51
|
Saha S, Roy P, Corbitt C, Kakar SS. Application of Stem Cell Therapy for Infertility. Cells 2021; 10:1613. [PMID: 34203240 PMCID: PMC8303590 DOI: 10.3390/cells10071613] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infertility creates an immense impact on the psychosocial wellbeing of affected couples, leading to poor quality of life. Infertility is now considered to be a global health issue affecting approximately 15% of couples worldwide. It may arise from factors related to the male (30%), including varicocele, undescended testes, testicular cancer, and azoospermia; the female (30%), including premature ovarian failure and uterine disorders; or both partners (30%). With the recent advancement in assisted reproduction technology (ART), many affected couples (80%) could find a solution. However, a substantial number of couples cannot conceive even after ART. Stem cells are now increasingly being investigated as promising alternative therapeutics in translational research of regenerative medicine. Tremendous headway has been made to understand the biology and function of stem cells. Considering the minimum ethical concern and easily available abundant resources, extensive research is being conducted on induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSC) for their potential application in reproductive medicine, especially in cases of infertility resulting from azoospermia and premature ovarian insufficiency. However, most of these investigations have been carried out in animal models. Evolutionary divergence observed in pluripotency among animals and humans requires caution when extrapolating the data obtained from murine models to safely apply them to clinical applications in humans. Hence, more clinical trials based on larger populations need to be carried out to investigate the relevance of stem cell therapy, including its safety and efficacy, in translational infertility medicine.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, India;
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, Louisville, KY 40292, USA;
| | - Sham S. Kakar
- Department of Physiology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
52
|
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr Stem Cell Res Ther 2021; 15:473-481. [PMID: 30868961 DOI: 10.2174/1574888x14666190314123006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
53
|
Liu H, Jiang C, La B, Cao M, Ning S, Zhou J, Yan Z, Li C, Cui Y, Ma X, Wang M, Chen L, Yu Y, Chen F, Zhang Y, Wu H, Liu J, Qin L. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res Ther 2021; 12:317. [PMID: 34078462 PMCID: PMC8173966 DOI: 10.1186/s13287-021-02382-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background Age-related diminished ovarian reserve (AR-DOR) reduced the quality of oocytes, resulting in decreased female fertility. Aging is tightly related to abnormal distribution and function of mitochondria, while mitophagy is a major process to maintain normal quality and quantity of mitochondria in cells, especially in oocytes which containing a large number of mitochondria to meet the demand of energy production during oocyte maturation and subsequent embryonic development. Ampk/FoxO3a signaling is crucial in the regulation of mitophagy. It is reported mesenchymal stem cells (MSCs) can improve ovarian function. Here we aim to explore if human amnion-derived mesenchymal stem cells (hAMSCs) are effective in improving ovarian function in AR-DOR mice and whether Ampk/FoxO3a signaling is involved. Methods The AR-DOR model mice were established by 32-week-old mice with 3–8 litters, significantly low serum sex hormone levels and follicle counts. The old mice were divided into 5 treatment groups: normal saline (NS, control), 1% human serum albumin (HSA, resolver), low dose (LD, 5.0 × 106cells/kg), middle dose (MD, 7.5 × 106cells/kg), and high dose (HD, 10.0 × 106cells/kg). The prepared hAMSCs were injected through tail vein. Serum sex hormone level, follicle counts, fertilization rate, gestation rate, little size, apoptosis of granulosa and stromal cells, expression level of Sod2, Ampk, and ratio of phosphorylated FoxO3a to total FoxO3a in ovaries were examined. Results Our results show that after hAMSC transplantation, the ovarian function in AR-DOR mice was significantly improved, meanwhile the apoptosis of granulosa and stromal cells in the ovaries was significantly repressed, the expression level of Ampk and the ratio of phosphorylated FoxO3a to total FoxO3a both were significantly increased, meanwhile increased Sod2 expression was also observed. Conclusion Our results demonstrate hAMSC transplantation via tail-injection can improve ovarian function of AR-DOR mice through Ampk/FoxO3a signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02382-x.
Collapse
Affiliation(s)
- Hanwen Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Boya La
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chuyu Li
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meilian Wang
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Li Chen
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Wu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
54
|
Ye M, Yu L, She Y, Wang S, Wang M, Zhao Q, Gu C, Bian L, Wen N, Gong J, Li L, Meng Y. Healing effects of a protein scaffold loaded with adipose-derived mesenchymal stem cells on radiation-induced vaginal injury in rats. J Int Med Res 2021; 48:300060520958826. [PMID: 33115306 PMCID: PMC7607296 DOI: 10.1177/0300060520958826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives Cervical cancer, the most common female cancer after breast cancer, is
typically treated using radiotherapy. However, pelvic radiotherapy can cause
irreversible damage to the vagina, seriously affecting patients’ quality of
life. In this study, protein scaffolds loaded with rat adipose-derived
mesenchymal stem cells (ADSCs) were implanted into irradiated tissue to
assess their healing potential. Methods We established a rat model of radiation-induced vaginal injury. Complexes
(consisting of protein scaffolds loaded with ADSCs) were implanted into
injury sites. Histological analysis were used to assess regeneration of the
vaginal epithelium. RNA sequencing was used to study the therapeutic
mechanism of the complexes. Results The complexes promoted vaginal epithelial cell regeneration, vaginal tissue
repair and improved vaginal stenosis and contracture. Compared with rats
transplanted with ADSCs, rats transplanted with complexes achieved better
therapeutic effects. Conclusions Protein scaffold-ADSC complexes had a beneficial therapeutic effect on
radiation-induced vaginal injury in rats and may serve as the basis of a
novel therapeutic approach for radiation dermatitis.
Collapse
Affiliation(s)
- Mingxia Ye
- Medical School of Chinese PLA, Department of Obstetrics and Gynecology The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujia She
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shufang Wang
- Blood Transfusion Department, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Medical School of Chinese PLA, Department of Obstetrics and Gynecology The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qingdong Zhao
- Medical School of Chinese PLA, Department of Obstetrics and Gynecology The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenglei Gu
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lihua Bian
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Na Wen
- Medical School of Chinese PLA, Department of Obstetrics and Gynecology The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Gong
- Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lian Li
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
55
|
Human Mesenchymal Stem Cell Therapy and Other Novel Treatment Approaches for Premature Ovarian Insufficiency. Reprod Sci 2021; 28:1688-1696. [PMID: 33956339 PMCID: PMC8144118 DOI: 10.1007/s43032-021-00528-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Premature ovarian insufficiency (POI) is a condition characterized by amenorrhea, hypergonadotropic hypogonadism, estrogen deficiency, and reduced follicle counts leading to infertility under the age of 40. POI occurs in approximately 1-3% of women in the general population. Evaluation is warranted when the diagnosis of POI is made to rule out underlying etiologies, which could be multifactorial. This review serves to cover the novel treatment approaches reported in the literature.
Collapse
|
56
|
Is It Possible to Treat Infertility with Stem Cells? Reprod Sci 2021; 28:1733-1745. [PMID: 33834375 DOI: 10.1007/s43032-021-00566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Infertility is a major health problem, and despite improved treatments over the years, there are still some conditions that cannot be treated successfully using a conventional approach. Therefore, new options are being considered and one of them is cell therapy using stem cells. Stem cell treatments for infertility can be divided into two major groups, the first one being direct transplantation of stem cells or their paracrine factors into reproductive organs and the second one being in vitro differentiation into germ cells or gametes. In animal models, all of these approaches were able to improve the reproductive potential of tested animals, although in humans there is still too little evidence to suggest successful use. The reasons for lack of evidence are unavailability of proper material, the complexity of explored biological processes, and ethical considerations. Despite all of the above-mentioned hurdles, researchers were able to show that in women, it seems to be possible to improve some conditions, but in men, no similar clinically important improvement was achieved. To conclude, the data presented in this review suggest that the treatment of infertility with stem cells seems plausible, because some types of treatments have already been tested in humans, achieving live births, while others show great potential only in animal studies, for now.
Collapse
|
57
|
Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency. Stem Cell Res Ther 2021; 12:178. [PMID: 33712079 PMCID: PMC7953711 DOI: 10.1186/s13287-021-02255-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is one of the major causes of infertility. We previously demonstrated that transplantation of menstrual blood-derived stromal cells (MenSCs) effectively improved ovarian function in a murine model of POI. Recent studies indicated that mesenchymal stem cell-derived exosomes were important components in tissue repair. In this study, we investigated the therapeutic effects of MenSCs-derived exosomes (MenSCs-Exos) in a rat model of POI and its mechanism in restoring ovulation. Methods Ovaries of 4.5-day-old Sprague Dawley rats (SD rats) were cultured in vitro to evaluate the effects of MenSCs-Exos exposure on early follicle development. Furthermore, POI in rats was induced by intraperitoneal administration of 4-vinylcyclohexene diepoxide (VCD). Forty-eight POI rats were randomly assigned to four groups, each receiving a different treatment: PBS, MenSCs, MenSCs-Exos, and Exo-free culture supernatant of MenSCs. Estrous cyclicity, ovarian morphology, follicle dynamics, serum hormones, pregnancy outcomes, and molecular changes were investigated. Results Exposure to MenSCs-Exos promoted the proliferation of granulosa cells in primordial and primary follicles in vitro and increased the expression of early follicle markers Deleted In Azoospermia Like (DAZL) and Forkhead Box L2 (FOXL2) while inhibiting follicle apoptosis. In vivo, MenSCs-Exos transplantation effectively promoted follicle development in the rat model of POI and restored the estrous cyclicity and serum sex hormone levels, followed by improving the live birth outcome. In addition, transplantation of MenSCs-Exos regulated the composition of the ovarian extracellular matrix and accelerated the recruitment of dormant follicles in the ovarian cortex and increased proliferation of granulosa cells in these follicles. Conclusion MenSCs-Exos markedly promoted follicle development in vitro and in vivo and restored fertility in POI rats, suggesting a restorative effect on ovarian functions. The therapeutic effect of MenSCs-Exos transplantation was sustainable, consistent with that of MenSCs transplantation. Our results suggested that MenSCs-Exos transplantation may be a promising cell-free bioresource in the treatment of POI.
