51
|
Yu SH, Chen SC, Wu PS, Kuo PI, Chen TA, Lee HY, Lin MH. Quantification Quality Control Emerges as a Crucial Factor to Enhance Single-Cell Proteomics Data Analysis. Mol Cell Proteomics 2024; 23:100768. [PMID: 38621647 PMCID: PMC11103571 DOI: 10.1016/j.mcpro.2024.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Mass spectrometry (MS)-based single-cell proteomics (SCP) provides us the opportunity to unbiasedly explore biological variability within cells without the limitation of antibody availability. This field is rapidly developed with the main focuses on instrument advancement, sample preparation refinement, and signal boosting methods; however, the optimal data processing and analysis are rarely investigated which holds an arduous challenge because of the high proportion of missing values and batch effect. Here, we introduced a quantification quality control to intensify the identification of differentially expressed proteins (DEPs) by considering both within and across SCP data. Combining quantification quality control with isobaric matching between runs (IMBR) and PSM-level normalization, an additional 12% and 19% of proteins and peptides, with more than 90% of proteins/peptides containing valid values, were quantified. Clearly, quantification quality control was able to reduce quantification variations and q-values with the more apparent cell type separations. In addition, we found that PSM-level normalization performed similar to other protein-level normalizations but kept the original data profiles without the additional requirement of data manipulation. In proof of concept of our refined pipeline, six uniquely identified DEPs exhibiting varied fold-changes and playing critical roles for melanoma and monocyte functionalities were selected for validation using immunoblotting. Five out of six validated DEPs showed an identical trend with the SCP dataset, emphasizing the feasibility of combining the IMBR, cell quality control, and PSM-level normalization in SCP analysis, which is beneficial for future SCP studies.
Collapse
Affiliation(s)
- Sung-Huan Yu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shiau-Ching Chen
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pei-Shan Wu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-I Kuo
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-An Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
52
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
53
|
Lan Y, Zou Z, Yang Z. Single Cell mass spectrometry: Towards quantification of small molecules in individual cells. Trends Analyt Chem 2024; 174:117657. [PMID: 39391010 PMCID: PMC11465888 DOI: 10.1016/j.trac.2024.117657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Studying cell heterogeneity can provide a deeper understanding of biological activities, but appropriate studies cannot be performed using traditional bulk analysis methods. The development of diverse single cell bioanalysis methods is in urgent need and of great significance. Mass spectrometry (MS) has been recognized as a powerful technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, and capability for quantitative analysis. In this review, the general development of single cell mass spectrometry (SCMS) field is covered. First, multiple existing SCMS techniques are described and compared. Next, the development of SCMS field is discussed in a chronological order. Last, the latest quantification studies on small molecules using SCMS have been described in detail.
Collapse
Affiliation(s)
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
54
|
Khan S, Conover R, Asthagiri AR, Slavov N. Dynamics of Single-Cell Protein Covariation during Epithelial-Mesenchymal Transition. J Proteome Res 2024:10.1021/acs.jproteome.4c00277. [PMID: 38663020 PMCID: PMC11502509 DOI: 10.1021/acs.jproteome.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Physiological processes, such as the epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within a cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in the cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism, and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and, thus, reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation during physiological transitions.
Collapse
Affiliation(s)
- Saad Khan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rachel Conover
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anand R Asthagiri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Parallel Squared Technology Institute, Watertown, Massachusetts 02472, United States
| |
Collapse
|
55
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
56
|
Coulombe B, Durcan TM, Bernard G, Moursli A, Poitras C, Faubert D, Pinard M. The 37TrillionCells initiative for improving global healthcare via cell-based interception and precision medicine: focus on neurodegenerative diseases. Mol Brain 2024; 17:18. [PMID: 38605409 PMCID: PMC11007934 DOI: 10.1186/s13041-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
One of the main burdens in the treatment of diseases is imputable to the delay between the appearance of molecular dysfunctions in the first affected disease cells and their presence in sufficient number for detection in specific tissues or organs. This delay obviously plays in favor of disease progression to an extent that makes efficient treatments difficult, as they arrive too late. The development of a novel medical strategy, termed cell-based interception and precision medicine, seeks to identify dysfunctional cells early, when tissue damages are not apparent and symptoms not yet present, and develop therapies to treat diseases early. Central to this strategy is the use of single-cell technologies that allow detection of molecular changes in cells at the time of phenotypical bifurcation from health to disease. In this article we describe a general procedure to support such an approach applied to neurodegenerative disorders. This procedure combines four components directed towards highly complementary objectives: 1) a high-performance single-cell proteomics (SCP) method (Detect), 2) the development of disease experimental cell models and predictive computational models of cell trajectories (Understand), 3) the discovery of specific targets and personalized therapies (Cure), and 4) the creation of a community of collaborating laboratories to accelerate the development of this novel medical paradigm (Collaborate). A global initiative named 37TrillionCells (37TC) was launched to advance the development of cell-based interception and precision medicine.
Collapse
Affiliation(s)
- Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W1R7, Canada
| | - Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
57
|
Khan S, Conover R, Asthagiri AR, Slavov N. Dynamics of single-cell protein covariation during epithelial-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572913. [PMID: 38187715 PMCID: PMC10769332 DOI: 10.1101/2023.12.21.572913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Physiological processes, such as epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and thus reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offer a window into protein regulation during physiological transitions.
Collapse
Affiliation(s)
- Saad Khan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Rachel Conover
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Anand R. Asthagiri
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Parallel Squared Technology Institute, Watertown, MA 02472, USA
| |
Collapse
|
58
|
Li W, Yang F, Wang F, Rong Y, Liu L, Wu B, Zhang H, Yao J. scPROTEIN: a versatile deep graph contrastive learning framework for single-cell proteomics embedding. Nat Methods 2024; 21:623-634. [PMID: 38504113 DOI: 10.1038/s41592-024-02214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024]
Abstract
Single-cell proteomics sequencing technology sheds light on protein-protein interactions, posttranslational modifications and proteoform dynamics in the cell. However, the uncertainty estimation for peptide quantification, data missingness, batch effects and high noise hinder the analysis of single-cell proteomic data. It is important to solve this set of tangled problems together, but the existing methods tailored for single-cell transcriptomes cannot fully address this task. Here we propose a versatile framework designed for single-cell proteomics data analysis called scPROTEIN, which consists of peptide uncertainty estimation based on a multitask heteroscedastic regression model and cell embedding generation based on graph contrastive learning. scPROTEIN can estimate the uncertainty of peptide quantification, denoise protein data, remove batch effects and encode single-cell proteomic-specific embeddings in a unified framework. We demonstrate that scPROTEIN is efficient for cell clustering, batch correction, cell type annotation, clinical analysis and spatially resolved proteomic data exploration.
