51
|
Remodeling the Human Adult Stem Cell Niche for Regenerative Medicine Applications. Stem Cells Int 2017; 2017:6406025. [PMID: 29090011 PMCID: PMC5635271 DOI: 10.1155/2017/6406025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
The interactions between stem cells and their surrounding microenvironment are pivotal to determine tissue homeostasis and stem cell renewal or differentiation and regeneration in vivo. Ever since they were postulated in 1978, stem cell niches have been identified and characterized in many germline and adult tissues. Comprehensive studies over the last decades helped to clarify the critical components of stem cell niches that include cellular, extracellular, biochemical, molecular, and physical regulators. This knowledge has direct impact on their inherent regenerative potential. Clinical applications demand readily available cell sources that, under controlled conditions, provide a specific therapeutic function. Thus, translational medicine aims at optimizing in vitro or in vivo the various components and complex architecture of the niche to exploit its therapeutic potential. Accordingly, the objective is to recreate the natural niche microenvironment during cell therapy process development and closely comply with the requests of regulatory authorities. In this paper, we review the most recent advances of translational medicine approaches that target the adult stem cell natural niche microenvironment for regenerative medicine applications.
Collapse
|
52
|
Schubert S, Brehm W, Hillmann A, Burk J. Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture. Cytometry A 2017; 93:60-72. [PMID: 28926198 DOI: 10.1002/cyto.a.23240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For clinical applications of multipotent mesenchymal stromal cells (MSCs), serum-free culture is preferable to standardize cell products and prevent contamination with pathogens. In contrast to human MSCs, knowledge on serum-free culture of large animal MSCs is limited, despite its relevance for preclinical studies and development of veterinary cellular therapeutics. This study aimed to evaluate the suitability of a commercially available serum-free human MSC medium for culturing equine adipose-derived MSCs in comparison with human adipose MSCs. Enzyme-free isolation by explant technique and expansion of equine and human cells in the serum-free medium were feasible. However, serum-free culture altered the morphology and complicated handling of equine MSCs, with cell aggregation and spontaneous detachment of multilayers, compared to culture in standard medium supplemented with fetal bovine serum. Furthermore, proliferation and the surface immunophenotype of equine cells were more variable compared to the controls and appeared to depend on the lot of the serum-free medium. Particularly the expression of CD90 was different between experimental groups (P < 0.05), with lower percentages of CD90+ cells found in equine MSC samples cultured in serum-free medium (5.21-83.40%) compared to standard medium (86.20-99.50%). Additionally, small subpopulations expressing MSC exclusion markers such as CD14 (0.28-11.60%), CD34 (0.00-9.87%), CD45 (0.35-10.50%), or MHCII (0.00-3.67%) were found in equine samples after serum-free culture. In contrast, human samples displayed a more consistent morphology and a consistent CD29+ (98.60-99.90%), CD73+ (94.60-98.40%), CD90+ (99.60-99.90%), and CD105+ (97.40-99.80%) immunophenotype after culture in serum-free medium. The obtained data demonstrate that the serum-free medium was suitable for human MSC culture but did not lead to entirely satisfactory results in equine MSCs. This underlines that requirements regarding serum-free culture conditions are species-specific, indicating a need for serum-free media to be optimized for MSCs from relevant animal species. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Susanna Schubert
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Institute of Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany
| | - Walter Brehm
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, An den Tierkliniken 21, Leipzig 04103, Germany
| | - Aline Hillmann
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany
| | - Janina Burk
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Institute of Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany
| |
Collapse
|
53
|
Microgrooved-surface topography enhances cellular division and proliferation of mouse bone marrow-derived mesenchymal stem cells. PLoS One 2017; 12:e0182128. [PMID: 28846679 PMCID: PMC5573154 DOI: 10.1371/journal.pone.0182128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells’ (MSCs) fate is largely determined by the various topographical features and a range of extracellular matrix (ECM) components present in their niches. Apart from maintaining structural stability, they regulate cell morphology, division, proliferation, migration and differentiation among others. Traditional MSC cultures, which are mainly based on two-dimensional smooth surfaces of culture dishes and plates, do not provide topographical cues similar to in vivo three-dimensional niches, impacting various cellular processes. Therefore, we culture the mouse bone marrow-derived MSCs on microgrooved bearing surface, partially mimicking in vivo reticulated niche, to study its effect on morphology, pluripotency factor-associated stemness, cell division and rate of proliferation. Following culture, morphological features, and MSC-specific marker gene expression, such as CD29, CD44, Sca-1 along with HSC (Haematopoietic stem cell)-specific markers like CD34, CD45, CD11b were evaluated by microscopy and immunophenotyping, respectively. HSC is another type of bone marrow stem cell population, which concertedly interacts with MSC during various functions, including haematopoiesis. In addition, mesenchymal stem cells were further analyzed for gene expression of pluripotency-associated transcription factors such as Oct3/4, Sox-2, Nanog and Myc, as well as differentiated into adipocytes, osteocytes and chondrocytes. Our results show that microgrooved surface-cultured mesenchymal stem cells (MMSCs) expressed higher levels of expected cell surface and pluripotency-associated markers and proliferated more rapidly (2–3×fold) with higher percentage of cells in S/G2-M-phase, consequently giving rise to higher cell yield compared to standard culture flask-grown cells (MSCs), taken as control. Furthermore, both MSCs and MMSCs showed considerable accumulation of intracellular lipid-droplets, higher alkaline phosphatase activity and secretion of extracellular matrix that are characteristics of adipogenesis, osteogenesis and chondrogenesis, respectively.
