51
|
Ke ZB, Chen SM, Chen JY, Chen SH, You Q, Sun JB, Xue YT, Sun XL, Wu XH, Zheng QS, Wei Y, Xue XY, Xu N. Head-to-head comparisons of [ 68Ga]Ga-PSMA-11 PET/CT, multiparametric MRI, and prostate-specific antigen for the evaluation of therapeutic responses to neoadjuvant chemohormonal therapy in high-risk non-metastatic prostate cancer patients: a prospective study. Eur J Nucl Med Mol Imaging 2023; 50:1240-1251. [PMID: 36416906 DOI: 10.1007/s00259-022-06047-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The optimal tool to evaluate the tumour therapeutic responses to neoadjuvant chemohormonal therapy (NCHT) in patients with high-risk non-metastatic prostate cancer (PCa) remains uncertain. We compared the role of [68Ga]-labeled prostate-specific membrane antigen (PSMA)-11 positron emission tomography/computerized tomography ([68Ga]Ga-PSMA-11 PET/CT), multiparametric MRI (mpMRI), and prostate-specific antigen (PSA) and assessed the practical value of the recent European Association of Urology and European Association of Nuclear Medicine (EAU/EANM) recommended criteria of PSMA PET/CT to evaluate the therapeutic responses to NCHT in patients with high-risk non-metastatic PCa. METHODS This prospective study included 72 high-risk non-metastatic PCa patients receiving NCHT followed by radical prostatectomy from June 2021 to March 2022. PSA testing, [68Ga]Ga-PSMA-11 PET/CT, and mpMRI scanning were conducted in all patients before and after NCHT. Therapeutic responses to NCHT were evaluated with PSA, RECIST 1.1, PERCIST 1.0, and EAU/EANM recommended criteria. Postoperative pathological results were considered the reference standard. A favourable pathological response was defined as pathologic complete remission (pCR) or minimal residual disease (MRD). Diagnostic accuracy was assessed by sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), positive predictive value (PPV), negative predictive value (NPV), and Cohen's kappa index. Logistic regression analysis was used to determine the independent predictive value of [68Ga]Ga-PSMA-11 PET/CT-derived parameters. RESULTS All cases experienced a marked decrease in PSA levels after NCHT. Twenty-four (33.33%) cases experienced a favourable pathological response, including five (6.94%) cases of pCR and 19 (26.39%) cases of MRD. According to the results of [68Ga]Ga-PSMA-11 PET/CT, EAU/EANM recommended criteria indicated that 20 (27.78%) cases had a CR, whereas PERCIST 1.0 criteria indicated that 23 (31.94%) cases had a CR. There was a strong association between EAU/EANM recommended criteria and PERCIST 1.0 criteria (Pearson's R=0.857). The sensitivity (75.00%, 79.17% vs. 58.33%, 58.33%), specificity (95.83%, 91.67% vs. 83.33%, 68.75%), PLR (18.00, 9.50 vs. 3.50, 1.87), NLR (0.26, 0.23 vs. 0.50, 0.61), PPV (90.0%, 82.6% vs. 63.6%, 48.3%), and NPV (88.5%, 89.8% vs. 80.0%, 76.7%) of [68Ga]Ga-PSMA-11 PET/CT (including EAU/EANM recommended criteria and PERCIST 1.0 criteria) to predict favourable pathological responses were all superior to those of mpMRI and nadir PSA. The kappa index to predict a favourable pathological response was 0.257 for PSA, 0.426 for RECIST 1.1, 0.716 for PERCIST 1.0, and 0.739 for EAU/EANM recommended criteria. Multivariate logistic analysis revealed that the post-NCHT maximum standardized uptake value (SUVmax) before radical prostatectomy was an independent predictor of a favourable pathological response to NCHT. CONCLUSIONS [68Ga]Ga-PSMA-11 PET/CT had a better concordance with a favourable pathological response to NCHT compared with nadir PSA and mpMRI. EAU/EANM recommended criteria and PERCIST 1.0 criteria performed equally to identify pathological responders when [68Ga]Ga-PSMA-11 PET/CT was used as a therapeutic response assessment tool.
Collapse
Affiliation(s)
- Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qi You
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jiang-Bo Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Hui Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
52
|
Liu XF, Yan BC, Li Y, Ma FH, Qiang JW. Radiomics nomogram in aiding preoperatively dilatation and curettage in differentiating type II and type I endometrial cancer. Clin Radiol 2023; 78:e29-e36. [PMID: 36192204 DOI: 10.1016/j.crad.2022.08.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023]
Abstract
AIM To established a radiomics nomogram for improving the dilatation and curettage (D&C) result in differentiating type II from type I endometrial cancer (EC) preoperatively. MATERIAL AND METHODS EC patients (n=875) were enrolled retrospectively and divided randomly into a training cohort (n=437) and a test cohort (n=438), according to the ratio of 1:1. Radiomics signatures were extracted and selected from apparent diffusion coefficient (ADC) maps. A multivariate logistic regression analysis was used to identify the independent clinical risk factors. An ADC based-radiomics nomogram was built by integrating the selected radiomics signatures and the independent clinical risk factors. Decision curve analysis (DCA) was conducted to determine the clinical usefulness of the radiomics nomogram. The net reclassification index (NRI) and total integrated discrimination index (IDI) were calculated to compare the discrimination performances between the radiomics nomogram and the D&C result. RESULTS Receiver operating characteristic (ROC) curves showed that the clinical risk factors, the D&C, and the ADC based-radiomics nomogram yielded areas under the ROC curves (AUCs) of 0.70 (95% CI: 0.64-0.76), 0.85 (95% CI: 0.80-0.89), and 0.93 (95% CI: 0.90-0.96) in the training cohort and 0.64 (95% CI: 0.57-0.71), 0.82 (95% CI: 0.77-0.87) and 0.91 (95% CI: 0.87-0.95) in the test cohort, respectively. The DCA, NRI, and IDI demonstrated the clinically usefulness of the ADC based-radiomics nomogram. CONCLUSION The ADC-based radiomics nomogram could be used to improve the D&C result in differentiating type II from type I EC preoperatively.