Collapse
Affiliation(s)
- Wei Li
- College of Artificial Intelligence, Nankai University, Tianjin, China
- AI Lab, Tencent, Shenzhen, China
| | - Fan Yang
- AI Lab, Tencent, Shenzhen, China
| | | | - Yu Rong
- AI Lab, Tencent, Shenzhen, China
| | | | | | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| | | |
Collapse
|
59
|
Ren L, Huang D, Liu H, Ning L, Cai P, Yu X, Zhang Y, Luo N, Lin H, Su J, Zhang Y. Applications of single‑cell omics and spatial transcriptomics technologies in gastric cancer (Review). Oncol Lett 2024; 27:152. [PMID: 38406595 PMCID: PMC10885005 DOI: 10.3892/ol.2024.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Danni Huang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hongjiang Liu
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaolong Yu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Material Science and Engineering Institute of Hainan University, Sanya, Hainan 572025, P.R. China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinsong Su
- Research Institute of Integrated Traditional Chinese Medicine and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yinghui Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| |
Collapse
|
60
|
Nalehua MR, Zaia J. A critical evaluation of ultrasensitive single-cell proteomics strategies. Anal Bioanal Chem 2024; 416:2359-2369. [PMID: 38358530 DOI: 10.1007/s00216-024-05171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Success of mass spectrometry characterization of the proteome of single cells allows us to gain a greater understanding than afforded by transcriptomics alone but requires clear understanding of the tradeoffs between analytical throughput and precision. Recent advances in mass spectrometry acquisition techniques, including updated instrumentation and sample preparation, have improved the quality of peptide signals obtained from single cell data. However, much of the proteome remains uncharacterized, and higher throughput techniques often come at the expense of reduced sensitivity and coverage, which diminish the ability to measure proteoform heterogeneity, including splice variants and post-translational modifications, in single cell data analysis. Here, we assess the growing body of ultrasensitive single-cell approaches and their tradeoffs as researchers try to balance throughput and precision in their experiments.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
61
|
Youssef A, Paul I, Crovella M, Emili A. DESP demixes cell-state profiles from dynamic bulk molecular measurements. CELL REPORTS METHODS 2024; 4:100729. [PMID: 38490205 PMCID: PMC10985230 DOI: 10.1016/j.crmeth.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Understanding the dynamic expression of proteins and other key molecules driving phenotypic remodeling in development and pathobiology has garnered widespread interest, yet the exploration of these systems at the foundational resolution of the underlying cell states has been significantly limited by technical constraints. Here, we present DESP, an algorithm designed to leverage independent estimates of cell-state proportions, such as from single-cell RNA sequencing, to resolve the relative contributions of cell states to bulk molecular measurements, most notably quantitative proteomics, recorded in parallel. We applied DESP to an in vitro model of the epithelial-to-mesenchymal transition and demonstrated its ability to accurately reconstruct cell-state signatures from bulk-level measurements of both the proteome and transcriptome, providing insights into transient regulatory mechanisms. DESP provides a generalizable computational framework for modeling the relationship between bulk and single-cell molecular measurements, enabling the study of proteomes and other molecular profiles at the cell-state level using established bulk-level workflows.
Collapse
Affiliation(s)
- Ahmed Youssef
- Graduate Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Indranil Paul
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Mark Crovella
- Graduate Program in Bioinformatics, Boston University, Boston, MA, USA; Computer Science Department, Boston University, Boston, MA, USA; Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Graduate Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
62
|
Chen J, Chu Z, Zhang Q, Wang C, Luo P, Zhang Y, Xia F, Gu L, Wong YK, Shi Q, Xu C, Tang H, Wang J. STEP: profiling cellular-specific targets and pathways of bioactive small molecules in tissues via integrating single-cell transcriptomics and chemoproteomics. Chem Sci 2024; 15:4313-4321. [PMID: 38516082 PMCID: PMC10952072 DOI: 10.1039/d3sc04826h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Identifying the cellular targets of bioactive small molecules within tissues has been a major concern in drug discovery and chemical biology research. Compared to cell line models, tissues consist of multiple cell types and complicated microenvironments. Therefore, elucidating the distribution and heterogeneity of targets across various cells in tissues would enhance the mechanistic understanding of drug or toxin action in real-life scenarios. Here, we present a novel multi-omics integration pipeline called Single-cell TargEt Profiling (STEP) that enables the global profiling of protein targets in mammalian tissues with single-cell resolution. This pipeline integrates single-cell transcriptome datasets with tissue-level protein target profiling using chemoproteomics. Taking well-established classic drugs such as aspirin, aristolochic acid, and cisplatin as examples, we confirmed the specificity and precision of cellular drug-target profiles and their associated molecular pathways in tissues using the STEP analysis. Our findings provide more informative insights into the action modes of bioactive molecules compared to in vitro models. Collectively, STEP represents a novel strategy for profiling cellular-specific targets and functional processes with unprecedented resolution.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yin Kwan Wong
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen 518020 China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen 518020 China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University Kaifeng 475004 China
| |
Collapse
|
63
|
Gong L, Cui X, Liu Y, Lin C, Gao Z. SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares. Comput Biol Med 2024; 171:108225. [PMID: 38442556 DOI: 10.1016/j.compbiomed.2024.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Single-cell RNA sequencing (scRNA-seq) provides a powerful tool for exploring cellular heterogeneity, discovering novel or rare cell types, distinguishing between tissue-specific cellular composition, and understanding cell differentiation during development. However, due to technological limitations, dropout events in scRNA-seq can mistakenly convert some entries in the real data to zero. This is equivalent to introducing noise into the data of cell gene expression entries. The data is contaminated, which affects the performance of downstream analyses, including clustering, cell annotation, differential gene expression analysis, and so on. Therefore, it is a crucial work to accurately determine which zeros are due to dropout events and perform imputation operations on them. METHODS Considering the different confidence levels of different zeros in the gene expression matrix, this paper proposes a SinCWIm method for dropout events in scRNA-seq based on weighted alternating least squares (WALS). The method utilizes Pearson correlation coefficient and hierarchical clustering to quantify the confidence of zero entries. It is then combined with WALS for matrix decomposition. And the imputation result is made close to the actual number by outlier removal and data correction operations. RESULTS A total of eight single-cell sequencing datasets were used for comparative experiments to demonstrate the overall superiority of SinCWIm over state-of-the-art models. SinCWIm was applied to cluster the data to obtain an adjusted RAND index evaluation, and the Usoskin, Pollen and Bladder datasets scored 94.46%, 96.48% and 76.74%, respectively. In addition, significant improvements were made in the retention of differential expression genes and visualization. CONCLUSIONS SinCWIm provides a valuable imputation method for handling dropout events in single-cell sequencing data. In comparison to advanced methods, SinCWIm demonstrates excellent performance in clustering, visualization and other aspects. It is applicable to various single-cell sequencing datasets.
Collapse
Affiliation(s)
- Lejun Gong
- Jiangsu Key Lab of Big Data Security & Intelligent Processing, School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Xiong Cui
- Jiangsu Key Lab of Big Data Security & Intelligent Processing, School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yang Liu
- Jiangsu Key Lab of Big Data Security & Intelligent Processing, School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Cai Lin
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhihong Gao
- Zhejiang Engineering Research Center of Intelligent Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
64
|
Kashima Y, Reteng P, Haga Y, Yamagishi J, Suzuki Y. Single-cell analytical technologies: uncovering the mechanisms behind variations in immune responses. FEBS J 2024; 291:819-831. [PMID: 36082537 DOI: 10.1111/febs.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.