Collapse
|
58
|
Wang MY, Wang YX, Li-Ling J, Xie HQ. Adult Stem Cell Therapy for Premature Ovarian Failure: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:63-78. [PMID: 33427039 DOI: 10.1089/ten.teb.2020.0205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Premature ovarian failure (POF) is a devastating condition for women of childbearing age with serious health consequences, including distress, infertility, osteoporosis, autoimmune disorders, ischemic heart disease, and increased mortality. In addition to the mainstay estrogen therapy, stem cell therapy has been tested as the result of rapid progress in cell biology and reprogramming research. We hereby provide a review for the latest research and issues related with stem cell-based therapy for POF, and provide a commentary on various methods for enhancing its effect. Large amount of animal studies have demonstrated an extensive benefit of stem cells for failed ovarian recovering. As shown by such studies, stem cell therapy can result in recovery of hormonal levels, follicular activation, ovarian angiogenesis, and functional restoration. Meanwhile, a study of molecular pathways revealed that the function of stem cells mainly depends on their paracrine actions, which can produce multiple factors for the promotion of ovarian angiogenesis and regulation of cellular functions. Nevertheless, studies using disease models also revealed certain drawbacks. Clinical trials have shown that menstrual cycle and even pregnancy may occur in POF patients following transplantation of stem cells, although the limitations, including inadequate number of cases and space for the improvement of transplantation methodology. Only with its safety and effect get substantial improvement through laboratory experiments and clinical trials, can stem cell therapy really bring benefits to more patients. Additionally, effective pretreatment and appropriate transplantation methods for stem cells are also required. Taken together, stem cell therapy has shown a great potential for the reversal of POF and is stepping from bench to bedside. Impact statement Premature ovarian failure (POF) is a devastating condition with serious clinical consequences. The purpose of this review was to summarize the current status of stem cell therapy for POF. Considering the diversity of cell types and functions, a rigorous review is required for the guidance for further research into this field. Meanwhile, the challenges and prospect for clinical application of stem cell treatment, methodological improvements, and innovations are addressed.
Collapse
Affiliation(s)
- Ming-Yao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi-Xuan Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
59
|
Tang D, Feng X, Ling L, Zhang W, Luo Y, Wang Y, Xiong Z. Experimental study for the establishment of a chemotherapy-induced ovarian insufficiency model in rats by using cyclophosphamide combined with busulfan. Regul Toxicol Pharmacol 2021; 122:104915. [PMID: 33705838 DOI: 10.1016/j.yrtph.2021.104915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
With an improvement in the survival rate of cancer patients, chemotherapy-induced premature ovarian insufficiency (POI) is increasingly affecting the quality of life of female patients. Currently, there are many relevant studies using mice as an animal model. However, a large coefficient of variation for weight in mice is not appropriate for endocrine-related studies, compared with rats; therefore, it is necessary to identify an appropriate experimental model in rats. In this study, cyclophosphamide combined with busulfan was used to establish an animal model. We compared several common modeling methods using chemotherapeutic drugs, cisplatin, cyclophosphamide, and 4-vinylcyclohexene diepoxide (VCD), and we found that the combination of cyclophosphamide and busulfan was more effective in establishing a POI model in rats with few side effects by analyzing general physical conditions, pathological tissue sections of heart, liver, lung, spleen, kidney, uterus, and ovary, serum hormone levels, and follicle counts; thus, providing a more reliable model basis for subsequent studies.
Collapse
Affiliation(s)
- Dongyuan Tang
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Xiushan Feng
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Li Ling
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Wenqian Zhang
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Yanjing Luo
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Yaping Wang
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China
| | - Zhengai Xiong
- Department of Gynecology and Obstetics, The Second Affiliated Hospital, Chongqing MedicalUniversity, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
60
|
Cho J, Kim TH, Seok J, Jun JH, Park H, Kweon M, Lim JY, Kim GJ. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway. J Transl Med 2021; 101:304-317. [PMID: 33303971 PMCID: PMC7892345 DOI: 10.1038/s41374-020-00513-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays an important role in damaged organ or tissue and cell regeneration and ovarian development and function. Primary ovarian insufficiency (POI) is a prevalent pathology in women under 40. Conventional treatment for POI involves hormone therapy. However, due to its side effects, an alternative approach is desirable. Human mesenchymal stem cells (MSCs) from various sources restore ovarian function; however, they have many limitations as stem cell sources. Therefore, it is desirable to study the efficacy of placenta-derived MSCs (PD-MSCs), which possess many advantages over other MSCs, in a rat model of ovarian dysfunction. Here, we investigated the restorative effect of PD-MSCs on injured ovaries in ovariectomized (OVX) rats and the ability of intravenous transplantation (Tx) of PD-MSCs (5 × 105) to enhance ovarian vasculature and follicular development. ELISA analysis of serum revealed that compared to the non-transplantation (NTx) group, the Tx group showed significantly increased levels of anti-Müllerian hormone, follicle stimulating hormone, and estradiol (E2) (*P < 0.05). In addition, histological analysis showed more mature follicles and less atresia and restoration of expanded blood vessels in the ovaries of the OVX PD-MSC Tx group than those of the NTx group (*P < 0.05). Furthermore, folliculogenesis-related gene expression was also significantly increased in the PD-MSC Tx group (*P < 0.05). Vascular endothelial growth factor (VEGF) and VEGF receptor 2 expressions were increased in the ovaries of the OVX PD-MSC Tx group compared to the NTx group through PI3K/AKT/mTOR and GSK3β/β-catenin pathway activation. Interestingly, ex vivo cocultivation of damaged ovaries and PD-MSCs or treatment with recombinant VEGF (50 ng/ml) increased folliculogenic factors and VEGF signaling pathways. Notably, compared to recombinant VEGF, PD-MSCs significantly increased folliculogenesis and angiogenesis (*P < 0.05). These findings suggest that VEGF secreted by PD-MSCs promotes follicular development and ovarian function after OVX through vascular remodeling. Therefore, these results provide fundamental data for understanding the therapeutic effects and mechanism of stem cell therapy based on PD-MSCs and provide a theoretical foundation for their application for obstetrical and gynecological diseases, including infertility and menopause.
Collapse
Affiliation(s)
- Jinki Cho
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine Hospital, Bucheon, Gyunggi-do, 14584, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Minyeoung Kweon
- College of Life Science, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Ja-Yun Lim
- Department of Health and Environmental Science, Korea University, Seoul, 02481, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
61
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
62
|
Mashayekhi M, Mirzadeh E, Chekini Z, Ahmadi F, Eftekhari-Yazdi P, Vesali S, Madani T, Aghdami N. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res 2021; 14:5. [PMID: 33407794 PMCID: PMC7786909 DOI: 10.1186/s13048-020-00743-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Premature ovarian failure (POF) is characterized by the loss of ovarian activity before the age of 40 years. Stem cell therapy has the capability to create a regenerative microenvironment and is a proposed treatment for POF-related infertility due to the presence of renewal folliculogenesis and germ cells in the adult ovaries. In this study, we assessed the safety, feasibility, efficacy and dose adjustment of autologous adipose-derived stromal cells (ADSCs) and their ability to improve ovarian function in POF patients. Methods This study was a non-randomized clinical trial, phase I. Nine women with a definitive diagnosis of POF were divided into three groups (n = 3 per group) that received either 5 × 106, 10 × 106, or 15 × 106 autologous ADSCs suspension transplanted in the one ovary. Participants were followed-up at 24 h after the transplantation, and at 1 and 2 weeks, and 1, 2, 3, 6, and 12 months after the transplantation. The primary objective was to evaluate the safety of ADSCs transplantation. Secondary objectives included the effects of ADSCs transplantation on the resumption of menstruation, hormones level (Follicle-stimulating hormone (FSH) and anti-Müllerian hormone), ovarian function (Antral follicle count and ovary volume by ultrasonography evaluation) as well as dose escalation. Results Participants had not shown any early-onset possible side effects and secondary complications during follow-up. The menstruation resumption was observed in four patients which established for several months. In the 15 × 106 group, two POF patients had a return of menstruation second months after the intervention. Two other POF patients in 5 × 106 and 10 × 106 cell groups reported menstruation resumption at 1 month after the intervention. We observed decreased serum FSH levels of less than 25 IU/l in four patients. In two patients in 5 × 106 and 10 × 106 cell groups, serum FSH showed an inconsistent decline during a 1 year follow up after ADSCs transplantation. The ovarian volume, AMH, and AFC were variable during the follow-up and no significant differences between cell groups (p > 0.05). Conclusions We showed the intra-ovarian embedding of ADSCs is safe and feasible and is associated with an inconsistent decline in serum FSH. This should be further investigated with a large RCT. Trial registration NCT02603744, Registered 13 November 2015 - Retrospectively registered, http://www.Clinicaltrials.gov
Collapse
Affiliation(s)
- M Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - E Mirzadeh
- Department of Regenerative Medicine, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P. O Box: 16635-148, Shaghayegh Alley, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - Z Chekini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - F Ahmadi
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - P Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - S Vesali
- Department of Diabetes, Obesity and Metabolism, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - T Madani
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran.
| | - N Aghdami
- Department of Regenerative Medicine, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P. O Box: 16635-148, Shaghayegh Alley, Banihashem Sq., Resalat Highway, Tehran, Iran.
| |
Collapse
|
63
|
Human umbilical cord mesenchymal stem cells improve morphometric and histopathologic changes of cyclophosphamide-injured ovarian follicles in mouse model of premature ovarian failure. Acta Histochem 2021; 123:151658. [PMID: 33249312 DOI: 10.1016/j.acthis.2020.151658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mesenchymal stem cells have restorative effects on premature ovarian failure (POF). The aim of this study was to investigate the effects of human umbilical cord vein MSCs (hUCV-MSCs) on follicular quantitative parameters and histological changes of ovaries in the cyclophosphamide (CTX)-induced POF in mice. MATERIALS AND METHODS C57BL/6 mice were divided into three groups (10 mice in each group). In the control group, phosphate-buffered saline (PBS) was injected via tail vein following 15 days injection of PBS intraperitoneally (IP). In the CTX group, CTX was administered IP for 15 days and then PBS was injected via tail vein. In the CTX + hUCV-MSCs group, following CTX administration, single dose of the 1 × 106 of hUCV-MSCs were injected into tail vein. H&E, trichrome and PAS staining as well as TUNEL assay were performed on the ovaries tissue sections. The number of follicles, follicular quantitative parameters and apoptotic index were obtained. The serum levels of estradiol and FSH were measured in the mice. RESULTS In the CTX + hUCV-MSCs group, degenerative changes were decreased and follicular quantitative parameters increased in the ovarian follicles compared to the CTX group. In this group number of follicles was increased, apoptotic index was decreased, estradiol and FSH levels were decreased and increased, respectively, all of them improved compared to the CTX group. The mean percentage areas of collagen fibers content were decreased compared to the CTX group. CONCLUSION Results showed that, hUCV-MSCs administration increases follicular quantitative parameters and improve degenerative changes in the follicles following CTX injury.