Collapse
Affiliation(s)
- X-F Liu
- Department of Radiology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - B-C Yan
- Department of Radiology, Jinshan Hospital, Fudan University, 201508, Shanghai, China
| | - Y Li
- Department of Radiology, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| | - F-H Ma
- Departments of Radiology, Obstetrics & Gynecology Hospital, Fudan University, 200090, Shanghai, China
| | - J-W Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| |
Collapse
|
53
|
Mahajan A, Chakrabarty N, Majithia J, Ahuja A, Agarwal U, Suryavanshi S, Biradar M, Sharma P, Raghavan B, Arafath R, Shukla S. Multisystem Imaging Recommendations/Guidelines: In the Pursuit of Precision Oncology. Indian J Med Paediatr Oncol 2023. [DOI: 10.1055/s-0043-1761266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
AbstractWith an increasing rate of cancers in almost all age groups and advanced screening techniques leading to an early diagnosis and longer longevity of patients with cancers, it is of utmost importance that radiologists assigned with cancer imaging should be prepared to deal with specific expected and unexpected circumstances that may arise during the lifetime of these patients. Tailored integration of preventive and curative interventions with current health plans and global escalation of efforts for timely diagnosis of cancers will pave the path for a cancer-free world. The commonly encountered circumstances in the current era, complicating cancer imaging, include coronavirus disease 2019 infection, pregnancy and lactation, immunocompromised states, bone marrow transplant, and screening of cancers in the relevant population. In this article, we discuss the imaging recommendations pertaining to cancer screening and diagnosis in the aforementioned clinical circumstances.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Nivedita Chakrabarty
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Jinita Majithia
- Department of Radiodiagnosis, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Ujjwal Agarwal
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shubham Suryavanshi
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Biradar
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Prerit Sharma
- Radiodiagnosis, Sharma Diagnostic Centre, Wardha, India
| | | | | | - Shreya Shukla
- Radiodiagnosis, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
54
|
Alekseeva AI, Gerasimov AD, Kudelkina VV, Osipova NS, Drozd SF, Pavlova GV, Kosyreva AM, Fatkhudinov TK. Changes in Oncogene Expression in Experimental Glioblastoma 101.8 Rats during Therapy with PLGA Nanoparticles Loaded with Doxorubicin. Bull Exp Biol Med 2023; 174:518-522. [PMID: 36899203 DOI: 10.1007/s10517-023-05740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 03/12/2023]
Abstract
We compared the expression of the main glioblastoma oncogenes during therapy with doxorubicin (Dox) and Dox in nanoparticles based on a copolymer of lactic and glycolic acids (Dox-PLGA) at a delayed start of treatment. Late initiation of Dox-PLGA therapy of glioblastoma showed an increase in the expression of multiple drug resistance genes, such as Abcb1b and Mgmt, and a decrease in Sox2 expression. Increased expression of other oncogenes (Melk, Wnt3, Gdnf, and Pdgfra) were observed during both Dox and Dox-PLGA therapy. These changes indicate increased tumor aggressiveness and its resistance to cytostatics at the late start of therapy.
Collapse
Affiliation(s)
- A I Alekseeva
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia.
| | - A D Gerasimov
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - V V Kudelkina
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - N S Osipova
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - S F Drozd
- N. N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- N. N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A M Kosyreva
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| | - T Kh Fatkhudinov
- B. V. Pet-rovsky Russian Research Center of Surgery, A. P. Avtsyn Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
55
|
Ma ZP, Li XL, Gao K, Zhang TL, Wang HD, Zhao YX. Application of radiomics based on chest CT-enhanced dual-phase imaging in the immunotherapy of non-small cell lung cancer. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:1333-1340. [PMID: 37840466 DOI: 10.3233/xst-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To explore the value of applying computed tomography (CT) radiomics based on different CT-enhanced phases to determine the immunotherapeutic efficacy of non-small cell lung cancer (NSCLC). METHODS 106 patients with NSCLC who underwent immunotherapy are randomly divided into training (74) and validation (32) groups. CT-enhanced arterial and venous phase images of patients before treatment are collected. Region-of-interest (ROI) is segmented on the CT-enhanced images, and the radiomic features are extracted. One-way analysis of variance and least absolute shrinkage and selection operator (LASSO) are used to screen the optimal radiomics features and analyze the association between radiomics features and immunotherapy efficacy. The area under receiver-operated characteristic curves (AUC) along with the sensitivity and specificity are computed to evaluate diagnostic effectiveness. RESULTS LASSO regression analysis screens and selects 6 and 8 optimal features in the arterial and venous phases images, respectively. Applying to the training group, AUCs based on CT-enhanced arterial and venous phase images are 0.867 (95% CI:0.82-0.94) and 0.880 (95% CI:0.86-0.91) with the sensitivities of 73.91% and 76.19%, and specificities of 66.67% and 72.19%, respectively, while in validation group, AUCs of the arterial and venous phase images are 0.732 (95% CI:0.71-0.78) and 0.832 (95% CI:0.78-0.91) with sensitivities of 75.00% and 76.00%, and specificities of 73.07% and 75.00%, respectively. There are no significant differences between AUC values computed from arterial phases and venous phases images in both training and validation groups (P < 0.05). CONCLUSION The optimally selected radiomics features computed from CT-enhanced different-phase images can provide new imaging marks to evaluate efficacy of the targeted therapy in NSCLC with a high diagnostic value.