Collapse
Affiliation(s)
- Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Patrick Reteng
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
65
|
Bahiraii S, Brenner M, Weckwerth W, Heiss EH. Sulforaphane impedes mitochondrial reprogramming and histone acetylation in polarizing M1 (LPS) macrophages. Free Radic Biol Med 2024; 213:443-456. [PMID: 38301976 DOI: 10.1016/j.freeradbiomed.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
M1 (LPS) macrophages are characterized by a high expression of pro-inflammatory mediators, and distinct metabolic features that comprise increased glycolysis, a broken TCA cycle, or impaired OXPHOS with augmented mitochondrial ROS production. This study investigated whether the phytochemical sulforaphane (Sfn) influences mitochondrial reprogramming during M1 polarization, as well as to what extent this can contribute to Sfn-mediated inhibition of M1 marker expression in murine macrophages. The use of extracellular flux-, metabolite-, and immunoblot analyses as well as fluorescent dyes indicative for mitochondrial morphology, membrane potential or superoxide production, demonstrated that M1 (LPS/Sfn) macrophages maintain an unbroken TCA cycle, higher OXPHOS rate, boosted fusion dynamics, lower membrane potential, and less superoxide production in their mitochondria when compared to control M1 (LPS) cells. Sustained OXPHOS and TCA activity but not the concomitantly observed high dependency on fatty acids as fuel appeared necessary for M1 (LPS/Sfn) macrophages to reduce expression of nos2, il1β, il6 and tnfα. M1 (LPS/Sfn) macrophages also displayed lower nucleo/cytosolic acetyl-CoA levels in association with lower global and site-specific histone acetylation at selected pro-inflammatory gene promoters than M1 (LPS), evident in colorimetric coupled enzyme assays, immunoblot and ChIP-qPCR analyses, respectively. Supplementation with acetate or citrate was able to rescue both histone acetylation and mRNA expression of the investigated M1 marker genes in Sfn-treated cells. Overall, Sfn preserves mitochondrial functionality and restricts indispensable nuclear acetyl-CoA for histone acetylation and M1 marker expression in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; ViennaDoctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria
| | - Martin Brenner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; ViennaDoctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria; Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology (FEE), University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
66
|
Khodosevich K, Dragicevic K, Howes O. Drug targeting in psychiatric disorders - how to overcome the loss in translation? Nat Rev Drug Discov 2024; 23:218-231. [PMID: 38114612 DOI: 10.1038/s41573-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies. We believe that these recommendations will improve preclinical models and the ability to assess drugs in clinical trials, reducing failure rates in expensive late-stage trials and ultimately benefitting psychiatric drug discovery and development.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Katarina Dragicevic
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
67
|
Xie YR, Castro DC, Rubakhin SS, Trinklein TJ, Sweedler JV, Lam F. Multiscale biochemical mapping of the brain through deep-learning-enhanced high-throughput mass spectrometry. Nat Methods 2024; 21:521-530. [PMID: 38366241 PMCID: PMC10927565 DOI: 10.1038/s41592-024-02171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Spatial omics technologies can reveal the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive biochemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping using MEISTER, an integrative experimental and computational mass spectrometry (MS) framework. Our framework integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating three-dimensional (3D) molecular distributions and a data integration method fitting cell-specific mass spectra to 3D datasets. We imaged detailed lipid profiles in tissues with millions of pixels and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future development of multiscale technologies for biochemical characterization of the brain.
Collapse
Affiliation(s)
- Yuxuan Richard Xie
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel C Castro
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stanislav S Rubakhin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Timothy J Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Fan Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
68
|
Strobl J, Gail LM, Krecu L, Madad S, Kleissl L, Unterluggauer L, Redl A, Brazdilova K, Saluzzo S, Wohlfarth P, Knaus HA, Mitterbauer M, Rabitsch W, Haniffa M, Stary G. Diverse macrophage populations contribute to distinct manifestations of human cutaneous graft-versus-host disease. Br J Dermatol 2024; 190:402-414. [PMID: 38010706 PMCID: PMC10873647 DOI: 10.1093/bjd/ljad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Graft-versus-host disease (GvHD) is a major life-threatening complication of allogeneic haematopoietic stem cell transplantation (HSCT), limiting the broad application of HSCT for haematological malignancies. Cutaneous GvHD is described as a post-transplant inflammatory reaction by skin-infiltrating donor T cells and remaining recipient tissue-resident memory T cells. Despite the major influence of lymphocytes on GvHD pathogenesis, the complex role of mononuclear phagocytes (MNPs) in tissues affected by GvHD is increasingly appreciated. OBJECTIVES To characterize the identity, origin and functions of MNPs in patients with acute cutaneous GvHD. METHODS Using single-cell RNA sequencing and multiplex tissue immunofluorescence, we identified an increased abundance of MNPs in skin and blood from 36 patients with acute cutaneous GvHD. In cases of sex-mismatched transplantation, we used expression of X-linked genes to detect rapid tissue adaptation of newly recruited donor MNPs resulting in similar transcriptional states of host- and donor-derived macrophages within GvHD skin lesions. RESULTS We showed that cutaneous GvHD lesions harbour expanded CD163+ tissue-resident macrophage populations with anti-inflammatory and tissue-remodelling properties including interleukin-10 cytokine production. Cell-cell interaction analyses revealed putative signalling to strengthen regulatory T-cell responses. Notably, macrophage polarization in chronic cutaneous GvHD types was proinflammatory and drastically differed from acute GvHD, supporting the notion of distinct cellular players in different clinical GvHD subtypes. CONCLUSIONS Overall, our data reveal a surprisingly dynamic role of MNPs after HSCT. Specific and time-resolved targeting to repolarize this cell subset may present a promising therapeutic strategy in combatting GvHD skin inflammation.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Laura M Gail
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Laura Krecu
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shaista Madad
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Luisa Unterluggauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kveta Brazdilova
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Simona Saluzzo
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Hanna A Knaus
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Mitterbauer
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
69
|
Shen B, Pade LR, Nemes P. The 15-min (Sub)Cellular Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580399. [PMID: 38405838 PMCID: PMC10888744 DOI: 10.1101/2024.02.15.580399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-cell mass spectrometry (MS) opens a proteomic window onto the inner workings of cells. Here, we report the discovery characterization of the subcellular proteome of single, identified embryonic cells in record speed and molecular coverage. We integrated subcellular capillary microsampling, fast capillary electrophoresis (CE), high-efficiency nano-flow electrospray ionization, and orbitrap tandem MS. In proof-of-principle tests, we found shorter separation times to hinder proteome detection using DDA, but not DIA. Within a 15-min effective separation window, CE data-independent acquisition (DIA) was able to identify 1,161 proteins from single HeLa-cell-equivalent (∼200 pg) proteome digests vs. 401 proteins by the reference data-dependent acquisition (DDA) on the same platform. The approach measured 1,242 proteins from subcellular niches in an identified cell in the live Xenopus laevis (frog) embryo, including many canonical components of organelles. CE-MS with DIA enables fast, sensitive, and deep profiling of the (sub)cellular proteome, expanding the bioanalytical toolbox of cell biology. Authorship Contributions P.N. and B.S. designed the study. L.R.P. collected the X. laevis cell aspirates. B.S. prepared and measured the samples. B.S. and P.N. analyzed the data and interpreted the results. P.N. and B.S. wrote the manuscript. All the authors commented on the manuscript.