Collapse
|
54
|
A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices. Stem Cell Rev Rep 2017; 13:587-597. [DOI: 10.1007/s12015-017-9757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Kusuma GD, Brennecke SP, O’Connor AJ, Kalionis B, Heath DE. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion. PLoS One 2017; 12:e0171488. [PMID: 28152107 PMCID: PMC5289638 DOI: 10.1371/journal.pone.0171488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/20/2017] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.
Collapse
Affiliation(s)
- Gina D. Kusuma
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Shaun P. Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrea J. O’Connor
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (BK); (DEH)
| | - Daniel E. Heath
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (BK); (DEH)
| |
Collapse
|
56
|
Hao M, Wang R, Wang W. Cell Therapies in Cardiomyopathy: Current Status of Clinical Trials. Anal Cell Pathol (Amst) 2017; 2017:9404057. [PMID: 28194324 PMCID: PMC5282433 DOI: 10.1155/2017/9404057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022] Open
Abstract
Because the human heart has limited potential for regeneration, the loss of cardiomyocytes during cardiac myopathy and ischaemic injury can result in heart failure and death. Stem cell therapy has emerged as a promising strategy for the treatment of dead myocardium, directly or indirectly, and seems to offer functional benefits to patients. The ideal candidate donor cell for myocardial reconstitution is a stem-like cell that can be easily obtained, has a robust proliferation capacity and a low risk of tumour formation and immune rejection, differentiates into functionally normal cardiomyocytes, and is suitable for minimally invasive clinical transplantation. The ultimate goal of cardiac repair is to regenerate functionally viable myocardium after myocardial infarction (MI) to prevent or heal heart failure. This review provides a comprehensive overview of treatment with stem-like cells in preclinical and clinical studies to assess the feasibility and efficacy of this novel therapeutic strategy in ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Ming Hao
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Richard Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Wen Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| |
Collapse
|
57
|
Gerby S, Attebi E, Vlaski M, Ivanovic Z. A new clinical-scale serum-free xeno-free medium efficient in ex vivo amplification of mesenchymal stromal cells does not support mesenchymal stem cells. Transfusion 2016; 57:433-439. [PMID: 27861973 DOI: 10.1111/trf.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND We evaluated a new serum-free, xeno-free medium (Xuri, GE HealthCare) in ex vivo cultures for amplification of mesenchymal stromal cells (MStroC) in comparison with classical culture supplemented with fetal calf serum and basic fibroblast growth factor. STUDY DESIGN AND METHODS MStroC and mesenchymal stem cell (MSC) proliferative capacities were studied in bulk cultures and single-cell cultures with assay of secondary replating capacity of individual clones. Flow-cytometric phenotype analysis and proliferative history analysis were also performed. RESULTS In cultures initiated with previously amplified and cryopreserved MStroC from human marrow, Xuri medium enabled a total cell expansion fold comparable to one obtained in control fetal calf serum (FCS)-supplemented culture. However, both the number and the proliferative capacity of colony-forming unit-fibroblast were greatly reduced in Xuri medium cultures. This is even more evident in single-cell cultures, where, in rare positive wells, only several cells were found in Xuri cultures, compared to abundant cell content in FCS and α-minimal essential medium cultures. Replating these single-cell clones in secondary cultures (FCS in both cases) revealed a total exhaustion of MSC proliferative capacity after Xuri primary culture. CONCLUSION Since in both conditions after a 7-day bulk culture, similar immunophenotype and proliferative history were found when the standard MSC immunophenotype panel was employed, the loss of proliferative capacity in Xuri medium shows that it cannot maintain functional MSC population. This is a drastic example showing that the real MSC activity can be completely unrelated to the immunophenotype considered as MSC phenotype.
Collapse
Affiliation(s)
- Sandie Gerby
- Etablissement Français du Sang Aquitaine-Limousin, Bordeaux, France.,U1035 INSERM/Bordeaux University, Bordeaux, France
| | - Esther Attebi
- Etablissement Français du Sang Aquitaine-Limousin, Bordeaux, France.,U1035 INSERM/Bordeaux University, Bordeaux, France
| | - Marija Vlaski
- Etablissement Français du Sang Aquitaine-Limousin, Bordeaux, France.,U1035 INSERM/Bordeaux University, Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin, Bordeaux, France.,U1035 INSERM/Bordeaux University, Bordeaux, France
| |
Collapse
|