Collapse
Affiliation(s)
- Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Xiao-Lei Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, China
| | - Kai Gao
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Tian-Le Zhang
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Heng-Di Wang
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| | - Yong-Xia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University; Clinical Medical college, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
56
|
Jin L, Hu W, Li T, Sun H, Kang D, Piao L. Case report and literature review: PET/CT in the evaluation of response to treatment of liver metastasis from colorectal cancer with DEBIRI-TACE. Front Oncol 2023; 13:1015976. [PMID: 36937414 PMCID: PMC10017836 DOI: 10.3389/fonc.2023.1015976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Background Irinotecan-loaded drug-eluting beads transarterial chemoembolization (DEBIRI-TACE) is a safe and effective therapeutic option for unresectable colorectal liver metastases (CRLM). The evaluation of treatment response after DEBIRI-TACE is very important for assessing the patient's condition. At present, the Response Evaluation Criteria in Solid Tumors (RECIST) with the tumor size obtained by CT and/or MRI and PET Response Criteria in Solid Tumors (PERCIST) based on fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) are used for evaluating the response to therapy of solid tumors; however, their value in the assessment of treatment response after DEBIRI-TACE remains unclear. Case presentation A 52-year-old male with unresectable simultaneous CRLM was treated in the Affiliated Hospital of Yanbian University with DEBIRI-TACE combined with systemic chemotherapy and targeted therapy. Carcinoembryonic antigen levels decreased by 82.50% after 27 days of treatment. At 6 weeks post-surgery, FDG-PET/CT showed that the maximum standardized uptake value (SUVmax) of intrahepatic lesions was reduced to 62.14%. Abdominal MRI revealed that the sum of target lesion diameters was less than 30% that at baseline. PERCIST indicated partial metabolic response, whereas RECIST suggested stable disease. Conclusion FDG PET/CT-based PERCIST may be accurate in determining treatment response and evaluating patient prognosis after DEBIRI-TACE in unresectable CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Dongxu Kang
- *Correspondence: Dongxu Kang, ; Longzhen Piao,
| | | |
Collapse
|
57
|
Prospective Investigation of 18FDG-PET/MRI with Intravoxel Incoherent Motion Diffusion-Weighted Imaging to Assess Survival in Patients with Oropharyngeal or Hypopharyngeal Carcinoma. Cancers (Basel) 2022; 14:cancers14246104. [PMID: 36551590 PMCID: PMC9775681 DOI: 10.3390/cancers14246104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
To prospectively investigate the prognostic value of 18F-FDG PET/MRI in patients with oropharyngeal or hypopharyngeal squamous cell carcinomas (OHSCC) treated by chemoradiotherapy. The study cohort consisted of patients with OHSCC who had undergone integrated PET/MRI prior to chemoradiotherapy or radiotherapy. Imaging parameters derived from intravoxel incoherent motion (IVIM), dynamic contrast-enhanced MRI (DCE-MRI), and 18F-FDG PET were analyzed in relation to overall survival (OS) and recurrence-free survival (RFS). In multivariable analysis, T classification (p < 0.001), metabolic tumor volume (p = 0.013), and pseudo-diffusion coefficient (p = 0.008) were identified as independent risk factors for OS. The volume transfer rate constant (p = 0.015), initial area under the curve (p = 0.043), T classification (p = 0.018), and N classification (p = 0.018) were significant predictors for RFS. The Harrell’s c-indices of OS and RFS obtained from prognostic models incorporating clinical and PET/MRI predictors were significantly higher than those derived from the traditional TNM staging system (p = 0.001). The combination of clinical risk factors with functional parameters derived from IVIM and DCE-MRI plus metabolic PET parameters derived from 18F-FDG PET in integrated PET/MRI outperformed the information provided by traditional TNM staging in predicting the survival of patients with OHSCC.
Collapse
|
58
|
Park M, Bang C, Yun WS, Jin S, Jeong YM. Transwell-Hypoxia Method Facilitates the Outgrowth of 3D-Printed Collagen Scaffolds Loaded with Cryopreserved Patient-Derived Melanoma Explants. ACS APPLIED BIO MATERIALS 2022; 5:5302-5309. [PMID: 36265170 PMCID: PMC9682519 DOI: 10.1021/acsabm.2c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A previous study from our laboratory demonstrated the effects of in vitro three-dimensional (3D)-printed collagen scaffolds on the maintenance of cryopreserved patient-derived melanoma explants (PDMEs). However, it remains unknown whether 3D-printed collagen scaffolds (3D-PCSs) can be harmonized with any external culture conditions to increase the growth of cryopreserved PDMEs. In this study, 3D-PCSs were manufactured with a 3DX bioprinter. The 3D-printed collagen scaffold-on-frame construction was loaded with fragments of cryopreserved PDMEs (approximately 1-2 mm). 3D-PCSs loaded with patient-derived melanoma explants (3D-PCS-PDMEs) were incubated using two types of methods: (1) in transwells in the presence of a low concentration of oxygen (transwell-hypoxia method) and (2) using a traditional adherent attached to the bottom flat surface of a standard culture dish (traditional flat condition). In addition, we used six different types of media (DMEM high glucose, MEM α, DMEM/F12, RPMI1640, fibroblast basal medium (FBM), and SBM (stem cell basal medium)) for 7 days. The results reveal that the culture conditions of MEM α, DMEM/F12, and FBM using the transwell-hypoxia method show greater synergic effects on the outgrowth of the 3D-PCS-PDME compared to the traditional flat condition. In addition, the transwell-hypoxia method shows a higher expression of the MMP14 gene and the multidrug-resistant gene product 1 (MDR1) than in the typical culture method. Taken together, our findings suggest that the transwell-hypoxia method could serve as an improved, 3D alternative to animal-free testing that better mimics the skin's microenvironment using in vitro PDMEs.