Collapse
|
70
|
Wang Y, Guan ZY, Shi SW, Jiang YR, Zhang J, Yang Y, Wu Q, Wu J, Chen JB, Ying WX, Xu QQ, Fan QX, Wang HF, Zhou L, Wang L, Fang J, Pan JZ, Fang Q. Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell. Nat Commun 2024; 15:1279. [PMID: 38341466 PMCID: PMC10858870 DOI: 10.1038/s41467-024-45659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The shotgun proteomic analysis is currently the most promising single-cell protein sequencing technology, however its identification level of ~1000 proteins per cell is still insufficient for practical applications. Here, we develop a pick-up single-cell proteomic analysis (PiSPA) workflow to achieve a deep identification capable of quantifying up to 3000 protein groups in a mammalian cell using the label-free quantitative method. The PiSPA workflow is specially established for single-cell samples mainly based on a nanoliter-scale microfluidic liquid handling robot, capable of achieving single-cell capture, pretreatment and injection under the pick-up operation strategy. Using this customized workflow with remarkable improvement in protein identification, 2449-3500, 2278-3257 and 1621-2904 protein groups are quantified in single A549 cells (n = 37), HeLa cells (n = 44) and U2OS cells (n = 27) under the DIA (MBR) mode, respectively. Benefiting from the flexible cell picking-up ability, we study HeLa cell migration at the single cell proteome level, demonstrating the potential in practical biological research from single-cell insight.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Ying Guan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Wen Shi
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yi-Rong Jiang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China
| | - Yi Yang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Qiong Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jie Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Xin Ying
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qin-Qin Xu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Xi Fan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Li Zhou
- Shanghai Omicsolution Co., Shanghai, 201100, China
| | - Ling Wang
- Shanghai Omicsolution Co., Shanghai, 201100, China
| | - Jin Fang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- Single-cell Proteomics Research Center, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China.
| |
Collapse
|
71
|
Matzinger M, Schmücker A, Yelagandula R, Stejskal K, Krššáková G, Berger F, Mechtler K, Mayer RL. Micropillar arrays, wide window acquisition and AI-based data analysis improve comprehensiveness in multiple proteomic applications. Nat Commun 2024; 15:1019. [PMID: 38310095 PMCID: PMC10838342 DOI: 10.1038/s41467-024-45391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Comprehensive proteomic analysis is essential to elucidate molecular pathways and protein functions. Despite tremendous progress in proteomics, current studies still suffer from limited proteomic coverage and dynamic range. Here, we utilize micropillar array columns (µPACs) together with wide-window acquisition and the AI-based CHIMERYS search engine to achieve excellent proteomic comprehensiveness for bulk proteomics, affinity purification mass spectrometry and single cell proteomics. Our data show that µPACs identify ≤50% more peptides and ≤24% more proteins, while offering improved throughput, which is critical for large (clinical) proteomics studies. Combining wide precursor isolation widths of m/z 4-12 with the CHIMERYS search engine identified +51-74% and +59-150% more proteins and peptides, respectively, for single cell, co-immunoprecipitation, and multi-species samples over a conventional workflow at well-controlled false discovery rates. The workflow further offers excellent precision, with CVs <7% for low input bulk samples, and accuracy, with deviations <10% from expected fold changes for regular abundance two-proteome mixes. Compared to a conventional workflow, our entire optimized platform discovered 92% more potential interactors in a protein-protein interaction study on the chromatin remodeler Smarca5/Snf2h. These include previously described Smarca5 binding partners and undescribed ones including Arid1a, another chromatin remodeler with key roles in neurodevelopmental and malignant disorders.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Anna Schmücker
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ramesh Yelagandula
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Laboratory of Epigenetics, Cell Fate & Disease, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Gabriela Krššáková
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Rupert L Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
72
|
Pade LR, Lombard-Banek C, Li J, Nemes P. Dilute to Enrich for Deeper Proteomics: A Yolk-Depleted Carrier for Limited Populations of Embryonic (Frog) Cells. J Proteome Res 2024; 23:692-703. [PMID: 37994825 PMCID: PMC10872351 DOI: 10.1021/acs.jproteome.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Abundant proteins challenge deep mass spectrometry (MS) analysis of the proteome. Yolk, the source of food in many developing vertebrate embryos, complicates chemical separation and interferes with detection. We report here a strategy that enhances bottom-up proteomics in yolk-laden specimens by diluting the interferences using a yolk-depleted carrier (YODEC) proteome via isobaric multiplexing quantification. This method was tested on embryos of the South African Clawed Frog (Xenopus laevis), where a >90% yolk proteome content challenges deep proteomics. As a proof of concept, we isolated neural and epidermal fated cell clones from the embryo by dissection or fluorescence-activated cell sorting. Compared with the standard multiplexing carrier approach, YODEC more than doubled the detectable X. laevis proteome, identifying 5,218 proteins from D11 cell clones dissected from the embryo. Ca. ∼80% of the proteins were quantified without dropouts in any of the analytical channels. YODEC with high-pH fractionation quantified 3,133 proteins from ∼8,000 V11 cells that were sorted from ca. 2 embryos (1.5 μg total, or 150 ng yolk-free proteome), marking a 15-fold improvement in proteome coverage vs the standard proteomics approach. About 60% of these proteins were only quantifiable by YODEC, including molecular adaptors, transporters, translation, and transcription factors. While this study was tailored to limited populations of Xenopus cells, we anticipate the approach of "dilute to enrich" using a depleted carrier proteome to be adaptable to other biological models in which abundant proteins challenge deep MS proteomics.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Jie Li
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| |
Collapse
|
73
|
Gong L, Qiu L, Hao M. Novel Insights into the Initiation, Evolution, and Progression of Multiple Myeloma by Multi-Omics Investigation. Cancers (Basel) 2024; 16:498. [PMID: 38339250 PMCID: PMC10854875 DOI: 10.3390/cancers16030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The evolutionary history of multiple myeloma (MM) includes malignant transformation, followed by progression to pre-malignant stages and overt malignancy, ultimately leading to more aggressive and resistant forms. Over the past decade, large effort has been made to identify the potential therapeutic targets in MM. However, MM remains largely incurable. Most patients experience multiple relapses and inevitably become refractory to treatment. Tumor-initiating cell populations are the postulated population, leading to the recurrent relapses in many hematological malignancies. Clonal evolution of tumor cells in MM has been identified along with the disease progression. As a consequence of different responses to the treatment of heterogeneous MM cell clones, the more aggressive populations survive and evolve. In addition, the tumor microenvironment is a complex ecosystem which plays multifaceted roles in supporting tumor cell evolution. Emerging multi-omics research at single-cell resolution permits an integrative and comprehensive profiling of the tumor cells and microenvironment, deepening the understanding of biological features of MM. In this review, we intend to discuss the novel insights into tumor cell initiation, clonal evolution, drug resistance, and tumor microenvironment in MM, as revealed by emerging multi-omics investigations. These data suggest a promising strategy to unravel the pivotal mechanisms of MM progression and enable the improvement in treatment, both holistically and precisely.