Collapse
|
64
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
65
|
Dolmans MM, Donnez J, Cacciottola L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol Med 2020; 27:777-791. [PMID: 33309205 DOI: 10.1016/j.molmed.2020.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer treatments are increasingly effective, but can result in iatrogenic premature ovarian insufficiency. Ovarian tissue cryopreservation is the only option available to preserve fertility in prepubertal girls and young women who require immediate chemotherapy. Ovarian tissue transplantation has been shown to restore hormonal cycles and fertility, but a large proportion of the follicle reserve is lost as a consequence of exposure to hypoxia. Another crucial concern is the risk of reimplanting malignant cells together with the grafted tissue. In this review, the authors advance some challenging propositions, from prevention of chemotherapy-related gonadotoxicity to ovarian tissue cryopreservation and transplantation, including the artificial ovary approach.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques universitaires St-Luc, Brussels, Belgium; Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Jacques Donnez
- Prof. Em. Catholic University of Louvain, Brussels, Belgium; Société de Recherche pour l'Infertilité (SRI), Brussels, Belgium
| | - Luciana Cacciottola
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
66
|
Similar Repair Effects of Human Placenta, Bone Marrow Mesenchymal Stem Cells, and Their Exosomes for Damaged SVOG Ovarian Granulosa Cells. Stem Cells Int 2020; 2020:8861557. [PMID: 33376492 PMCID: PMC7738794 DOI: 10.1155/2020/8861557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background This study is aimed at investigating the repairing effect of mesenchymal stem cells and their exosomes from different sources on ovarian granulosa cells damaged by chemotherapy drugs—phosphoramide mustard (PM). Methods In this study, we choose bone marrow mesenchymal stem cells (BMSCs) and human placental mesenchymal stem cells (HPMSCs) for research. Then, they were cocultured with human ovarian granulosa cells (SVOG) injured by phosphoramide mustard (PM), respectively. β-Galactosidase staining, flow cytometry, and Western blot were used to detect the changes in the senescence and apoptosis of SVOG cells before and after their coculture with the above two types of MSCs. Subsequently, exosomes from these two types of MSCs were extracted and added to the culture medium of SVOG cells after PM injury to test whether these two types of exosomes played a role similar to that of MSCs in repairing damaged SVOG cells. Results PM treatment-induced apoptotic SVOG cells were significantly decreased after HPMSCs and BMSCs as compared with control group. After coculturing with these two types of MSCs, PM-treated SVOG cells showed significantly reduced senescence and apoptosis proportions as well as cleaved-Caspase 3 expression, and HPMSCs played a slightly stronger role than BMSCs in repairing SVOG cells in terms of the above three indicators. In addition, the ratios of senescent and apoptotic SVOG cells were also significantly reduced by the two types of exosomes, which played a role similar to that of MSCs in repairing cell damages. Conclusions The results indicated that BMSCs, HPMSCs, and their exosomes all exerted a certain repair effect on SVOG cells damaged by PM, and consistent repair effect was observed between exosomes and MSCs. The repair effect of exosomes secreted from BMSCs and HPMSCs on the SVOG cells was studied for the first time, and the results fully demonstrated that exosomes are the key carriers for MSCs to play their role.
Collapse
|
67
|
Zhao Y, Ma J, Yi P, Wu J, Zhao F, Tu W, Liu W, Li T, Deng Y, Hao J, Wang H, Yan L. Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Res Ther 2020; 11:466. [PMID: 33148334 PMCID: PMC7641864 DOI: 10.1186/s13287-020-01972-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Premature ovarian insufficiency (POI) is an ovarian dysfunction that seriously affects a woman’s physiological health and reproduction. Mesenchymal stem cell (MSC) transplantation offers a promising treatment option for ovarian restoration in rodent POI models. However, the efficacy and mechanism of it remain unclear. Methods POI mice model was generated by cyclophosphamide and busulfan, followed with the treatment of tail-vein injection of the human umbilical cord mesenchymal stem cells (hUCMSCs). Maternal physiological changes and offspring behavior were detected. To reveal the pathogenesis and therapeutic mechanisms of POI, we first compared the metabolite profiles of healthy and POI ovarian tissues using untargeted metabolomics analyses. After stem cell therapy, we then collected the ovaries from control, POI, and hUCMSC-treated POI groups for lipid metabolomics and pseudotargeted metabolomics analysis. Results Our results revealed remarkable changes of multiple metabolites, especially lipids, in ovarian tissues after POI generation. Following the transplantation of clinical-grade hUCMSCs, POI mice exhibited significant improvements in body weight, sex hormone levels, estrous cycles, and reproductive capacity. Lipid metabolomics and pseudotargeted metabolomics analyses for the ovaries showed that the metabolite levels in the POI group, mainly lipids, glycerophospholipids, steroids, and amino acids changed significantly compared with the controls’, and most of them returned to near-healthy levels after receiving hUCMSC treatment. Meanwhile, we also observed an increase of monosaccharide levels in the ovaries from POI mice and a decrease after stem cell treatment. Conclusions hUCMSCs restore ovarian function through activating the PI3K pathway by promoting the level of free amino acids, consequently improving lipid metabolism and reducing the concentration of monosaccharides. These findings provide potential targets for the clinical diagnosis and treatment of POI.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiye Yi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Wan Tu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Deng
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
68
|
Esfandyari S, Chugh RM, Park HS, Hobeika E, Ulin M, Al-Hendy A. Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility. Cells 2020; 9:E2253. [PMID: 33050021 PMCID: PMC7599919 DOI: 10.3390/cells9102253] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022] Open
Abstract
Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy, with several advantages over other cell sources, including greater abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility. We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency, and to improve reproductive health for a significant number of women worldwide.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Elie Hobeika
- Fertility Centers of Illinois, Glenview, IL 60026, USA;
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
- Department of Obstetrics and Gynecology, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
69
|
Treatment potential of bone marrow-derived stem cells in women with diminished ovarian reserves and premature ovarian failure. Curr Opin Obstet Gynecol 2020; 31:156-162. [PMID: 30855290 DOI: 10.1097/gco.0000000000000531] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We review the techniques recently tested in both animal models and humans to provide a state-of-the-art on adult stem cell ovarian transplant to achieve ovarian rejuvenation in patients with diminished ovarian reserves. RECENT FINDINGS As the firsts reports of spontaneous pregnancies achieved after bone marrow transplantation in oncologic women with primary ovarian insufficiency, increasing evidence supports the regenerative effects of stem cell-based therapies in the ovarian niche. Adult stem cells from several origins promote follicular development, increase ovarian local vascularization, increase follicle and stromal cell proliferation and reduce cell apoptosis and follicular atresia, although they do not modify embryo quality. Therefore, residual quiescent follicles of aged or damaged ovaries might produce competent oocytes in an adequate ovarian environment. Nevertheless, further research is needed to properly evaluate underlying mechanisms, identify best cell sources and design less invasive infusion techniques. SUMMARY Stem cells may be a relevant therapeutic alternative for ovary regeneration and follicular development in patients with impaired ovaries, such as poor ovarian responders or women diagnosed with primary ovarian insufficiency.
Collapse
|
70
|
Bahrehbar K, Rezazadeh Valojerdi M, Esfandiari F, Fathi R, Hassani SN, Baharvand H. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure. World J Stem Cells 2020; 12:857-878. [PMID: 32952863 PMCID: PMC7477659 DOI: 10.4252/wjsc.v12.i8.857] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/01/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. According to previous reports, various tissue-specific stem cells can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Human embryonic stem cells (ES) provide an alternative source for mesenchymal stem cells (MSCs) because of their similarities in phenotype and immunomodulatory and anti-inflammatory characteristics. Embryonic stem cell-derived mesenchymal stem cells (ES-MSCs) are attractive candidates for regenerative medicine because of their high proliferation and lack of barriers for harvesting tissue-specific MSCs. However, possible therapeutic effects and underlying mechanisms of transplanted ES-MSCs on cyclophosphamide and busulfan-induced mouse ovarian damage have not been evaluated. AIM To evaluate ES-MSCs vs bone marrow-derived mesenchymal stem cells (BM-MSCs) in restoring ovarian function in a mouse model of chemotherapy-induced premature ovarian failure. METHODS Female mice received intraperitoneal injections of different doses of cyclophosphamide and busulfan to induce POF. Either human ES-MSCs or BM-MSCs were transplanted into these mice. Ten days after the mice were injected with cyclophosphamide and busulfan and 4 wk after transplantation of the ES-MSCs and/or BM-MSCs, we evaluated body weight, estrous cyclicity, follicle-stimulating hormone and estradiol hormone concentrations and follicle count were used to evaluate the POF model and cell transplantation. Moreover, terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling, real-time PCR, Western blot analysis and immunohistochemistry and mating was used to evaluate cell transplantation. Enzyme-linked immunosorbent assay was used to analyze vascular endothelial growth factor, insulin-like growth factor 2 and hepatocyte growth factor levels in ES-MSC condition medium in order to investigate the mechanisms that underlie their function. RESULTS The human ES-MSCs significantly restored hormone secretion, survival rate and reproductive function in POF mice, which was similar to the results obtained with BM-MSCs. Gene expression analysis and the terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling assay results indicated that the ES-MSCs and/or BM-MSCs reduced apoptosis in the follicles. Notably, the transplanted mice generated new offspring. The results of different analyses showed increases in antiapoptotic and trophic proteins and genes. CONCLUSION These results suggested that transplantation of human ES-MSCs were similar to BM-MSCs in that they could restore the structure of the injured ovarian tissue and its function in chemotherapy-induced damaged POF mice and rescue fertility. The possible mechanisms of human ES-MSC were related to promotion of follicular development, ovarian secretion, fertility via a paracrine effect and ovarian cell survival.