Collapse
Affiliation(s)
- MinJi Park
- T&R
Biofab Co., Ltd., Seongnam-si13487, Republic of Korea
| | - ChulHwan Bang
- Department
of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul296-12, Korea
| | - Won-Soo Yun
- Department
of Mechanical Engineering, Tech University
of Korea, 237 Sangidaehak
Street, Si-heung City15115, Republic of Korea
| | - Songwan Jin
- Department
of Mechanical Engineering, Tech University
of Korea, 237 Sangidaehak
Street, Si-heung City15115, Republic of Korea
| | - Yun-Mi Jeong
- Department
of Mechanical Engineering, Tech University
of Korea, 237 Sangidaehak
Street, Si-heung City15115, Republic of Korea,
| |
Collapse
|
59
|
Lohmann P, Franceschi E, Vollmuth P, Dhermain F, Weller M, Preusser M, Smits M, Galldiks N. Radiomics in neuro-oncological clinical trials. Lancet Digit Health 2022; 4:e841-e849. [PMID: 36182633 DOI: 10.1016/s2589-7500(22)00144-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
The development of clinical trials has led to substantial improvements in the prevention and treatment of many diseases, including brain cancer. Advances in medicine, such as improved surgical techniques, the development of new drugs and devices, the use of statistical methods in research, and the development of codes of ethics, have considerably influenced the way clinical trials are conducted today. In addition, methods from the broad field of artificial intelligence, such as radiomics, have the potential to considerably affect clinical trials and clinical practice in the future. Radiomics is a method to extract undiscovered features from routinely acquired imaging data that can neither be captured by means of human perception nor conventional image analysis. In patients with brain cancer, radiomics has shown its potential for the non-invasive identification of prognostic biomarkers, automated response assessment, and differentiation between treatment-related changes from tumour progression. Despite promising results, radiomics is not yet established in routine clinical practice nor in clinical trials. In this Viewpoint, the European Organization for Research and Treatment of Cancer Brain Tumour Group summarises the current status of radiomics, discusses its potential and limitations, envisions its future role in clinical trials in neuro-oncology, and provides guidance on how to address the challenges in radiomics.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium.
| | - Enrico Franceschi
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; IRCCS Istituto Scienze Neurologiche di Bologna, Nervous System Medical Oncology Department, Bologna, Italy
| | - Philipp Vollmuth
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frédéric Dhermain
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; Radiation Oncology Department, Gustave Roussy University Hospital, Cancer Campus Grand Paris, Villejuif, France
| | - Michael Weller
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; Division of Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marion Smits
- Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; Department of Radiology and Nuclear Medicine and Brain Tumour Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Brain Tumour Group, European Organization for Research and Treatment of Cancer, Brussels, Belgium; Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
60
|
Treatment Assessment of pNET and NELM after Everolimus by Quantitative MRI Parameters. Biomedicines 2022; 10:biomedicines10102618. [PMID: 36289880 PMCID: PMC9599819 DOI: 10.3390/biomedicines10102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Assessment of treatment response to targeted therapies such as everolimus is difficult, especially in slow-growing tumors such as NETs. In this retrospective study, 17 patients with pancreatic neuroendocrine tumors (pNETs) and hepatic metastases (NELMs) (42 target lesions) who received everolimus were analyzed. Intralesional signal intensities (SI) of non-contrast T1w, T2w and DCE imaging, and apparent diffusion coefficients (ADCmean and ADCmin) of DWI, were measured on baseline and first follow-up MRI after everolimus initiation. Response assessment was categorized according to progression-free survival (PFS), with responders (R) showing a PFS of ≥11 months. ADCmin of NELMs decreased in Rs whereas it increased in non-responders (NR). Percentual changes of ADCmin and ADCmean differed significantly between response groups (p < 0.03). By contrast, ADC of the pNETs tended to increase in Rs, while there was no change in NRs. Tumor-to-liver (T/L) ratio of T1 SI of NELMs increased in Rs and decreased in NRs, and percentual changes differed significantly between response groups (p < 0.02). T1 SI of the pNETs tended to decrease in Rs and increase in Ns. The quotient of pretherapeutic and posttherapeutic ADCmin values (DADCmin) and length of everolimus treatment showed significant association with PFS in univariable Cox analysis. In conclusion, quantitative MRI, especially DWI, seems to allow treatment assessment of pNETs with NELMs under everolimus. Interestingly, the responding NELMs showed decreasing ADC values, and there might be an opposite effect on ADC and T1 SI between NELMs and pNETs.
Collapse
|
61
|
[Chinese consensus on the diagnosis and management of Epstein-Barr virus-related post-transplant lymphoproliferative disorders after hematopoietic stem cell transplantation (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:716-725. [PMID: 36709164 PMCID: PMC9613495 DOI: 10.3760/cma.j.issn.0253-2727.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 01/24/2023]
|
62
|
Braig D, Runkel A, Eisenhardt AE, Schmid A, Zeller J, Pauli T, Lausch U, Wehrle J, Bronsert P, Jung M, Kiefer J, Boerries M, Eisenhardt SU. Individualized Mini-Panel Sequencing of ctDNA Allows Tumor Monitoring in Complex Karyotype Sarcomas. Int J Mol Sci 2022; 23:ijms231810215. [PMID: 36142126 PMCID: PMC9499617 DOI: 10.3390/ijms231810215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
Soft tissue sarcomas (STS) are rare tumors of mesenchymal origin with high mortality. After curative resection, about one third of patients suffer from distant metastases. Tumor follow-up only covers a portion of recurrences and is associated with high cost and radiation burden. For metastasized STS, only limited inferences can be drawn from imaging data regarding therapy response. To date there are no established and evidence-based diagnostic biomarkers for STS due to their rarity and diversity. In a proof-of-concept study, circulating tumor DNA (ctDNA) was quantified in (n = 25) plasma samples obtained from (n = 3) patients with complex karyotype STS collected over three years. Genotyping of tumor tissue was performed by exome sequencing. Patient-individual mini-panels for targeted next-generation sequencing were designed encompassing up to 30 mutated regions of interest. Circulating free DNA (cfDNA) was purified from plasma and ctDNA quantified therein. ctDNA values were correlated with clinical parameters. ctDNA concentrations correlated with the tumor burden. In case of full remission, no ctDNA was detectable. Patients with a recurrence at a later stage showed low levels of ctDNA during clinical remission, indicating minimal residual disease. In active disease (primary tumor or metastatic disease), ctDNA was highly elevated. We observed direct response to treatment, with a ctDNA decline after tumor resections, radiotherapy, and chemotherapy. Quantification of ctDNA allows for the early detection of recurrence or metastases and can be used to monitor treatment response in STS. Therapeutic decisions can be made earlier, such as the continuation of a targeted adjuvant therapy or the implementation of extended imaging to detect recurrences. In metastatic disease, therapy can be adjusted promptly in case of no response. These advantages may lead to a survival benefit for patients in the future.