Collapse
Affiliation(s)
- Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
- Gobroad Healthcare Group, Beijing 100072, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| |
Collapse
|
74
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
75
|
Ctortecka C, Clark NM, Boyle B, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576369. [PMID: 38328197 PMCID: PMC10849471 DOI: 10.1101/2024.01.20.576369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mass spectrometry (MS)-based single-cell proteomics (SCP) has gained massive attention as a viable complement to other single cell approaches. The rapid technological and computational advances in the field have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell at reasonable proteome depth to characterize biological phenomena remains a challenge. To address some of those limitations we present a combination of fully automated single cell sample preparation utilizing a dedicated chip within the picolitre dispensing robot, the cellenONE. The proteoCHIP EVO 96 can be directly interfaced with the Evosep One chromatographic system for in-line desalting and highly reproducible separation with a throughput of 80 samples per day. This, in combination with the Bruker timsTOF MS instruments, demonstrates double the identifications without manual sample handling. Moreover, relative to standard high-performance liquid chromatography, the Evosep One separation provides further 2-fold improvement in protein identifications. The implementation of the newest generation timsTOF Ultra with our proteoCHIP EVO 96-based sample preparation workflow reproducibly identifies up to 4,000 proteins per single HEK-293T without a carrier or match-between runs. Our current SCP depth spans over 4 orders of magnitude and identifies over 50 biologically relevant ubiquitin ligases. We complement our highly reproducible single-cell proteomics workflow to profile hundreds of lipopolysaccharide (LPS)-perturbed THP-1 cells and identified key regulatory proteins involved in interleukin and interferon signaling. This study demonstrates that the proteoCHIP EVO 96-based SCP sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Natalie M. Clark
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Brian Boyle
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Anjali Seth
- Cellenion SASU, 60F avenue Rockefeller, 69008 Lyon, France
| | - D. R. Mani
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Namrata D. Udeshi
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| |
Collapse
|
76
|
Krejčová G, Saloň I, Klimša V, Ulbrich P, Aysan AB, Bajgar A, Štěpánek F. Magnetic Yeast Glucan Particles for Antibody-Free Separation of Viable Macrophages from Drosophila melanogaster. ACS Biomater Sci Eng 2024; 10:355-364. [PMID: 38048070 PMCID: PMC10777351 DOI: 10.1021/acsbiomaterials.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Currently available methods for cell separation are generally based on fluorescent labeling using either endogenously expressed fluorescent markers or the binding of antibodies or antibody mimetics to surface antigenic epitopes. However, such modification of the target cells represents potential contamination by non-native proteins, which may affect further cell response and be outright undesirable in applications, such as cell expansion for diagnostic or therapeutic applications, including immunotherapy. We present a label- and antibody-free method for separating macrophages from living Drosophila based on their ability to preferentially phagocytose whole yeast glucan particles (GPs). Using a novel deswelling entrapment approach based on spray drying, we have successfully fabricated yeast glucan particles with the previously unachievable content of magnetic iron oxide nanoparticles while retaining their surface features responsible for phagocytosis. We demonstrate that magnetic yeast glucan particles enable macrophage separation at comparable yields to fluorescence-activated cell sorting without compromising their viability or affecting their normal function and gene expression. The use of magnetic yeast glucan particles is broadly applicable to situations where viable macrophages separated from living organisms are subsequently used for analyses, such as gene expression, metabolomics, proteomics, single-cell transcriptomics, or enzymatic activity analysis.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department
of Molecular Biology and Genetics, Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
| | - Ivan Saloň
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vojtěch Klimša
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ayse Beyza Aysan
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Adam Bajgar
- Department
of Molecular Biology and Genetics, Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 37005 České Budějovice, Czech Republic
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - František Štěpánek
- Department
of Chemical Engineering, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
77
|
Qian Y, Yin Y, Zheng X, Liu Z, Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res 2024; 12:1. [PMID: 38185636 PMCID: PMC10773124 DOI: 10.1186/s40364-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.
Collapse
Affiliation(s)
- Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
78
|
Wang F, Liu C, Li J, Yang F, Song J, Zang T, Yao J, Wang G. SPDB: a comprehensive resource and knowledgebase for proteomic data at the single-cell resolution. Nucleic Acids Res 2024; 52:D562-D571. [PMID: 37953313 PMCID: PMC10767837 DOI: 10.1093/nar/gkad1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
The single-cell proteomics enables the direct quantification of protein abundance at the single-cell resolution, providing valuable insights into cellular phenotypes beyond what can be inferred from transcriptome analysis alone. However, insufficient large-scale integrated databases hinder researchers from accessing and exploring single-cell proteomics, impeding the advancement of this field. To fill this deficiency, we present a comprehensive database, namely Single-cell Proteomic DataBase (SPDB, https://scproteomicsdb.com/), for general single-cell proteomic data, including antibody-based or mass spectrometry-based single-cell proteomics. Equipped with standardized data process and a user-friendly web interface, SPDB provides unified data formats for convenient interaction with downstream analysis, and offers not only dataset-level but also protein-level data search and exploration capabilities. To enable detailed exhibition of single-cell proteomic data, SPDB also provides a module for visualizing data from the perspectives of cell metadata or protein features. The current version of SPDB encompasses 133 antibody-based single-cell proteomic datasets involving more than 300 million cells and over 800 marker/surface proteins, and 10 mass spectrometry-based single-cell proteomic datasets involving more than 4000 cells and over 7000 proteins. Overall, SPDB is envisioned to be explored as a useful resource that will facilitate the wider research communities by providing detailed insights into proteomics from the single-cell perspective.
Collapse
Affiliation(s)
- Fang Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- AI Lab, Tencent, Shenzhen 518000, China
| | - Chunpu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jiawei Li
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Fan Yang
- AI Lab, Tencent, Shenzhen 518000, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Tianyi Zang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | | | - Guohua Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
79
|
Lian X, Zhang Y, Zhou Y, Sun X, Huang S, Dai H, Han L, Zhu F. SingPro: a knowledge base providing single-cell proteomic data. Nucleic Acids Res 2024; 52:D552-D561. [PMID: 37819028 PMCID: PMC10767818 DOI: 10.1093/nar/gkad830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Single-cell proteomics (SCP) has emerged as a powerful tool for detecting cellular heterogeneity, offering unprecedented insights into biological mechanisms that are masked in bulk cell populations. With the rapid advancements in AI-based time trajectory analysis and cell subpopulation identification, there exists a pressing need for a database that not only provides SCP raw data but also explicitly describes experimental details and protein expression profiles. However, no such database has been available yet. In this study, a database, entitled 'SingPro', specializing in single-cell proteomics was thus developed. It was unique in (a) systematically providing the SCP raw data for both mass spectrometry-based and flow cytometry-based studies and (b) explicitly describing experimental detail for SCP study and expression profile of any studied protein. Anticipating a robust interest from the research community, this database is poised to become an invaluable repository for OMICs-based biomedical studies. Access to SingPro is unrestricted and does not mandate a login at: http://idrblab.org/singpro/.
Collapse
Affiliation(s)
- Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai 315211, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai 315211, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
80
|
Lewandowski M, Morton S, Blake M, Squires E, Ahmad R, Walt DR, Budnik B. Single-Cell Proteomics Analysis with Tecan Uno and SCREEN Workflow. Methods Mol Biol 2024; 2817:157-175. [PMID: 38907154 DOI: 10.1007/978-1-0716-3934-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
With advances in sample preparation, small-volume liquid dispensing technologies, high-resolution MS/MS instrumentation, and data acquisition methodologies, it has become increasingly possible to confidently investigate the heterogeneous proteome found within individual cells. In this chapter, we present an automated high-throughput sample preparation workflow based on the Tecan Uno instrument for quantitative single-cell mass spectrometry-based proteomics. Cells are analyzed by the Single-Cell Proteome Analysis platform (SCREEN), which was introduced earlier and provides deeper proteome coverage across single cells.
Collapse
Affiliation(s)
| | - Shad Morton
- Wyss Institute at Harvard University, Boston, MA, USA
| | | | | | - Rushdy Ahmad
- Wyss Institute at Harvard University, Boston, MA, USA
| | - David R Walt
- Wyss Institute at Harvard University, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bogdan Budnik
- Wyss Institute at Harvard University, Boston, MA, USA.
| |
Collapse
|
81
|
Naval P, Pañeda LP, Athanasopoulou M, Teppo JS, Zubarev RA, Végvári Á. EquiCP: Targeted Single-Cell Proteomics by Mass Spectrometry with Isobaric Labeled Multiplexing. Methods Mol Biol 2024; 2817:133-143. [PMID: 38907152 DOI: 10.1007/978-1-0716-3934-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Nontargeted single-cell proteomics analysis by mass spectrometry with sample multiplexing utilizing isobaric labeling is often performed using a carrier proteome. The presented protocol describes a targeted approach that replaces the carrier proteome with a set of synthetic peptides from selected proteins, which improves the identification and quantification of these proteins in single human cells.