Collapse
Affiliation(s)
- Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Tehran 1665659911, Iran
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran 1665659911, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Tehran 1665659911, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 1665659911, Iran.
| |
Collapse
|
71
|
Noory P, Navid S, Zanganeh BM, Talebi A, Borhani-Haghighi M, Gholami K, Manshadi MD, Abbasi M. Human Menstrual Blood Stem Cell-Derived Granulosa Cells Participate in Ovarian Follicle Formation in a Rat Model of Premature Ovarian Failure In Vivo. Cell Reprogram 2020; 21:249-259. [PMID: 31596622 DOI: 10.1089/cell.2019.0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently reported the application of human menstrual blood stem cells' (HuMenSCs) transplantation as a treatment modality in a rat model of premature ovarian failure (POF). We continued to investigate further in this respect. Female rats were injected intraperitoneally with 36 mg/kg busulfan. HuMenSCs were obtained, grown, and analyzed for immunophenotypic features at passage three. The cells were labeled with CM-Dil and infused into the rats. There were four groups: normal, negative control, treatment, and Sham. One month after treatment, the ovaries were collected and weighed. Histological sections were prepared from the ovary and HuMenSCs were tracking. Subsequently, we examined the changes of expression of Bax and B cell lymphoma 2 (Bcl2) genes by real-time polymerase chain reaction assay. One month after HuMenSCs transplantation, these cells were located in the ovarian interstitium and granulosa cells (GCs). The number of TUNEL-positive cells significantly decreased in the treatment group. Also the expression level of Bax genes, unlike Bcl2 gene, significantly decreased compared with negative and sham groups. In our study, HuMenSCs were tracked in ovarian tissues within 2 months after transplantation, and they differentiated into GCs. Therefore, the use of these cells can be a practical and low-cost method for the treatment of POF patients.
Collapse
Affiliation(s)
- Parastoo Noory
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadan Navid
- Department of Anatomy, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Bagher Minaee Zanganeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Clinical Research Development Unit, Bahar Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Dehghan Manshadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev Rep 2020; 15:356-373. [PMID: 30937640 DOI: 10.1007/s12015-019-09886-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.
Collapse
|
73
|
Zhang Y, Ouyang X, You S, Zou H, Shao X, Zhang G, Zhang C, Hu L. Effect of human amniotic epithelial cells on ovarian function, fertility and ovarian reserve in primary ovarian insufficiency rats and analysis of underlying mechanisms by mRNA sequencing. Am J Transl Res 2020; 12:3234-3254. [PMID: 32774697 PMCID: PMC7407690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Human amniotic epithelial cells (hAECs) show similar features to stem cells and have low immunogenicity. This study aims to investigate the therapeutic effect of hAEC transplantation on cyclophosphamide-induced primary ovarian insufficiency (POI) rats and evaluate the underlying mechanisms by mRNA sequencing of ovarian samples. Notably, hAECs mainly located in the interstitial area of the ovaries rather than follicles. hAEC transplantation led to a slight increase in body and ovary weight, normalized irregular estrous cycles, decreased serum follicle stimulating hormone (FSH) and increased anti-Mullerian hormone (AMH) level and restored follicle pools in POI rats. Ovarian expression of AMH, follicle stimulating hormone receptor (FSHR) and klotho in POI rats was also significantly upregulated following hAEC transplantation. Fetus number was higher in the hAEC transplantation group than the POI group. The mRNA sequencing results showed that hAEC transplantation led to the upregulation of several angiogenesis and inflammation molecules including interferon regulatory factor 7 (IRF7), Mx dynamin-like GTPase 1 (Mx1), vascular endothelial growth factor receptor (VEGFR)1 and VEGFR2. Moreover, hAEC therapy had an effect on ribosomes, protein digestion, protein absorption, neuroactive ligand-receptor interaction, cAMP signaling pathway and steroid biosynthesis pathways. The expression of several steroid biosynthesis proteins was significantly upregulated as measured by quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemical staining and Western blot analysis. In summary, hAECs can significantly restore ovarian function, and improve both ovarian reserve and fertility. This may be due to the paracrine effect of hAECs in regulating steroid biosynthesis, modulating follicle development from initiation to ovulation, promoting angiogenesis and reducing inflammation.
Collapse
Affiliation(s)
- Yulin Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Xiaolan Ouyang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Shuang You
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Heng Zou
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
- Reproduction and Stem Cell Therapy Research Center of ChongqingChina
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co., Ltd.Shanghai 200333, China
| | - Guanghui Zhang
- Chongqing Engineering Technology Research Center of Stem Cell and Neural RegenerationChongqing, China
- Chongqing Guolian Stem Cell Technology Co., Ltd.Chongqing, China
| | - Chanyu Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
- Reproduction and Stem Cell Therapy Research Center of ChongqingChina
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| | - Lina Hu
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
- Reproduction and Stem Cell Therapy Research Center of ChongqingChina
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| |
Collapse
|
74
|
Restoration of estrous cycles by co-transplantation of mouse ovarian tissue with MSCs. Cell Tissue Res 2020; 381:509-525. [PMID: 32424509 DOI: 10.1007/s00441-020-03204-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
This study investigates the effect of bone marrow (BM-MSCs) and visceral peritoneum (VP-MSCs)-derived mesenchymal stem cells on the transplanted ovary. VP-MSCs and BM-MSCs were obtained from green fluorescent protein-expressing mice (GFP+). Six- to eight-week-old female NMRI mice were divided into four experimental groups, autograft ovarian tissue fragments (AO), autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel (AO-H), autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel containing BM-MSCs (AO-HB) and autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel containing VP-MSCs (AO-HP). Intact ovary (IO) was the control group. The estrous cycles resumption time was monitored and at the third estrous cycle, the blood samples and grafted ovaries were evaluated using hormonal, histological and gene expression analysis. Onset of estrous cycles, especially at the second cycle, was earlier in AO-HB and AO-HP groups than in the AO-H group (P < 0.05). Moreover, E2 and FSH levels in AO-HB and AO-HP groups were returned to those of the intact group. However, folliculogenesis was still retarded as compared with the IO group. The gene expression of theca (Lhcgr, Cyp17a1, Gli2, Gli3 and Ptch1), granulosa (Amh and Fshr), oocyte (Zp3 and Gdf9), germ cells (Stella and Prdm1), angiogenesis (VEGF and bFGF) and apoptosis (Bax/Bcl2 and Caspase3) markers was similar in both AO-HB and AO-HP groups. Expression of Amh, Fshr, Gdf9 and VEGF increased only in the AO-HP group whereas expression of Ptch1 increased only in the AO-HB group, as compared with the AO group (P < 0.05). In conclusion, BM-MSCs or VP-MSCs can improve ovarian autotransplantation in mice with no superiority over each other.
Collapse
|
75
|
Yoo M, Tanaka T, Konishi H, Tanabe A, Taniguchi K, Komura K, Hayashi M, Ohmichi M. The Protective Effect of Testosterone on the Ovarian Reserve During Cyclophosphamide Treatment. Onco Targets Ther 2020; 13:2987-2995. [PMID: 32308430 PMCID: PMC7152736 DOI: 10.2147/ott.s242703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Cyclophosphamide, which is widely used to treat malignant disease, causes ovarian follicular atresia, which leads to premature ovarian insufficiency. The present study evaluated the protective effect of testosterone in preventing the decline in the ovarian reserve during cyclophosphamide treatment. Methods Using the COV434 human granulosa cell line, the protective effect of testosterone against cyclophosphamide was evaluated by immunocytochemistry, Western blotting and an MTS assay. The follicles in mouse ovaries and serum anti-Mullerian hormone were also assessed to evaluate the effects of testosterone. Results Testosterone suppressed the decrease in cell viability and apoptosis caused by cyclophosphamide treatment in vitro. In vivo, the number of atretic follicles in the mouse ovary was significantly lower in the testosterone plus cyclophosphamide group than in the cyclophosphamide alone group (p=0.03). The serum anti-Mullerian hormone was significantly higher in the testosterone plus cyclophosphamide group than in the cyclophosphamide alone group (16.2 [9.7–22.6]) vs 11.2 [8.9–12.1], p<0.01). The rate of cleaved Caspase-3 expression in the testosterone plus cyclophosphamide group was lower than that in the cyclophosphamide alone group (28.4% vs 48.6%, p=0.03). Conclusion These findings indicated that testosterone has the potential to prevent ovarian damage induced by cyclophosphamide by protecting granulosa cells from cyclophosphamide-induced apoptosis.