Collapse
Affiliation(s)
- David Braig
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian University of Munich, 80336 Munich, Germany
- Correspondence:
| | - Alexander Runkel
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anja E. Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Adrian Schmid
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Pauli
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ute Lausch
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julius Wehrle
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Matthias Jung
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Steffen U. Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
63
|
Arafa KK, Ibrahim A, Mergawy R, El-Sherbiny IM, Febbraio F, Hassan RYA. Advances in Cancer Diagnosis: Bio-Electrochemical and Biophysical Characterizations of Cancer Cells. MICROMACHINES 2022; 13:mi13091401. [PMID: 36144024 PMCID: PMC9504238 DOI: 10.3390/mi13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 05/09/2023]
Abstract
Cancer is a worldwide leading cause of death, and it is projected that newly diagnosed cases globally will reach 27.5 million each year by 2040. Cancers (malignant tumors), unlike benign tumors are characterized by structural and functional dedifferentiation (anaplasia), breaching of the basement membrane, spreading to adjacent tissues (invasiveness), and the capability to spread to distant sites (metastasis). In the cancer biology research field, understanding and characterizing cancer metastasis as well as features of cell death (apoptosis) is considered a technically challenging subject of study and clinically is very critical and necessary. Therefore, in addition to the cytochemical methods traditionally used, novel biophysical and bioelectrochemical techniques (e.g., cyclic voltammetry and electrochemical impedance spectroscopy), atomic force microscopy, and electron microscopic methods are increasingly being deployed to better understand these processes. Implementing those methods at the preclinical level enables the rapid screening of new anticancer drugs with understanding of their central mechanism for cancer therapy. In this review, principles and basic concepts of new techniques suggested for metastasis, and apoptosis examinations for research purposes are introduced, along with examples of each technique. From our recommendations, the privilege of combining the bio-electrochemical and biosensing techniques with the conventional cytochemical methods either for research or for biomedical diagnosis should be emphasized.
Collapse
Affiliation(s)
- Kholoud K. Arafa
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Alaa Ibrahim
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Reem Mergawy
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ibrahim M. El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: ; Tel.: +20-1129216152
| |
Collapse
|
64
|
Dejanovic D, Specht L, Czyzewska D, Kiil Berthelsen A, Loft A. Response Evaluation Following Radiation Therapy With 18F-FDG PET/CT: Common Variants of Radiation-Induced Changes and Potential Pitfalls. Semin Nucl Med 2022; 52:681-706. [PMID: 35835618 DOI: 10.1053/j.semnuclmed.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Radiation therapy (RT) is one of the cornerstones in cancer treatment and approximately half of all patients will receive some form of RT during the course of their cancer management. Response evaluation after RT and follow-up imaging with 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) can be complicated by RT-induced acute, chronic or consequential effects. There is a general consensus that 18F-FDG PET/CT for response evaluation should be delayed for 12 weeks after completing RT to minimize the risk of false-positive findings. Radiation-induced late side effects in normal tissue can take years to develop and eventually cause symptoms that on imaging can potentially mimic recurrent disease. Imaging findings in radiation induced injuries depend on the normal tissue included in the irradiated volume and the radiation therapy regime including the total dose delivered, dose per fraction and treatment schedule. The intent for radiation therapy should be taken in consideration when evaluating the response on imaging, that is palliative vs curative or neoadjuvant vs adjuvant RT. Imaging findings can further be distorted by altered anatomy and sequelae following surgery within the radiation field. An awareness of common PET/CT-induced changes/injuries is essential when interpreting 18F-FDG PET/CT as well as obtaining a complete medical history, as patients are occasionally scanned for an unrelated cause to previously RT treated malignancy. In addition, secondary malignancies due to carcinogenic effects of radiation exposure in long-term cancer survivors should not be overlooked. 18F-FDG PET/CT can be very useful in response evaluation and follow-up in patients treated with RT, however, variants and pitfalls are common and it is important to remember that radiation-induced injury is often a diagnosis of exclusion.
Collapse
Affiliation(s)
- Danijela Dejanovic
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Lena Specht
- Department of Oncology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Dorota Czyzewska
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Kiil Berthelsen
- Department of Oncology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
65
|
The Potential and Emerging Role of Quantitative Imaging Biomarkers for Cancer Characterization. Cancers (Basel) 2022; 14:cancers14143349. [PMID: 35884409 PMCID: PMC9321521 DOI: 10.3390/cancers14143349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Modern, personalized therapy approaches are increasingly changing advanced cancer into a chronic disease. Compared to imaging, novel omics methodologies in molecular biology have already achieved an individual characterization of cancerous lesions. With quantitative imaging biomarkers, analyzed by radiomics or deep learning, an imaging-based assessment of tumoral biology can be brought into clinical practice. Combining these with other non-invasive methods, e.g., liquid profiling, could allow for more individual decision making regarding therapies and applications. Abstract Similar to the transformation towards personalized oncology treatment, emerging techniques for evaluating oncologic imaging are fostering a transition from traditional response assessment towards more comprehensive cancer characterization via imaging. This development can be seen as key to the achievement of truly personalized and optimized cancer diagnosis and treatment. This review gives a methodological introduction for clinicians interested in the potential of quantitative imaging biomarkers, treating of radiomics models, texture visualization, convolutional neural networks and automated segmentation, in particular. Based on an introduction to these methods, clinical evidence for the corresponding imaging biomarkers—(i) dignity and etiology assessment; (ii) tumoral heterogeneity; (iii) aggressiveness and response; and (iv) targeting for biopsy and therapy—is summarized. Further requirements for the clinical implementation of these imaging biomarkers and the synergistic potential of personalized molecular cancer diagnostics and liquid profiling are discussed.