Collapse
Affiliation(s)
- Prajakta Naval
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Pérez Pañeda
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Athanasopoulou
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaakko S Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
82
|
Marín-Vicente C, Calvo E, Rodríguez JM, Villa Del Campo C, Sierra R, Végvári Á, Zubarev RA, Torres M, Vázquez J. A Sample Preparation Procedure for Isobaric Labeling-Based Single-Cell Proteomics. Methods Mol Biol 2024; 2817:33-43. [PMID: 38907145 DOI: 10.1007/978-1-0716-3934-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mass spectrometry-based proteomics has traditionally been limited by the amount of input material for analysis. Single-cell proteomics has emerged as a challenging discipline due to the ultra-high sensitivity required. Isobaric labeling-based multiplex strategies with a carrier proteome offer an approach to overcome the sensitivity limitations. Following this as the basic strategy, we show here the general workflow for preparing cells for single-cell mass spectrometry-based proteomics. This protocol can also be applied to manually isolated cells when large cells, such as cardiomyocytes, are difficult to isolate properly with conventional fluorescence-activated cell sorting (FACS) sorter methods.
Collapse
Affiliation(s)
- Consuelo Marín-Vicente
- Cardiovascular Proteomics Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
| | - Enrique Calvo
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Manuel Rodríguez
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Cristina Villa Del Campo
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Rocío Sierra
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Ákos Végvári
- Division of Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Torres
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Jesús Vázquez
- Cardiovascular Proteomics Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
83
|
Grégoire S, Vanderaa C, Dit Ruys SP, Kune C, Mazzucchelli G, Vertommen D, Gatto L. Standardized Workflow for Mass-Spectrometry-Based Single-Cell Proteomics Data Processing and Analysis Using the scp Package. Methods Mol Biol 2024; 2817:177-220. [PMID: 38907155 DOI: 10.1007/978-1-0716-3934-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mass-spectrometry (MS)-based single-cell proteomics (SCP) explores cellular heterogeneity by focusing on the functional effectors of the cells-proteins. However, extracting meaningful biological information from MS data is far from trivial, especially with single cells. Currently, data analysis workflows are substantially different from one research team to another. Moreover, it is difficult to evaluate pipelines as ground truths are missing. Our team has developed the R/Bioconductor package called scp to provide a standardized framework for SCP data analysis. It relies on the widely used QFeatures and SingleCellExperiment data structures. In addition, we used a design containing cell lines mixed in known proportions to generate controlled variability for data analysis benchmarking. In this chapter, we provide a flexible data analysis protocol for SCP data using the scp package together with comprehensive explanations at each step of the processing. Our main steps are quality control on the feature and cell level, aggregation of the raw data into peptides and proteins, normalization, and batch correction. We validate our workflow using our ground truth data set. We illustrate how to use this modular, standardized framework and highlight some crucial steps.
Collapse
Affiliation(s)
- Samuel Grégoire
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe Vanderaa
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Christopher Kune
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
- GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|
84
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
85
|
Zhang D, Qiao L. Microfluidics Coupled Mass Spectrometry for Single Cell Multi-Omics. SMALL METHODS 2024; 8:e2301179. [PMID: 37840412 DOI: 10.1002/smtd.202301179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Population-level analysis masks significant heterogeneity between individual cells, making it difficult to accurately reflect the true intricacies of life activities. Microfluidics is a technique that can manipulate individual cells effectively and is commonly coupled with a variety of analytical methods for single-cell analysis. Single-cell omics provides abundant molecular information at the single-cell level, fundamentally revealing differences in cell types and biological states among cell individuals, leading to a deeper understanding of cellular phenotypes and life activities. Herein, this work summarizes the microfluidic chips designed for single-cell isolation, manipulation, trapping, screening, and sorting, including droplet microfluidic chips, microwell arrays, hydrodynamic microfluidic chips, and microchips with microvalves. This work further reviews the studies on single-cell proteomics, metabolomics, lipidomics, and multi-omics based on microfluidics and mass spectrometry. Finally, the challenges and future application of single-cell multi-omics are discussed.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, and Minhang Hospital, Fudan University, Shanghai, 20000, China
| | - Liang Qiao
- Department of Chemistry, Institutes of Biomedical Sciences, and Minhang Hospital, Fudan University, Shanghai, 20000, China
| |
Collapse
|
86
|
Hartlmayr D, Ctortecka C, Mayer R, Mechtler K, Seth A. Label-Free Sample Preparation for Single-Cell Proteomics. Methods Mol Biol 2024; 2817:1-7. [PMID: 38907142 DOI: 10.1007/978-1-0716-3934-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
In recent years, single-cell proteomics (SCP) has become a valuable addition to other single-cell omics technologies for studying cellular heterogeneity. The amount of protein in a single cell is very limited, and in contrast to sequencing techniques, there are currently no means for protein amplification. Therefore, most single-cell proteomics approaches aim to maximize sample preparation efficiency while minimizing peptide loss. By reducing processing volumes to sub-microliters and avoiding manual transfer steps that could lead to peptide loss, peptide recovery, and the robustness of SCP workflows have been significantly improved. In this chapter, we describe a protocol for label-free SCP sample preparation using the cellenONE® platform and the proteoCHIP LF 48 substrate prior to analysis with high-performance liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
| | | | - Rupert Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- The Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences (GMI), Vienna BioCenter (VBC), Vienna, Austria
| | | |
Collapse
|
87
|
Zheng R, Matzinger M, Mayer RL, Valenta A, Sun X, Mechtler K. A High-Sensitivity Low-Nanoflow LC-MS Configuration for High-Throughput Sample-Limited Proteomics. Anal Chem 2023; 95:18673-18678. [PMID: 38088903 PMCID: PMC10753523 DOI: 10.1021/acs.analchem.3c03058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
This work demonstrates the utility of high-throughput nanoLC-MS and label-free quantification (LFQ) for sample-limited bottom-up proteomics analysis, including single-cell proteomics (SCP). Conditions were optimized on a 50 μm internal diameter (I.D.) column operated at 100 nL/min in the direct injection workflow to balance method sensitivity and sample throughput from 24 to 72 samples/day. Multiple data acquisition strategies were also evaluated for proteome coverage, including data-dependent acquisition (DDA), wide-window acquisition (WWA), and wide-window data-independent acquisition (WW-DIA). Analyzing 250 pg HeLa digest with a 10-min LC gradient (72 samples/day) provided >900, >1,800, and >3,000 protein group identifications for DDA, WWA, and WW-DIA, respectively. Total method cycle time was further reduced from 20 to 14.4 min (100 samples/day) by employing a trap-and-elute workflow, enabling 70% mass spectrometer utilization. The method was applied to library-free DIA analysis of single-cell samples, yielding >1,700 protein groups identified. In conclusion, this study provides a high-sensitivity, high-throughput nanoLC-MS configuration for sample-limited proteomics.
Collapse
Affiliation(s)
- Runsheng Zheng
- Thermo
Fisher Scientific, Dornier Str. 4, 82110 Germering, Germany
| | - Manuel Matzinger
- IMP—Institute
of Molecular Pathology, Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Rupert L. Mayer
- IMP—Institute
of Molecular Pathology, Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Alec Valenta
- Thermo
Fisher Scientific, Dornier Str. 4, 82110 Germering, Germany
| | - Xuefei Sun
- Thermo
Fisher Scientific, 1228 Titan Way, Sunnyvale, California 94085, United States
| | - Karl Mechtler
- IMP—Institute
of Molecular Pathology, Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- IMBA—Institute
of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
- Gregor
Mendel Institute of Molecular Plant Biology of the Austrian Academy
of Sciences, Dr. Bohr
Gasse 3, A-1030 Vienna, Austria
| |
Collapse
|
88
|
Mayer RL, Mechtler K. Immunopeptidomics in the Era of Single-Cell Proteomics. BIOLOGY 2023; 12:1514. [PMID: 38132340 PMCID: PMC10740491 DOI: 10.3390/biology12121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Immunopeptidomics, as the analysis of antigen peptides being presented to the immune system via major histocompatibility complexes (MHC), is being seen as an imperative tool for identifying epitopes for vaccine development to treat cancer and viral and bacterial infections as well as parasites. The field has made tremendous strides over the last 25 years but currently still faces challenges in sensitivity and throughput for widespread applications in personalized medicine and large vaccine development studies. Cutting-edge technological advancements in sample preparation, liquid chromatography as well as mass spectrometry, and data analysis, however, are currently transforming the field. This perspective showcases how the advent of single-cell proteomics has accelerated this transformation of immunopeptidomics in recent years and will pave the way for even more sensitive and higher-throughput immunopeptidomics analyses.