Collapse
Affiliation(s)
- Masae Yoo
- Department of Obstetrics and Gynecology
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology.,Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | | | | | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | - Kazumasa Komura
- Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | | | | |
Collapse
|
76
|
Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. J Transl Med 2020; 100:342-352. [PMID: 31537899 DOI: 10.1038/s41374-019-0321-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy-induced premature ovarian failure (POF) in women is currently clinically irreversible. Bone marrow mesenchymal stem cells (BMSCs) are a promising cellular therapeutic strategy for POF. However, the underlying mechanism governing the efficacy of BMSCs in treating POF has not been determined. In this study, we show that BMSC and BMSC-derived exosome transplantation can significantly recover the estrus cycle, increase the number of basal and sinus follicles in POF rats, increase estradiol (E2) and anti-Mullerian hormone (AMH) levels, and reduce follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels in the serum. Furthermore, we demonstrate that BMSC-derived exosomes prevent ovarian follicular atresia in cyclophosphamide (CTX)-treated rats via the delivery of miR-144-5p, which can be transferred to cocultured CTX-damaged granulosa cells (GCs) to decrease GC apoptosis. A functional assay revealed that overexpression of miR-144-5p in BMSCs showed efficacy against CTX-induced POF, and the improvement in the repair was related to the inhibition of GC apoptosis by targeting PTEN. The opposite effect was exhibited when miR-144-5p was inhibited. Taken together, our experimental results provide new information regarding the potential of using exosomal miR-144-5p to treat ovarian failure.
Collapse
|
77
|
Xie Y, Fang B, Liu W, Li G, Huang RL, Zhang L, He J, Zhou S, Liu K, Li Q. Transcriptome differences in adipose stromal cells derived from pre- and postmenopausal women. Stem Cell Res Ther 2020; 11:92. [PMID: 32111240 PMCID: PMC7049195 DOI: 10.1186/s13287-020-01613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As the population ages, an increasing number of postmenopausal women are donors of adipose stromal cells (ASCs) and may benefit from autologous ASC-related treatments. However, the effect of menopausal status on ASCs has not been investigated. METHODS RNA sequencing data were downloaded, and differentially expressed genes (DEGs) were identified. Hierarchical clustering, Gene Ontology, and pathway analyses were applied to the DEGs. Two gene coexpression network analysis approaches were applied to the DEGs to provide a holistic view and preserve gene interactions. Hub genes of the gene coexpression network were identified, and their expression profiles were examined with clinical samples. ASCs from pre- and postmenopausal women were co-cultured with monocytes and T cells to determine their immunoregulatory role. RESULTS In total, 2299 DEGs were identified and presented distinct expression profiles between pre- and postmenopausal women. Gene Ontology and pathway analyses revealed some fertility-, sex hormone-, immune-, aging-, and angiogenesis-related terms and pathways. Gene coexpression networks were constructed, and the top hub genes, including TIE1, ANGPT2, RNASE1, PLVAP, CA2, and MPZL2, were consistent between the two approaches. Expression profiles of hub genes from the RNA sequencing data and clinical samples were consistent. ASCs from postmenopausal women elicit M1 polarization, while their counterparts facilitate CD3/4+ T cell proliferation. CONCLUSIONS The present study reveals the transcriptome differences in ASCs derived from pre- and postmenopausal women and provides holistic views by preserving gene interactions via gene coexpression network analysis. The top hub genes identified by this study could serve as potential targets to enhance the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenhui Liu
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Guangshuai Li
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangbai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
78
|
Ahmad N, Arshad U. Synchronization and resynchronization strategies to improve fertility in dairy buffaloes. Theriogenology 2020; 150:173-179. [PMID: 31982154 DOI: 10.1016/j.theriogenology.2020.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 11/26/2022]
Abstract
Dairy buffalo has an integral role in the sustenance of economics due to its substantial contribution in milk and meat industry, however, the reproduction in this species is challenging. During the last decade, our laboratory conducted a series of experiments to encapsulate the solutions of the problems through optimizing pre- and post-insemination interventions in dairy buffaloes. In an unique study, we proposed that timing of ovulation with reference to the onset of standing heat during spontaneous estrus is delayed, and subsequently re-framed the traditional AM-PM rule (AI after 12 h of standing heat) to AM-AM or PM-PM (AI after 24 h of standing heat) to achieve the optimum fertility using frozen thawed semen in dairy buffaloes. Pregnancy per AI (P/AI) varied substantially either via injecting single shot of prostaglandin (PG) F2α to perform AI at detected estrus or applying standard ovsynch protocol for timed AI (TAI) in buffaloes. However, estrus response, and P/AI remained similar either with used or new controlled internal drug release device in dairy buffaloes. Additionally, the incorporation of estradiol benzoate in progesterone (P4) based protocol resulted in controlled emergence of follicular wave and increased the estrus intensity in buffaloes. Thereafter, we fine-tuned P4-based protocols to optimize the ovulation window for TAI either using GnRH or human chorionic gonadotropin (hCG) or equine chorionic gonadotropin that ultimately improved the fertility in dairy buffaloes. Although, these hormonal interventions resulted in decent fertility, yet it was consistently being compromised due to early or late embryonic losses in dairy buffaloes. Administration of hCG or GnRH on d 7 or 23 or 25 post AI has been proved beneficial to enhance the embryonic survival in buffaloes. Recently, resynchronization program as an aggressive reproductive management approach has been tested that served as a dual-purpose tool to increase overall herd fertility and reduce embryonic losses at commercial buffalo farm operations. Taken together, we concluded that the solutions to the problems of reproductive function are now clearly available with acceptable fertility, however, their application to the small holder buffalo farming remains challenging.
Collapse
Affiliation(s)
- Nasim Ahmad
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan.
| | - Usman Arshad
- Department of Animal Sciences, University of Florida, Gainesville, 32611, Florida, USA
| |
Collapse
|
79
|
Polonio AM, García-Velasco JA, Herraiz S. Stem Cell Paracrine Signaling for Treatment of Premature Ovarian Insufficiency. Front Endocrinol (Lausanne) 2020; 11:626322. [PMID: 33716956 PMCID: PMC7943922 DOI: 10.3389/fendo.2020.626322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian insufficiency is a common disorder affecting young women and represents the worst-case ovarian scenario due to the substantial impact on the reproductive lifespan of these patients. Due to the complexity of this condition, which is not fully understood, non-effective treatments have yet been established for these patients. Different experimental approaches are being explored and strategies based on stem cells deserve special attention. The regenerative and immunomodulatory properties of stem cells have been successfully tested in different tissues, including ovary. Numerous works point out to the efficacy of stem cells in POI treatment, and a wide range of clinical trials have been developed in order to prove safety and effectiveness of stem cells therapy-in diminished ovarian reserve and POI women. The main purpose of this review is to describe the state of the art of the treatment of POI involving stem cells, especially those that use mobilization of stem cells or paracrine signaling.
Collapse
Affiliation(s)
- Alba M. Polonio
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- *Correspondence: Alba M. Polonio,
| | - Juan A. García-Velasco
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVI RMA, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Sonia Herraiz
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
80
|
Using Mesenchymal Stem Cells to Treat Female Infertility: An Update on Female Reproductive Diseases. Stem Cells Int 2019; 2019:9071720. [PMID: 31885630 PMCID: PMC6925937 DOI: 10.1155/2019/9071720] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Female infertility impacts the quality of life and well-being of affected individuals and couples. Female reproductive diseases, such as primary ovarian insufficiency, polycystic ovary syndrome, endometriosis, fallopian tube obstruction, and Asherman syndrome, can induce infertility. In recent years, translational medicine has developed rapidly, and clinical researchers are focusing on the treatment of female infertility using novel approaches. Owing to the advantages of convenient samples, abundant sources, and avoidable ethical issues, mesenchymal stem cells (MSCs) can be applied widely in the clinic. This paper reviews recent advances in using four types of MSCs, bone marrow stromal cells, adipose-derived stem cells, menstrual blood mesenchymal stem cells, and umbilical cord mesenchymal stem cells. Each of these have been used for the treatment of ovarian and uterine diseases, and provide new approaches for the treatment of female infertility.
Collapse
|
81
|
Reig A, Mamillapalli R, Coolidge A, Johnson J, Taylor HS. Uterine Cells Improved Ovarian Function in a Murine Model of Ovarian Insufficiency. Reprod Sci 2019; 26:1633-1639. [PMID: 31530098 PMCID: PMC6949960 DOI: 10.1177/1933719119875818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary ovarian insufficiency (POI) is defined as ovarian dysfunction in women younger than 40 years. It affects 1% of the women in this age-group and can occur iatrogenically after chemotherapy. Stem cells have been used in attempt to restore ovarian function in POI. In particular, endometrial mesenchymal stem cells (eMSCs) are easily obtainable in humans and have shown great potential for regenerative medicine. Here, we studied the potential for uterine cell (UC) suspensions containing eMSCs to improve ovarian function in a murine model of chemotherapy-induced POI. Green fluorescent protein (GFP)-labeled UC or phosphate-buffered solution (PBS) was delivered intravenously after chemotherapy. There was a significant increase in oocytes production and serum anti-Müllerian hormone concentrations after 6 weeks, as well as a 19% higher body mass in UC-treated mice. Similarly, we observed an increased number of pups in mice treated with UC than in mice treated with PBS. None of the oocytes or pups incorporated GFP, suggesting that there was no contribution of these stem cells to the oocyte pool. We conclude that treatment with UC indirectly improved ovarian function in mice with chemotherapy-induced POI. Furthermore, our study suggests that endometrial stem cell therapy may be beneficial to young women who undergo ovotoxic chemotherapy.