Collapse
|
66
|
Jeffers CD, Lawhn-Heath C, Butterfield RI, Hoffman JM, Scott PJH. SNMMI Clinical Trials Network Research Series for Technologists: Clinical Research Primer- Use of Imaging Agents in Therapeutic Drug Development and Approval. J Nucl Med Technol 2022; 50:jnmt.122.264372. [PMID: 35701219 DOI: 10.2967/jnmt.122.264372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
The process of bringing a new drug to market is complex and has recently necessitated a new drug discovery paradigm for the pharmaceutical industry that is both more efficient and more economical. Key to this has been the increasing use of nuclear medicine and molecular imaging to support drug discovery efforts by answering critical questions on the pathway for development and approval of a new therapeutic drug. Some of these questions include: (i) Does the new drug reach its intended target in the body at sufficient levels to effectively treat or diagnose disease without unacceptable toxicity? (ii) How is the drug absorbed, metabolized, and excreted? (iii) What is the effective dose in humans? To conduct the appropriate imaging studies to answer such questions, pharmaceutical companies are increasingly partnering with molecular imaging departments. Nuclear medicine technologists are critical to this process as they perform scans to collect the qualitative and quantitative imaging data used to measure study endpoints. This article describes preclinical and clinical research trials and provides an overview of the different ways that radiopharmaceuticals are used to answer critical questions during therapeutic drug development.
Collapse
|
67
|
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)-Quo Vadis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103354. [PMID: 35630835 PMCID: PMC9147562 DOI: 10.3390/molecules27103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The use of immunotherapy has revolutionized the treatment regimen of certain cancer types, but response assessment has become a difficult task with conventional methods such as CT/MRT or FDG PET-CT and the classical response criteria such as RECIST or PERCIST which have been developed for chemotherapeutic treatment. Plenty of new tracers have been published to improve the assessment of treatment response and to stratify the patient population. We gathered the information on published tracers (in total, 106 individual SPECT/PET tracers were identified) and performed a descriptor-based analysis; in this way, we classify the tracers with regard to target choice, developability (probability to progress from preclinical stage into the clinic), translatability (probability to be widely applied in the 'real world'), and (assumed) diagnostic quality. In our analysis, we show that most tracers are targeting PD-L1, PD-1, CTLA-4, and CD8 receptors by using antibodies or their fragments. Another finding is that plenty of tracers possess only minor iterations regarding chelators and nuclides instead of approaching the problem in a new innovative way. Based on the data, we suggest an orthogonal approach by targeting intracellular targets with PET-activatable small molecules that are currently underrepresented.
Collapse
Affiliation(s)
- Carsten S. Kramer
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, D-65191 Wiesbaden, Germany
- Correspondence:
| | | |
Collapse
|
68
|
Yaung SJ, Woestmann C, Ju C, Ma XM, Gattam S, Zhou Y, Xi L, Pal S, Balasubramanyam A, Tikoo N, Heussel CP, Thomas M, Kriegsmann M, Meister M, Schneider MA, Herth FJ, Wehnl B, Diehn M, Alizadeh AA, Palma JF, Muley T. Early Assessment of Chemotherapy Response in Advanced Non-Small Cell Lung Cancer with Circulating Tumor DNA. Cancers (Basel) 2022; 14:cancers14102479. [PMID: 35626082 PMCID: PMC9139958 DOI: 10.3390/cancers14102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Monitoring treatment efficacy early during therapy could enable a change in treatment to improve patient outcomes. We report an early assessment of response to treatment in advanced NSCLC using a plasma-only strategy to measure changes in ctDNA levels after one cycle of chemotherapy. Plasma samples were collected from 92 patients with Stage IIIB-IV NSCLC treated with first-line chemo- or chemoradiation therapies in an observational, prospective study. Retrospective ctDNA analysis was performed using next-generation sequencing with a targeted 198-kb panel designed for lung cancer surveillance and monitoring. We assessed whether changes in ctDNA levels after one or two cycles of treatment were associated with clinical outcomes. Subjects with ≤50% decrease in ctDNA level after one cycle of chemotherapy had a lower 6-month progression-free survival rate (33% vs. 58%, HR 2.3, 95% CI 1.2 to 4.2, log-rank p = 0.009) and a lower 12-month overall survival rate (25% vs. 70%, HR 4.3, 95% CI 2.2 to 9.7, log-rank p < 0.001). Subjects with ≤50% decrease in ctDNA level after two cycles of chemotherapy also had shorter survival. Using non-invasive liquid biopsies to measure early changes in ctDNA levels in response to chemotherapy may help identify non-responders before standard-of-care imaging in advanced NSCLC.
Collapse
Affiliation(s)
- Stephanie J. Yaung
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA; (X.M.M.); (L.X.); (J.F.P.)
- Correspondence: ; Tel.: +1-925-523-8824
| | | | - Christine Ju
- Roche Molecular Systems, Inc., Pleasanton, CA 94588, USA; (C.J.); (S.G.); (Y.Z.); (S.P.); (A.B.)
| | - Xiaoju Max Ma
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA; (X.M.M.); (L.X.); (J.F.P.)
| | - Sandeep Gattam
- Roche Molecular Systems, Inc., Pleasanton, CA 94588, USA; (C.J.); (S.G.); (Y.Z.); (S.P.); (A.B.)
| | - Yiyong Zhou
- Roche Molecular Systems, Inc., Pleasanton, CA 94588, USA; (C.J.); (S.G.); (Y.Z.); (S.P.); (A.B.)
| | - Liu Xi
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA; (X.M.M.); (L.X.); (J.F.P.)
| | - Subrata Pal
- Roche Molecular Systems, Inc., Pleasanton, CA 94588, USA; (C.J.); (S.G.); (Y.Z.); (S.P.); (A.B.)
| | - Aarthi Balasubramanyam
- Roche Molecular Systems, Inc., Pleasanton, CA 94588, USA; (C.J.); (S.G.); (Y.Z.); (S.P.); (A.B.)
| | - Nalin Tikoo
- Alector, Inc., South San Francisco, CA 94080, USA;
| | - Claus Peter Heussel
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital, 69126 Heidelberg, Germany;
- Diagnostic and Interventional Radiology, University Hospital, 69120 Heidelberg, Germany
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (M.T.); (M.M.); (M.A.S.); (F.J.H.); (T.M.)
| | - Michael Thomas
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (M.T.); (M.M.); (M.A.S.); (F.J.H.); (T.M.)