Collapse
Affiliation(s)
- Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
89
|
Jenkins C, Orsburn BC. Simple Tool for Rapidly Assessing the Quality of Multiplexed Single Cell Proteomics Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2615-2619. [PMID: 37991989 PMCID: PMC10704589 DOI: 10.1021/jasms.3c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
Recent advances in the sensitivity and speed of mass spectrometers coupled with improved sample preparation methods have enabled the field of single cell proteomics to proliferate. While heavy development is occurring in the label free space, dramatic improvements in throughput are provided by multiplexing with tandem mass tags. Hundreds or thousands of single cells can be analyzed with this method, yielding large data sets which may contain poor data arising from loss of material during cell sorting or poor digestion, labeling, and lysis. To date, no tools have been described that can assess data quality prior to data processing. We present herein a lightweight python script and accompanying graphic user interface that can rapidly quantify reporter ion peaks within each MS/MS spectrum in a file. With simple summary reports, we can identify single cell samples that fail to pass a set quality threshold, thus reducing analysis time waste. In addition, this tool, Diagnostic Ion Data Analysis Reduction (DIDAR), will create reduced MGF files containing only spectra possessing a user-specified number of single cell reporter ions. By reducing the number of spectra that have excessive zero values, we can speed up sample processing with little loss in data completeness as these spectra are removed in later stages in data processing workflows. DIDAR and the DIDAR GUI are compatible with all modern operating systems and are available at: https://github.com/orsburn/DIDARSCPQC. All files described in this study are available at www.massive.ucsd.edu as accession MSV000088887.
Collapse
Affiliation(s)
- Conor Jenkins
- The
University of Maryland, College
Park, Maryland 20737, United States
| | - Benjamin C. Orsburn
- The
Johns Hopkins University Medical School, Baltimore, Maryland 21215, United States
| |
Collapse
|
90
|
Song YC, Das D, Zhang Y, Chen MX, Fernie AR, Zhu FY, Han J. Proteogenomics-based functional genome research: approaches, applications, and perspectives in plants. Trends Biotechnol 2023; 41:1532-1548. [PMID: 37365082 DOI: 10.1016/j.tibtech.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Proteogenomics (PG) integrates the proteome with the genome and transcriptome to refine gene models and annotation. Coupled with single-cell (SC) assays, PG effectively distinguishes heterogeneity among cell groups. Affiliating spatial information to PG reveals the high-resolution circuitry within SC atlases. Additionally, PG can investigate dynamic changes in protein-coding genes in plants across growth and development as well as stress and external stimulation, significantly contributing to the functional genome. Here we summarize existing PG research in plants and introduce the technical features of various methods. Combining PG with other omics, such as metabolomics and peptidomics, can offer even deeper insights into gene functions. We argue that the application of PG will represent an important font of foundational knowledge for plants.
Collapse
Affiliation(s)
- Yu-Chen Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences and Technology, 52 Agricultural Building, University of Missouri-Columbia, MO 65201, USA
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| | - Fu-Yuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiangang Han
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
91
|
Ctortecka C, Hartlmayr D, Seth A, Mendjan S, Tourniaire G, Udeshi ND, Carr SA, Mechtler K. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity. Mol Cell Proteomics 2023; 22:100665. [PMID: 37839701 PMCID: PMC10684380 DOI: 10.1016/j.mcpro.2023.100665] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Multiplexed and label-free mass spectrometry-based approaches with single-cell resolution have attributed surprising heterogeneity to presumed homogenous cell populations. Even though specialized experimental designs and instrumentation have demonstrated remarkable advances, the efficient sample preparation of single cells still lags. Here, we introduce the proteoCHIP, a universal option for single-cell proteomics sample preparation including multiplexed labeling up to 16-plex with high sensitivity and throughput. The automated processing using a commercial system combining single-cell isolation and picoliter dispensing, the cellenONE, reduces final sample volumes to low nanoliters submerged in a hexadecane layer simultaneously eliminating error-prone manual sample handling and overcoming evaporation. The specialized proteoCHIP design allows direct injection of single cells via a standard autosampler resulting in around 1500 protein groups per TMT10-plex with reduced or eliminated need for a carrier proteome. We evaluated the effect of wider precursor isolation windows at single-cell input levels and found that using 2 Da isolation windows increased overall sensitivity without significantly impacting interference. Using the dedicated mass spectrometry acquisition strategies detailed here, we identified on average close to 2000 proteins per TMT10-plex across 170 multiplexed single cells that readily distinguished human cell types. Overall, our workflow combines highly efficient sample preparation, chromatographic and ion mobility-based filtering, rapid wide-window data-dependent acquisition analysis, and intelligent data analysis for optimal multiplexed single-cell proteomics. This versatile and automated proteoCHIP-based sample preparation approach is sufficiently sensitive to drive biological applications of single-cell proteomics and can be readily adopted by proteomics laboratories.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - David Hartlmayr
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Cellenion SASU, Lyon, France
| | | | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | | | - Namrata D Udeshi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Cellenion SASU, Lyon, France; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria; The Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences (GMI), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
92
|
Orsburn BC. Metabolomic, Proteomic, and Single-Cell Proteomic Analysis of Cancer Cells Treated with the KRAS G12D Inhibitor MRTX1133. J Proteome Res 2023; 22:3703-3713. [PMID: 37983312 PMCID: PMC10696623 DOI: 10.1021/acs.jproteome.3c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 11/22/2023]
Abstract
Mutations in KRAS are common drivers of human cancers and are often those with the poorest overall prognosis for patients. A recently developed compound, MRTX1133, has shown promise in inhibiting the activity of KRASG12D mutant proteins, which is one of the main drivers of pancreatic cancer. To better understand the mechanism of action of this compound, I performed both proteomics and metabolomics on four KRASG12D mutant pancreatic cancer cell lines. To obtain increased granularity in the proteomic observations, single-cell proteomics was successfully performed on two of these lines. Following quality filtering, a total of 1498 single cells were analyzed. From these cells, 3140 total proteins were identified with approximately 953 proteins quantified per cell. At 48 h of treatment, two distinct populations of cells can be observed based on the level of effectiveness of the drug in decreasing the total abundance of the KRAS protein in each respective cell, with results that are effectively masked in the bulk cell analysis. All mass spectrometry data and processed results are publicly available at www.massive.ucsd.edu at accessions PXD039597, PXD039601, and PXD039600.
