), a major consumer of NAD+ in the nucleus, was fully blocked by NMNAT1 inactivation, leading to increased DNA damage (phospho-H2AX foci). The PARP inhibitor, olaparib, sensitized wild type but not NMNAT1−/− cells to cisplatin-induced anti-clonogenic effects, suggesting that impaired PARP1 activity is important for chemosensitization. Cisplatin-induced cell death of NMNAT1−/− cells was also characterized by a marked drop in cellular ATP levels and impaired mitochondrial respiratory reserve capacity, highlighting the central role of compromised cellular bioenergetics in chemosensitization by NMNAT1 inactivation. Moreover, NMNAT1 cells also displayed markedly higher sensitivity to cisplatin when grown as spheroids in 3D culture. In summary, our work provides the first evidence that NMNAT1 is a promising therapeutic target for osteosarcoma and possibly other tumors as well.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Péter Ráduly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary,
| | - Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, 113701 Cairo, Egypt
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| |
Collapse
|
62
|
ZNF143 Suppresses Cell Apoptosis and Promotes Proliferation in Gastric Cancer via ROS/p53 Axis. DISEASE MARKERS 2020; 2020:5863178. [PMID: 32076462 PMCID: PMC7017572 DOI: 10.1155/2020/5863178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Aim This study was aimed at identifying the role of zinc finger protein 143 (ZNF143) in gastric cancer (GC) progression. Methods The impact of ZNF143 on the proliferation ability and apoptosis of GC cells was detected. The expression of ZNF143 and related targeted genes was determined using Western blot analysis. The reactive oxygen species (ROS) level of GC cells was examined using the ROS generation assay. The role of ZNF143 in the proliferation of GC cells in vivo was examined using tumor xenograft assay. Results The ectopic overexpression of ZNF143 promoted the proliferation of GC cells, while its knockdown reduced the effect in vitro. The downregulation of ZNF143 facilitated cell apoptosis. ZNF143 decreased the ROS level in GC cells, resulting in the reduction of cell apoptosis. Transfection with p53 reversed the antiapoptotic effect of ZNF143, while pifithrin-α, a specific inhibitor of p53, reduced the apoptosis in ZNF143-knockdown GC cells. However, p53 had no influence on the ROS level in GC cells. p53 played a key role in inhibiting ROS generation in GC cells, thereby inhibiting apoptosis. The transplanted tumor weight and volume were higher in the ZNF143-overexpressed group than in the ZNF143-knockdown group in vivo was examined using tumor xenograft assay. Conclusion ZNF143, as a tumor oncogene, promoted the proliferation of GC cells both in vitro and in vivo, indicating that ZNF143 might function as a novel target for GC therapy.in vitro. The downregulation of ZNF143 facilitated cell apoptosis. ZNF143 decreased the ROS level in GC cells, resulting in the reduction of cell apoptosis. Transfection with p53 reversed the antiapoptotic effect of ZNF143, while pifithrin-in vivo was examined using tumor xenograft assay.
Collapse
|