Collapse
Affiliation(s)
- Andres Reig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Alexis Coolidge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Johnson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
82
|
Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol 2019; 235:4217-4226. [PMID: 31663142 DOI: 10.1002/jcp.29376] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Premature ovarian failure (POF) usually happens former to the age of 40 and affects the female physiological state premenopausal period. In this condition, ovaries stop working long before the expected menopausal time. Of diagnostic symptoms of the disease, one can mention amenorrhea and hypoestrogenism. The cause of POF in most cases is idiopathic; however, cancer therapy may also cause POF. Commonly utilized therapies such as hormone therapy, in-vitro activation, and regenerative medicine are the most well-known treatments for POF. Hence, these therapies may be associated with some complications. The aim of the present study is to discuss the beneficial effects of tissue engineering for fertility rehabilitation in patients with POF as a newly emerging therapy.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Jahanbani
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Lab, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
83
|
Li Q, An X, Man X, Chu M, Zhao T, Yu H, Li Z. Transcriptome analysis reveals that cyclophosphamide induces premature ovarian failure by blocking cholesterol biosynthesis pathway. Life Sci 2019; 239:116999. [PMID: 31654746 DOI: 10.1016/j.lfs.2019.116999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023]
Abstract
AIMS The present study aimed to investigate the effects of cyclophosphamide (Cytoxan, CTX) on premature ovarian failure (POF) in mice and its regulatory mechanisms by transcriptome analysis. MAIN METHODS Female C57BL/6 mice were treated with a single intraperitoneal injection of 70 mg/kg CTX. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH) were measured by enzyme-linked immunosorbent assay (ELISA), and follicular structure differences were observed by hematoxylin and eosin (H&E) staining. The main mechanism of POF was investigated by RNA-seq data, protein-protein interaction (PPI) networks and qPCR analysis. KEY FINDINGS The serum levels of E2 were significantly decreased and those of FSH were significantly increased compared to the control group. The ovarian weights of the mice in the CTX group were reduced, and abnormal follicular structures were also observed in the CTX group. The RNA-seq data show that the downregulated genes were related to the cholesterol biosynthesis pathway. The PPI network and qPCR analyses further confirm that the PPAR signaling pathway and the ovarian infertility genes were also involved in blocking the cholesterol biosynthesis pathway. The differences were statistically significant. SIGNIFICANCE Our results indicate that CTX may exert its anti-tumor effects by inactivating the cholesterol biosynthesis pathway, and simultaneously reducing the supply of estrogen precursor materials, ultimately leading to the occurrence of POF. Our data provided a preliminary theoretical basis for resolving the clinical toxicity and side effects of CTX.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| | - Xiaxia Man
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| | - Meiran Chu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Tianchuang Zhao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
84
|
Liu R, Zhang X, Fan Z, Wang Y, Yao G, Wan X, Liu Z, Yang B, Yu L. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther 2019; 10:299. [PMID: 31578152 PMCID: PMC6775662 DOI: 10.1186/s13287-019-1315-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many adult women younger than 40 years old have premature ovarian failure (POF) and infertility. Previous studies confirmed that different tissue-derived stem cells could restore ovarian function and folliculogenesis in chemotherapy-induced POF mice. The aim of this study was to explore the therapeutic efficacy and underlying mechanisms of human amniotic mesenchymal stem cells (hAMSCs) transplantation for hydrogen peroxide-induced ovarian damage. METHODS Bilateral ovaries of female mice were burned with 10% hydrogen peroxide to establish a POF model. After 24 h of treatment, hAMSCs and diethylstilbestrol were administered to POF mice by intraperitoneal injection and intragastric administration, respectively. After either 7 or 14 days, ovarian function was evaluated by the oestrus cycle, hormone levels, ovarian index, fertility rate, and ovarian morphology. The karyotype was identified in offspring by the G-banding technique. hAMSCs tracking, immunohistochemical staining, and real-time polymerase chain reaction (PCR) were used to assess the molecular mechanisms of injury and repair. RESULTS The oestrus cycle was recovered after hAMSCs transplantation at 7 and 14 days. Oestrogen levels increased, while follicle-stimulating hormone levels decreased. The ovarian index, fertility rate, and population of follicles at different stages were significantly increased. The newborn mice had no obvious deformity and showed normal growth and development. The normal offspring mice were also fertile. The tracking of hAMSCs revealed that they colonized in the ovarian stroma. Immunohistochemical and PCR analyses indicated that changes in proteins and genes might affect mature follicle formation. CONCLUSIONS These results suggested that hAMSCs transplantation can improve injured ovarian tissue structure and function in oxidatively damaged POF mice. Furthermore, the mechanisms of hAMSCs are related to promoting follicular development, granulosa cell proliferation, and secretion function by improving the local microenvironment of the ovary.
Collapse
Affiliation(s)
- Rongxia Liu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Xiaoyu Zhang
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Yuying Wang
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Guanping Yao
- Reproductive Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Xue Wan
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Zulin Liu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Bing Yang
- Department of Gynecology, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| |
Collapse
|
85
|
Protective Effect of Fat Extract on UVB-Induced Photoaging In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6146942. [PMID: 31531185 PMCID: PMC6720842 DOI: 10.1155/2019/6146942] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022]
Abstract
Background Nanofat can protect against ultraviolet B- (UVB-) induced damage in nude mice. Fat extract (FE) is a cell-free fraction isolated from nanofat that is enriched with a variety of growth factors. Objective To determine whether FE can protect against UVB-induced photoaging in cultured dermal fibroblasts and in nude mice. Method For the in vitro study, human dermal skin fibroblasts were pretreated with FE 24 h prior to UVB irradiation. Generation of reactive oxygen species (ROS) was analyzed immediately following irradiation, while cell cycle analysis was performed 24 h after UVB irradiation. Senescence-associated β-galactosidase (SA-β-gal) expression, cell proliferation, and expression of glutathione peroxidase 1 (GPX-1), catalase, superoxide dismutase-1 (SOD-1), SOD-2, and collagen type 1 (COL-1) were investigated 72 h after UVB irradiation. For the in vivo study, the dorsal skin of nude mice was irradiated with UVB and mice were then treated with FE for 8 weeks. The thickness of the dermis, capillary density, and apoptotic cells in skin tissue sections were investigated after treatment. The expression of GPX-1, catalase, SOD-2, SOD-1, and COL-1 in the tissue was also measured. Result FE significantly increased cell proliferation and protected cells against UVB-induced cell death and cell cycle arrest. FE reduced ROS and the number of aged cells induced by UVB irradiation. FE promoted the expression of COL-1 and GPX-1 in cultured dermal fibroblasts. FE treatment of UVB-irradiated skin increased dermal thickness and capillary density, decreased the number of apoptotic cells, and promoted the expression of COL-1 and GPX-1. Conclusion FE protects human dermal fibroblasts and the skin of nude mice from UVB-induced photoaging through its antioxidant, antiapoptotic, and proangiogenic activities.
Collapse
|
86
|
Zarbakhsh S, Safari R, Sameni HR, Yousefi B, Safari M, Khanmohammadi N, Hayat P. Effects of Co-Administration of Bone Marrow Stromal Cells and L-Carnitine on The Recovery of Damaged Ovaries by Performing Chemotherapy Model in Rat. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:196-202. [PMID: 31310073 PMCID: PMC6642421 DOI: 10.22074/ijfs.2019.5725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/19/2019] [Indexed: 12/28/2022]
Abstract
Background L-carnitine (Lc) as a type of flavonoid antioxidants and bone marrow stromal cells (BMSCs) as a type of mesenchymal stem cells may recover damaged ovaries. It seems that Lc has favorable effects on differentiation, increasing lifespan and decreasing apoptosis in BMSCs. The aim of this study was to investigate effects of co-administration of BMSC+Lc on damaged ovaries after creating a chemotherapy model with cyclophosphamide in rats. Materials and Methods In this experimental study, cyclophosphamide was intraperitoneally (IP) injected to forty female wistar rats for 14 days, in terms of chemotherapy-induced ovarian destruction. The rats were then randomly divided into four groups: control, Lc, BMSCs and co-administration of BMSC+Lc. Injection of BMSCs into bilateral ovaries and intraperitoneal injection of Lc were performed individually and together. Four weeks later, levels of serum estradiol (E2) and follicle-stimulating hormone (FSH) using enzyme-linked immunosorbent assay (ELISA) kit, number of ovarian follicles at different stages using hematoxylin and eosin (H and E) staining and expression of ovarian Bcl-2 and Bax proteins using western blot were assessed. Results Co-administration of BMSC+Lc increased E2 and decreased FSH levels compared to the control group (P<0.001). The number of follicles was higher in the co-administrated group compared to the control group (P<0.001). Co-administration of BMSC+Lc increased Bcl-2 protein level, decreased Bax protein level and increased Bcl-2/Bax ratio (P<0.001). Conclusion The effect of co-administration of BMSC+Lc is probably more effective than the effect of their separate administration on the recovery of damaged ovaries by chemotherapy.
Collapse
Affiliation(s)
- Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran. Electronic Address:
| | - Robabeh Safari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Manouchehr Safari
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasrin Khanmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
87
|
Umbilical Cord Mesenchymal Stem Cell Transplantation Prevents Chemotherapy-Induced Ovarian Failure via the NGF/TrkA Pathway in Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6539294. [PMID: 31240219 PMCID: PMC6556346 DOI: 10.1155/2019/6539294] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/28/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
Abstract
Chemotherapy leads to a loss of fertility and reproductive endocrine function, thereby increasing the risk of premature ovarian failure (POF). Studies have suggested that the transplantation of mesenchymal stem cells could inhibit apoptosis in ovarian granulosa cells and improve follicular development. In the present study, the effects of human umbilical cord mesenchymal stem cell (UCMSC) transplantation on ovarian function after ovarian damage caused by chemotherapy and the mechanism underlying these effects were investigated. POF model rats were obtained by the intraperitoneal injection of cyclophosphamide, and cultured UCMSCs were transplanted by tail vein injection. Serum estrogen, follicle-stimulating hormone, gonadotropin releasing hormone, and anti-Mullerian hormone levels were detected by ELISA. Folliculogenesis was evaluated by histopathological examination. The expression levels of nerve growth factor (NGF), high affinity nerve growth factor receptor (TrkA), follicle-stimulating hormone receptor (FSHR), and caspase-3 were evaluated by western blotting and RT-qPCR. The natural reproductive capacity was assessed by pregnant rate and numbers of embryos. The results indicated that UCMSC transplantation recovered disturbed hormone secretion and folliculogenesis in POF rats. NGF and TrkA levels increased, while FSHR and caspase-3 decreased. The pregnancy rate of POF rats was improved. Therefore, UCMSCs could reduce ovarian failure due to premature senescence caused by chemotherapy, and the NGF/TrkA signaling pathway was involved in the amelioration of POF.