Collapse
Affiliation(s)
- Benjamin C. Orsburn
- The Department of Pharmacology and
Molecular Sciences, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
93
|
Lanz MC, Fuentes Valenzuela L, Elias JE, Skotheim JM. Cell Size Contributes to Single-Cell Proteome Variation. J Proteome Res 2023; 22:3773-3779. [PMID: 37910793 PMCID: PMC10802137 DOI: 10.1021/acs.jproteome.3c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Accurate measurements of the molecular composition of single cells will be necessary for understanding the relationship between gene expression and function in diverse cell types. One of the most important phenotypes that differs between cells is their size, which was recently shown to be an important determinant of proteome composition in populations of similarly sized cells. We, therefore, sought to test if the effects of the cell size on protein concentrations were also evident in single-cell proteomics data. Using the relative concentrations of a set of reference proteins to estimate a cell's DNA-to-cell volume ratio, we found that differences in the cell size explain a significant amount of cell-to-cell variance in two published single-cell proteome data sets.
Collapse
Affiliation(s)
- Michael C Lanz
- Department of Biology, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, Stanford, California 94305, United States
| | | | - Joshua E Elias
- Chan Zuckerberg Biohub, Stanford, California 94305, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, Stanford, California 94305, United States
| |
Collapse
|
94
|
Jiang YR, Zhu L, Cao LR, Wu Q, Chen JB, Wang Y, Wu J, Zhang TY, Wang ZL, Guan ZY, Xu QQ, Fan QX, Shi SW, Wang HF, Pan JZ, Fu XD, Wang Y, Fang Q. Simultaneous deep transcriptome and proteome profiling in a single mouse oocyte. Cell Rep 2023; 42:113455. [PMID: 37976159 DOI: 10.1016/j.celrep.2023.113455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Although single-cell multi-omics technologies are undergoing rapid development, simultaneous transcriptome and proteome analysis of a single-cell individual still faces great challenges. Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-throughput sequencing, and mass spectrometry technology to achieve deep and joint quantitative analysis of transcriptome and proteome at the single-cell level, providing an important resource for understanding the relationship between transcription and translation in cells. This platform was applied to analyze single mouse oocytes at different meiotic maturation stages, reaching an average quantification depth of 19,948 genes and 2,663 protein groups in single mouse oocytes. In particular, we analyzed the correlation of individual RNA and protein pairs, as well as the meiosis regulatory network with unprecedented depth, and identified 30 transcript-protein pairs as specific oocyte maturational signatures, which could be productive for exploring transcriptional and translational regulatory features during oocyte meiosis.
Collapse
Affiliation(s)
- Yi-Rong Jiang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Le Zhu
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China
| | - Lan-Rui Cao
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China
| | - Qiong Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yu Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Jie Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | | | | | - Zhi-Ying Guan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qin-Qin Xu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qian-Xi Fan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shao-Wen Shi
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Xu-Dong Fu
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China; Center of Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310011, China.
| | - Yongcheng Wang
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China; Department of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310011, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310007, China.
| |
Collapse
|
95
|
Leduc A, Koury L, Cantlon J, Slavov N. Massively parallel sample preparation for multiplexed single-cell proteomics using nPOP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568927. [PMID: 38076795 PMCID: PMC10705290 DOI: 10.1101/2023.11.27.568927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Single-cell proteomics by mass spectrometry (MS) allows quantifying proteins with high specificity and sensitivity. To increase its throughput, we developed nPOP, a method for parallel preparation of thousands of single cells in nanoliter volume droplets deposited on glass slides. Here, we describe its protocol with emphasis on its flexibility to prepare samples for different multiplexed MS methods. An implementation with plexDIA demonstrates accurate quantification of about 3,000 - 3,700 proteins per human cell. The protocol is implemented on the CellenONE instrument and uses readily available consumables, which should facilitate broad adoption. nPOP can be applied to all samples that can be processed to a single-cell suspension. It takes 1 or 2 days to prepare over 3,000 single cells. We provide metrics and software for quality control that can support the robust scaling of nPOP to higher plex reagents for achieving reliable high-throughput single-cell protein analysis.
Collapse
Affiliation(s)
- Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | - Luke Koury
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA 02115, USA
- Parallel Squared Technology Institute, Watertown, MA 02472, USA
| |
Collapse
|
96
|
Xie YR, Castro DC, Rubakhin SS, Trinklein TJ, Sweedler JV, Lam F. Integrative Multiscale Biochemical Mapping of the Brain via Deep-Learning-Enhanced High-Throughput Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543144. [PMID: 37398021 PMCID: PMC10312594 DOI: 10.1101/2023.05.31.543144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Elucidating the spatial-biochemical organization of the brain across different scales produces invaluable insight into the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive chemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping via MEISTER, an integrative experimental and computational mass spectrometry framework. MEISTER integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating 3D molecular distributions, and a data integration method fitting cell-specific mass spectra to 3D data sets. We imaged detailed lipid profiles in tissues with data sets containing millions of pixels, and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents, and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future developments of multiscale technologies for biochemical characterization of the brain.
Collapse
Affiliation(s)
- Yuxuan Richard Xie
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel C. Castro
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S. Rubakhin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Timothy J. Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V. Sweedler
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carl R. Woese Institute for Genomic Biology. University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Fan Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Carl R. Woese Institute for Genomic Biology. University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
97
|
Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, Ilgisonis EV, Lisitsa AV, Poverennaya EV. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes (Basel) 2023; 14:2065. [PMID: 38003008 PMCID: PMC10671741 DOI: 10.3390/genes14112065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.
Collapse
Affiliation(s)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Leduc A, Harens H, Slavov N. Modeling and interpretation of single-cell proteogenomic data. ARXIV 2023:arXiv:2308.07465v2. [PMID: 37645043 PMCID: PMC10462161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Biological functions stem from coordinated interactions among proteins, nucleic acids and small molecules. Mass spectrometry technologies for reliable, high throughput single-cell proteomics will add a new modality to genomics and enable data-driven modeling of the molecular mechanisms coordinating proteins and nucleic acids at single-cell resolution. This promising potential requires estimating the reliability of measurements and computational analysis so that models can distinguish biological regulation from technical artifacts. We highlight different measurement modes that can support single-cell proteogenomic analysis and how to estimate their reliability. We then discuss approaches for developing both abstract and mechanistic models that aim to biologically interpret the measured differences across modalities, including specific applications to directed stem cell differentiation and to inferring protein interactions in cancer cells from the buffing of DNA copy-number variations. Single-cell proteogenomic data will support mechanistic models of direct molecular interactions that will provide generalizable and predictive representations of biological systems.
Collapse
Affiliation(s)
- Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | - Hannah Harens
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA 02115, USA
- Parallel Squared Technology Institute, Watertown, MA 02472, USA
| |
Collapse
|
99
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
100
|
Lu H, Zhang H, Li L. Chemical tagging mass spectrometry: an approach for single-cell omics. Anal Bioanal Chem 2023; 415:6901-6913. [PMID: 37466681 PMCID: PMC10729908 DOI: 10.1007/s00216-023-04850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Single-cell (SC) analysis offers new insights into the study of fundamental biological phenomena and cellular heterogeneity. The superior sensitivity, high throughput, and rich chemical information provided by mass spectrometry (MS) allow MS to emerge as a leading technology for molecular profiling of SC omics, including the SC metabolome, lipidome, and proteome. However, issues such as ionization suppression, low concentration, and huge span of dynamic concentrations of SC components lead to poor MS response for certain types of molecules. It is noted that chemical tagging/derivatization has been adopted in SCMS analysis, and this strategy has been proven an effective solution to circumvent these issues in SCMS analysis. Herein, we review the basic principle and general strategies of chemical tagging/derivatization in SCMS analysis, along with recent applications of chemical derivatization to single-cell metabolomics and multiplexed proteomics, as well as SCMS imaging. Furthermore, the challenges and opportunities for the improvement of chemical derivatization strategies in SCMS analysis are discussed.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|