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Michael Meister
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (M.T.); (M.M.); (M.A.S.); (F.J.H.); (T.M.)
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Marc A. Schneider
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (M.T.); (M.M.); (M.A.S.); (F.J.H.); (T.M.)
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Felix J. Herth
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (M.T.); (M.M.); (M.A.S.); (F.J.H.); (T.M.)
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Birgit Wehnl
- Roche Diagnostics GmbH, 82377 Penzberg, Germany;
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.A.A.)
| | - Ash A. Alizadeh
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.A.A.)
| | - John F. Palma
- Roche Sequencing Solutions, Inc., Pleasanton, CA 94588, USA; (X.M.M.); (L.X.); (J.F.P.)
| | - Thomas Muley
- Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (M.T.); (M.M.); (M.A.S.); (F.J.H.); (T.M.)
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| |
Collapse
|
69
|
Fite BZ, Wang J, Ghanouni P, Ferrara KW. A Review of Imaging Methods to Assess Ultrasound-Mediated Ablation. BME FRONTIERS 2022; 2022:9758652. [PMID: 35957844 PMCID: PMC9364780 DOI: 10.34133/2022/9758652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ultrasound ablation techniques are minimally invasive alternatives to surgical resection and have rapidly increased in use. The response of tissue to HIFU ablation differs based on the relative contributions of thermal and mechanical effects, which can be varied to achieve optimal ablation parameters for a given tissue type and location. In tumor ablation, similar to surgical resection, it is desirable to include a safety margin of ablated tissue around the entirety of the tumor. A factor in optimizing ablative techniques is minimizing the recurrence rate, which can be due to incomplete ablation of the target tissue. Further, combining focal ablation with immunotherapy is likely to be key for effective treatment of metastatic cancer, and therefore characterizing the impact of ablation on the tumor microenvironment will be important. Thus, visualization and quantification of the extent of ablation is an integral component of ablative procedures. The aim of this review article is to describe the radiological findings after ultrasound ablation across multiple imaging modalities. This review presents readers with a general overview of the current and emerging imaging methods to assess the efficacy of ultrasound ablative treatments.
Collapse
Affiliation(s)
- Brett Z. Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
70
|
Emerging Role for 7T MRI and Metabolic Imaging for Pancreatic and Liver Cancer. Metabolites 2022; 12:metabo12050409. [PMID: 35629913 PMCID: PMC9145477 DOI: 10.3390/metabo12050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in magnet technologies have led to next generation 7T magnetic resonance scanners which can fit in the footprint and price point of conventional hospital scanners (1.5−3T). It is therefore worth asking if there is a role for 7T magnetic resonance imaging and spectroscopy for the treatment of solid tumor cancers. Herein, we survey the medical literature to evaluate the unmet clinical needs for patients with pancreatic and hepatic cancer, and the potential of ultra-high field proton imaging and phosphorus spectroscopy to fulfil those needs. We draw on clinical literature, preclinical data, nuclear magnetic resonance spectroscopic data of human derived samples, and the efforts to date with 7T imaging and phosphorus spectroscopy. At 7T, the imaging capabilities approach histological resolution. The spectral and spatial resolution enhancements at high field for phospholipid spectroscopy have the potential to reduce the number of exploratory surgeries due to tumor boundaries undefined at conventional field strengths. Phosphorus metabolic imaging at 7T magnetic field strength, is already a mainstay in preclinical models for molecular phenotyping, energetic status evaluation, dosimetry, and assessing treatment response for both pancreatic and liver cancers. Metabolic imaging of primary tumors and lymph nodes may provide powerful metrics to aid staging and treatment response. As tumor tissues contain extreme levels of phospholipid metabolites compared to the background signal, even spectroscopic volumes containing less than 50% tumor can be detected and/or monitored. Phosphorus spectroscopy allows non-invasive pH measurements, indicating hypoxia, as a predictor of patients likely to recur. We conclude that 7T multiparametric approaches that include metabolic imaging with phosphorus spectroscopy have the potential to meet the unmet needs of non-invasive location-specific treatment monitoring, lymph node staging, and the reduction in unnecessary surgeries for patients undergoing resections for pancreatic cancer. There is also potential for the use of 7T phosphorous spectra for the phenotyping of tumor subtypes and even early diagnosis (<2 mL). Whether or not 7T can be used for all patients within the next decade, the technology is likely to speed up the translation of new therapeutics.
Collapse
|
71
|
Hunt S, Zandifar A, Alavi A. Molecular imaging in management of colorectal metastases by the interventional oncologist. Int J Hyperthermia 2022; 39:675-681. [DOI: 10.1080/02656736.2021.1998657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Stephen Hunt
- Penn Image-Guided Interventions Lab, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
72
|
Acosta JN, Falcone GJ, Rajpurkar P. The Need for Medical Artificial Intelligence That Incorporates Prior Images. Radiology 2022; 304:283-288. [PMID: 35438563 DOI: 10.1148/radiol.212830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of artificial intelligence (AI) has grown dramatically in the past few years in the United States and worldwide, with more than 300 AI-enabled devices approved by the U.S. Food and Drug Administration (FDA). Most of these AI-enabled applications focus on helping radiologists with detection, triage, and prioritization of tasks by using data from a single point, but clinical practice often encompasses a dynamic scenario wherein physicians make decisions on the basis of longitudinal information. Unfortunately, benchmark data sets incorporating clinical and radiologic data from several points are scarce, and, therefore, the machine learning community has not focused on developing methods and architectures suitable for these tasks. Current AI algorithms are not suited to tackle key image interpretation tasks that require comparisons to previous examinations. Focusing on the curation of data sets and algorithm development that allow for comparisons at different points will be required to advance the range of relevant tasks covered by future AI-enabled FDA-cleared devices.