Collapse
|
88
|
Jalalie L, Rezaie MJ, Jalili A, Rezaee MA, Vahabzadeh Z, Rahmani MR, Karimipoor M, Hakhamaneshi MS. Distribution of the CM-Dil-Labeled Human Umbilical Cord Vein Mesenchymal Stem Cells Migrated to the Cyclophosphamide-Injured Ovaries in C57BL/6 Mice. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30797224 PMCID: PMC6462299 DOI: 10.29252/.23.3.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Mesenchymal stem cells (MSCs) can be used to treat premature ovarian failure (POF). Different methods have already been applied to detect MSCs in tissues. This study aimed to investigate the quantitative distribution of CM-DiI-labeled human umbilical cord vein MSCs (hUCV-MSCs) in different regions of the ovarian tissue of the cyclophosphamide (CTX)-induced POF in mice. Methods Adult female C57BL/6 mice (n = 40) were divided into four groups: (1) Mice receiving PBS as control (Ctrl) group; (2) mice receiving hUCV-MSCs intravenously as Ctrl + hUCV-MSCs group; (3) mice receiving CTX intraperitoneally (i.p.) as CTX group; (4) mice receiving CM-DiI-labeled hUCV-MSCs after CTX injection as CTX + hUCV-MSCs group. Histological changes and CM-DiI-labeled hUCV-MSCs distribution were analyzed in the ovarian tissues. Quantitative real-time PCR was performed to detect human mitochondrial cytochrome b (MTCYB) gene in the ovarian tissues of the mice. Results The mean number of the fluorescent hUCV-MSCs was 20 ± 2.5 (57.1%) in the medulla, 11.3 ± 2.8 (32.2%) in the cortex, and 5.5 ± 1 (15%) in the germinal epithelium of the ovarian tissue (p < 0.05). Moreover, MTCYB gene was detected in the mice ovaries of the CTX + hUCV-MSCs group, but not in other groups. Conclusion Our findings suggest that the distribution of the transplanted hUCV-MSCs in different regions of the ovarian tissue is not equal, and it is greater in the medulla than the cortex and germinal epithelium. This is the first report of quantitative distribution of MSCs in different regions of ovarian tissue in the POF model.
Collapse
Affiliation(s)
- Ladan Jalalie
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran,Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Jafar Rezaie
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,Corresponding Author: Mohammad Jafar Rezaie Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, P.O. Box: 66177-13446, Sanandaj, Iran; Tel: (+98-873) 3664653, Fax: (+98-871) 6664663; E-mail:
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran,Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Karimipoor
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran,Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Saeed Hakhamaneshi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
89
|
Jalalie L, Rezaie MJ, Jalili A, Rezaee MA, Vahabzadeh Z, Rahmani MR, Karimipoor M, Hakhamaneshi MS. Distribution of the CM-Dil-Labeled Human Umbilical Cord Vein Mesenchymal Stem Cells Migrated to the Cyclophosphamide-Injured Ovaries in C57BL/6 Mice. IRANIAN BIOMEDICAL JOURNAL 2019; 23:200-8. [PMID: 30797224 PMCID: PMC6462299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/12/2023]
Abstract
Background Mesenchymal stem cells (MSCs) can be used to treat premature ovarian failure (POF). Different methods have already been applied to detect MSCs in tissues. This study aimed to investigate the quantitative distribution of CM-DiI-labeled human umbilical cord vein MSCs (hUCV-MSCs) in different regions of the ovarian tissue of the cyclophosphamide (CTX)-induced POF in mice. Methods Adult female C57BL/6 mice (n = 40) were divided into four groups: (1) Mice receiving PBS as control (Ctrl) group; (2) mice receiving hUCV-MSCs intravenously as Ctrl + hUCV-MSCs group; (3) mice receiving CTX intraperitoneally (i.p.) as CTX group; (4) mice receiving CM-DiI-labeled hUCV-MSCs after CTX injection as CTX + hUCV-MSCs group. Histological changes and CM-DiI-labeled hUCV-MSCs distribution were analyzed in the ovarian tissues. Quantitative real-time PCR was performed to detect human mitochondrial cytochrome b (MTCYB) gene in the ovarian tissues of the mice. Results The mean number of the fluorescent hUCV-MSCs was 20 ± 2.5 (57.1%) in the medulla, 11.3 ± 2.8 (32.2%) in the cortex, and 5.5 ± 1 (15%) in the germinal epithelium of the ovarian tissue (p < 0.05). Moreover, MTCYB gene was detected in the mice ovaries of the CTX + hUCV-MSCs group, but not in other groups. Conclusion Our findings suggest that the distribution of the transplanted hUCV-MSCs in different regions of the ovarian tissue is not equal, and it is greater in the medulla than the cortex and germinal epithelium. This is the first report of quantitative distribution of MSCs in different regions of ovarian tissue in the POF model.
Collapse
Affiliation(s)
- Ladan Jalalie
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Jafar Rezaie
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Karimipoor
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Saeed Hakhamaneshi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
90
|
Effects of VEGF
+
Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model. Stem Cell Rev Rep 2019; 15:558-573. [DOI: 10.1007/s12015-019-09892-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
91
|
Green LJ, Zhou H, Padmanabhan V, Shikanov A. Adipose-derived stem cells promote survival, growth, and maturation of early-stage murine follicles. Stem Cell Res Ther 2019; 10:102. [PMID: 30898159 PMCID: PMC6427888 DOI: 10.1186/s13287-019-1199-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency is a common complication of anticancer treatments in young women and girls. The ovary is a complex, highly regulated reproductive organ, whose proper function is contingent upon the bidirectional endocrine, paracrine, and autocrine signaling. These factors facilitate the development of the follicles, the functional units of the ovary, to progress from the gonadotropin-independent, paracrine-controlled early stage to the gonadotropin-dependent, endocrine-controlled later stage. We hypothesized that the low survival rate of individually cultured early-stage follicles could be improved with co-culture of adipose-derived stem cells (ADSCs) that secrete survival- and growth-promoting factors. MATERIALS AND METHODS Ovarian follicles ranging from 85 to 115 μm in diameter, from 10- to 12-day-old B6CBAF1 mice were mechanically isolated and co-encapsulated with ADSCs within alginate-based 3D culture system. The follicles were cultured for 14 days, imaged using light microscopy every 2 days, and matured at the end. Follicle media were changed every 2 days and collected for hormone measurements. Follicle diameter, morphology, number of transzonal projections, and survival and maturation rates were recorded. Statistical analyses using one- and two-way ANOVA were performed to compare hormone levels, survival of the follicles and ADSCs, oocyte maturation rates, and follicle growth. RESULTS The co-encapsulation of the follicles with ADSCs increased follicle survival, ranging from 42.4% for the 86-95 μm to 86.2% for the 106-115-μm follicle size group. Co-culture also improved the follicle growth, the rate of antrum formation and oocyte maturation compared to the follicles cultured alone. The levels of androstenedione, estradiol, and progesterone of co-encapsulated follicles increased progressively with time in culture. CONCLUSIONS To our knowledge, this is the first report of an in vitro system utilizing mouse adipose-derived stem cells to support the development of the mouse follicles. Our findings suggest that co-encapsulation of ADSCs with early-stage follicles supports follicular development, through secretion of cytokines that promote follicular survival, antrum formation, and meiotic competence. The unique 3D culture system that supports the survival of both cell types has translational implications, as ADSCs could be used as an autologous source for in vitro maturation of early-stage human follicles.
Collapse
Affiliation(s)
- Lisa J. Green
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI USA
- Present Address: Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, SC USA
| | - Hong Zhou
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109 USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109 USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
92
|
Wang ZB, Hao JX, Meng TG, Guo L, Dong MZ, Fan LH, Ouyang YC, Wang G, Sun QY, Ou XH, Yao YQ. Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging (Albany NY) 2019; 9:2480-2488. [PMID: 29283885 PMCID: PMC5764387 DOI: 10.18632/aging.101332] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/26/2017] [Indexed: 12/20/2022]
Abstract
Elder women suffer from low or loss of fertility because of decreasing oocyte quality as maternal aging. As energy resource, mitochondria play pivotal roles in oocyte development, determining oocyte quality. With advanced maternal age, increased dysfunctions emerge in oocyte mitochondria, which decrease oocyte quality and its developmental potential. Mitochondria supplement as a possible strategy for improving egg quality has been in debate due to ethnic problems. Heterogeneity is an intractable problem even transfer of germinal vesicle, spindle, pronuclei or polar body is employed. We proposed that the autologous adipose tissue-derived stem cell (ADSC) mitochondria could improve the fertility in aged mice. We found that autologous ADSC mitochondria could promote oocyte quality, embryo development and fertility in aged mice, which may provide a promising strategy for treatment of low fertility or infertility in elder women.
Collapse
Affiliation(s)
- Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xiu Hao
- Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Guo
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guopeng Wang
- The Core Facilities at School of Life Sciences, Peking University, Beijing 100871, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Hong Ou
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yuan-Qing Yao
- Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
93
|
Sameni HR, Seiri M, Safari M, Tabrizi Amjad MH, Khanmohammadi N, Zarbakhsh S. Bone Marrow Stromal Cells with the Granulocyte Colony-Stimulating Factor in the Management of Chemotherapy-Induced Ovarian Failure in a Rat Model. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:135-145. [PMID: 30936600 PMCID: PMC6423433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs), as a type of mesenchymal stem cells, and the granulocyte colony-stimulating factor (G-CSF), as a type of growth factor, may recover damaged ovaries. The aim of the present study was to investigate the effects of the coadministration of BMSCs and the G-CSF on damaged ovaries after creating a chemotherapy model with cyclophosphamide (CTX) in rats. METHODS The present study was performed in Semnan, Iran, in the late 2016 and the early 2017. BMSCs were cultured and were confirmed using the CD markers of stromal cells. Forty female Wistar rats were randomly divided into 4 groups. The rats were injected intraperitoneally with CTX for 14 days to induce chemotherapy and ovarian destruction. Then, the BMSCs were injected into bilateral ovaries and the G-CSF was injected intraperitoneally, individually and together. Four weeks later, the number of ovarian follicles using H&E staining, the number of apoptotic granulosa cells using the TUNEL assay, the number of produced oocytes from the ovaries, and the levels of serum E2 and FSH using an ELISA reader were assessed. Statistical analysis was done using one-way ANOVA with SPSS, version 16.0. RESULTS The results showed that the effects of the coadministration of 2×106 BMSCs and 70 µg/kg of the G-CSF were significantly more favorable than those in the control group (P<0.001), the BMSC group (P=0.016), and the G-CSF group (P<0.001) on the recovery of damaged ovaries. CONCLUSION The efficacy of the coadministration of BMSCs and the G-CSF in the recovery of ovaries damaged by chemotherapy was high by comparison with the administration of either of them separately.