Collapse
Affiliation(s)
- Julián N Acosta
- From the Department of Neurology, Yale School of Medicine, New Haven, Conn (J.N.A., G.J.F.); and Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 (P.R.)
| | - Guido J Falcone
- From the Department of Neurology, Yale School of Medicine, New Haven, Conn (J.N.A., G.J.F.); and Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 (P.R.)
| | - Pranav Rajpurkar
- From the Department of Neurology, Yale School of Medicine, New Haven, Conn (J.N.A., G.J.F.); and Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 (P.R.)
| |
Collapse
|
73
|
Viswanathan VS, Gupta A, Madabhushi A. Novel Imaging Biomarkers to Assess Oncologic Treatment-Related Changes. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35671432 DOI: 10.1200/edbk_350931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer therapeutics cause various treatment-related changes that may impact patient follow-up and disease monitoring. Although atypical responses such as pseudoprogression may be misinterpreted as treatment nonresponse, other changes, such as hyperprogressive disease seen with immunotherapy, must be recognized early for timely management. Radiation necrosis in the brain is a known response to radiotherapy and must be distinguished from local tumor recurrence. Radiotherapy can also cause adverse effects such as pneumonitis and local tissue toxicity. Systemic therapies, like chemotherapy and targeted therapies, are known to cause long-term cardiovascular effects. Thus, there is a need for robust biomarkers to identify, distinguish, and predict cancer treatment-related changes. Radiomics, which refers to the high-throughput extraction of subvisual features from radiologic images, has been widely explored for disease classification, risk stratification, and treatment-response prediction. Lately, there has been much interest in investigating the role of radiomics to assess oncologic treatment-related changes. We review the utility and various applications of radiomics in identifying and distinguishing atypical responses to treatments, as well as in predicting adverse effects. Although artificial intelligence tools show promise, several challenges-including multi-institutional clinical validation, deployment in health care settings, and artificial-intelligence bias-must be addressed for seamless clinical translation of these tools.
Collapse
Affiliation(s)
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| |
Collapse
|
74
|
Peptide Receptor Radionuclide Therapy Targeting the Somatostatin Receptor: Basic Principles, Clinical Applications and Optimization Strategies. Cancers (Basel) 2021; 14:cancers14010129. [PMID: 35008293 PMCID: PMC8749814 DOI: 10.3390/cancers14010129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Peptide receptor radionuclide therapy (PRRT) is a systemic treatment consisting of the administration of a tumor-targeting radiopharmaceutical into the circulation of a patient. The radiopharmaceutical will bind to a specific peptide receptor leading to tumor-specific binding and retention. This will subsequently cause lethal DNA damage to the tumor cell. The only target that is currently used in widespread clinical practice is the somatostatin receptor, which is overexpressed on a range of tumor cells, including neuroendocrine tumors and neural-crest derived tumors. Academia played an important role in the development of PRRT, which has led to heterogeneous literature over the last two decades, as no standard radiopharmaceutical or regimen has been available for a long time. This review focuses on the basic principles and clinical applications of PRRT, and discusses several PRRT-optimization strategies. Abstract Peptide receptor radionuclide therapy (PRRT) consists of the administration of a tumor-targeting radiopharmaceutical into the circulation of a patient. The radiopharmaceutical will bind to a specific peptide receptor leading to tumor-specific binding and retention. The only target that is currently used in clinical practice is the somatostatin receptor (SSTR), which is overexpressed on a range of tumor cells, including neuroendocrine tumors and neural-crest derived tumors. Academia played an important role in the development of PRRT, which has led to heterogeneous literature over the last two decades, as no standard radiopharmaceutical or regimen has been available for a long time. This review provides a summary of the treatment efficacy (e.g., response rates and symptom-relief), impact on patient outcome and toxicity profile of PRRT performed with different generations of SSTR-targeting radiopharmaceuticals, including the landmark randomized-controlled trial NETTER-1. In addition, multiple optimization strategies for PRRT are discussed, i.e., the dose–effect concept, dosimetry, combination therapies (i.e., tandem/duo PRRT, chemoPRRT, targeted molecular therapy, somatostatin analogues and radiosensitizers), new radiopharmaceuticals (i.e., SSTR-antagonists, Evans-blue containing vector molecules and alpha-emitters), administration route (intra-arterial versus intravenous) and response prediction via molecular testing or imaging. The evolution and continuous refinement of PRRT resulted in many lessons for the future development of radionuclide therapy aimed at other targets and tumor types.
Collapse
|
75
|
Movement Disorders in Oncology: From Clinical Features to Biomarkers. Biomedicines 2021; 10:biomedicines10010026. [PMID: 35052708 PMCID: PMC8772745 DOI: 10.3390/biomedicines10010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: the study of movement disorders associated with oncological diseases and anticancer treatments highlights the wide range of differential diagnoses that need to be considered. In this context, the role of immune-mediated conditions is increasingly recognized and relevant, as they represent treatable disorders. Methods: we reappraise the phenomenology, pathophysiology, diagnostic testing, and treatment of movement disorders observed in the context of brain tumors, paraneoplastic conditions, and cancer immunotherapy, such as immune-checkpoint inhibitors (ICIs). Results: movement disorders secondary to brain tumors are rare and may manifest with both hyper-/hypokinetic conditions. Paraneoplastic movement disorders are caused by antineuronal antibodies targeting intracellular or neuronal surface antigens, with variable prognosis and response to treatment. ICIs promote antitumor response by the inhibition of the immune checkpoints. They are effective treatments for several malignancies, but they may cause movement disorders through an unchecked immune response. Conclusions: movement disorders due to focal neoplastic brain lesions are rare but should not be missed. Paraneoplastic movement disorders are even rarer, and their clinical-laboratory findings require focused expertise. In addition to their desired effects in cancer treatment, ICIs can induce specific neurological adverse events, sometimes manifesting with movement disorders, which often require a case-by-case, multidisciplinary, approach.
Collapse
|