Collapse
|
94
|
Adipose derived mesenchymal stem cells improve the structure and function of autografted mice ovaries through reducing oxidative stress and inflammation: A stereological and biochemical analysis. Tissue Cell 2019; 56:23-30. [DOI: 10.1016/j.tice.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022]
|
95
|
Lee EH, Han SE, Park MJ, Kim HJ, Kim HG, Kim CW, Joo BS, Lee KS. Establishment of Effective Mouse Model of Premature Ovarian Failure Considering Treatment Duration of Anticancer Drugs and Natural Recovery Time. J Menopausal Med 2018; 24:196-203. [PMID: 30671413 PMCID: PMC6336561 DOI: 10.6118/jmm.2018.24.3.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022] Open
Abstract
Objectives This study was aimed to establish the most effective premature ovarian failure (POF) mouse model using Cyclophosphamide (CTX), busulfan (Bu), and cisplatin considering treatment duration of anticancer drugs and natural recovery time. Methods POF was induced by intraperitoneally injecting CTX (120 mg/kg)/Bu (12 mg/kg) for 1 to 4 weeks or cisplatin (2 mg/kg) for 3 to 14 days to C57BL/6 female mice aged 6 to 8 weeks. Controls were injected with equal volume of saline for the same periods. Body weight was measured every week, and ovarian and uterine weights were measured after the last injection of anticancer drug. To assess ovarian function, POF-induced mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin, and then mated with male. After 18 hours, zygotes were retrieved and cultured for 4 days. Finally, the mice were left untreated for a period of times after the final injection of anticancer drug, and the time for natural recovery of ovarian function was evaluated. Results After 2 weeks of CTX/Bu injection, ovarian and uterine weights, and ovarian function were decreased sharply. Cisplatin treatment for 10 days resulted in a significant decrease in ovarian and uterine weight, and ovarian function. When POF was induced for at least 2 weeks for CTX/Bu and for at least 10 days for cisplatin, ovarian function did not recover naturally for 2 weeks and 1 week, respectively. Conclusions These results suggest that CTX/Bu should be treated for at least 2 weeks and cisplatin for at least 10 days to establish the most effective primary ovarian insufficiency mouse model.
Collapse
Affiliation(s)
- Eun Hee Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Si Eun Han
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | | | - Hwi Gon Kim
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Chang Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Korea.,Infertility Institute, Pohang Women's Hospital, Pohang, Korea
| | - Kyu Sup Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
96
|
Manshadi MD, Navid S, Hoshino Y, Daneshi E, Noory P, Abbasi M. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech 2018; 82:635-642. [PMID: 30582244 DOI: 10.1002/jemt.23120] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Many studies have reported that human endometrial mesenchymal stem cells (HuMenSCs) are capable of repairing damaged tissues. The aim of the present study was to investigate the effects of HuMenSCs transplantation as a treatment modality in premature ovarian failure (POF) associated with chemotherapy-induced ovarian damage. HuMenSCs were isolated from menstrual blood samples of five women. After the in vitro culture of HuMenSCs, purity of the cells was assessed by cytometry using CD44, CD90, CD34, and CD45 FITC conjugate antibody. Twenty-four female Wistar rats were randomly divided into four groups: negative control, positive control, sham, and treatment groups. The rat models of POF used in our study were established by injecting busulfan intraperitoneally into the rats during the first estrus cycle. HuMenSCs were transplanted by injection via the tail vein into the POF-induced rats. Four weeks after POF induction, ovaries were collected and the levels of Amh, Fst, and Fshr expression in the granulosa cell (GC) layer, as well as plasma estradiol (E2) and progesterone (P4) levels were evaluated. Moreover, migration and localization of DiI-labeled HuMenSCs were detected, and the labeled cells were found to be localized in GCs layer of immature follicles. In addition to DiI-labelled HuMenSCs tracking, increased levels of expression of Amh and Fshr and Fst, and the high plasma levels of E2 and P4 confirmed that HuMenSC transplantation had a significant effect on follicle formation and ovulation in the treatment group compared with the negative control (POF) group.
Collapse
Affiliation(s)
- Marjan D Manshadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Erfan Daneshi
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Parastoo Noory
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Adipose-derived mesenchymal stromal cell transplantation at the graft site improves the structure and function of autografted mice ovaries: a stereological and biochemical analysis. Cytotherapy 2018; 20:1324-1336. [DOI: 10.1016/j.jcyt.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
98
|
Khan AS, Haider MS, Hassan M, Husnain A, Yousuf MR, Ahmad N. Equine chorionic gonadotropin (eCG) enhances reproductive responses in CIDR-EB treated lactating anovular Nili-Ravi buffalo during the breeding season. Anim Reprod Sci 2018; 196:28-34. [DOI: 10.1016/j.anireprosci.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/09/2018] [Accepted: 06/22/2018] [Indexed: 11/28/2022]
|
99
|
Huang B, Lu J, Ding C, Zou Q, Wang W, Li H. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res Ther 2018; 9:216. [PMID: 30092819 PMCID: PMC6085638 DOI: 10.1186/s13287-018-0953-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Background Although many reports show that various kinds of stem cells have the ability to recover the function of premature ovarian insufficiency (POI), few studies are associated with the mechanism of stem cell treatment of POI. We designed this experimental study to investigate whether human adipose stem cell-derived exosomes (hADSC-Exos) retain the ability to restore ovarian function and how hADSC-Exos work in this process. Methods A POI mouse model was established and human ovarian granule cells (hGCs) collected from individuals with POI were prepared to assess the therapeutic effects and illuminate the mechanism of hADSCs in curing POI. The hematoxylin and eosin assay method was employed to assess the number of follicles. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of sex hormones. The proliferation rate and marker expression levels of hGCs were measured by flow cytometry (fluorescence-activated cell sorting). Real-time PCR and western blot assays were used to determine the mRNA and protein expression levels of SMAD2, SMAD3, and SMAD5. Western blot assays were used to test the protein expression levels of apoptosis genes (Fas, FasL, caspase-3, and caspase-8). Results After the hADSC-Exos were transplanted into the POI mice model, they exerted better therapeutic activity on mouse ovarian function, improving follicle numbers during four stages. ELISA results showed that hADSC-Exos elevated the hormone levels to the normal levels. In addition, after hADSC-Exos were cocultured with POI hGCs, our results showed that hADSC-Exos significantly promoted the proliferation rate and inhibited the apoptosis rate. Furthermore, hADSC-Exos also increased the marker expression of hGCs to the normal level. Besides, mRNA and protein assays demonstrated that hADSC-Exos downregulated the expression of SMAD2, SMAD3, and SMAD5 in vivo and in vitro. Western blot assay demonstrated that hADSC-Exos inhibited expression of the apoptosis genes in POI hGCs, and SMAD knockdown increased the protein expression of apoptosis genes. Conclusions These findings demonstrate for the first time the molecular cascade and related cell biology events involved in the mechanism by which exosomes derived from hADSCs improved ovarian function of POI disease via regulation of the SMAD signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13287-018-0953-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boxian Huang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Jiafeng Lu
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Qinyan Zou
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Wei Wang
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hong Li
- Center of Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| |
Collapse
|
100
|
Fu XY, Chen HH, Zhang N, Ding MX, Qiu YE, Pan XM, Fang YS, Lin YP, Zheng Q, Wang WQ. Effects of chronic unpredictable mild stress on ovarian reserve in female rats: Feasibility analysis of a rat model of premature ovarian failure. Mol Med Rep 2018; 18:532-540. [PMID: 29749518 DOI: 10.3892/mmr.2018.8989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/19/2018] [Indexed: 11/05/2022] Open
Abstract
Premature ovarian failure (POF) results from a number of disorders. The POF model is primarily based on chemotherapeutic injury, and hence is not suitable for assessing the effects of chronic stress on ovarian function. Therefore, improved animal models are required to analyze the effects of chronic stress on ovarian reserve. The feasibility of the chronic unpredictable mild stress (CUMS) method for establishing a model of POF was examined. The depressive behavior exhibited by rats was evaluated with the open field and sucrose preference tests. Vaginal smears were obtained for assessment of the estrous cycle. The ovarian reserve of the animals was evaluated using the estrous cycle, ovarian histology and serum levels of gonadotropin releasing hormone (GnRH), follicle‑stimulating hormone (FSH), estradiol (E2), and anti‑Müllerian hormone (AMH). Compared with the control group, body weight, time spent in the center, horizontal movement, vertical frequency, consumption of sucrose, sucrose preference, number of small follicles from the rats, and serum E2, AMH and GnRH levels were significantly decreased in the CUMS group (all P<0.05). However, the estrous cycle was prolonged significantly (P<0.05) and serum FSH levels were increased significantly (P<0.01). These results suggested that the CUMS model rats exhibited depression‑like behaviors. CUMS may induce psychological stress and decrease ovarian reserve in female rats. Thus, the CUMS model may be used to assess the effects of chronic stress on female reproductive function.
Collapse
Affiliation(s)
- Xiao-Yan Fu
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Hao-Hao Chen
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Ning Zhang
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Ming-Xing Ding
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Ying-Er Qiu
- Laboratory Animal Center, Jinhua Institute for Drug and Food Control, Jinhua, Zhejiang 321000, P.R. China
| | - Xiao-Ming Pan
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Yuan-Shu Fang
- Laboratory Animal Center, Jinhua Institute for Drug and Food Control, Jinhua, Zhejiang 321000, P.R. China
| | - Yi-Ping Lin
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Qun Zheng
- Center of Clinical Reproductive Medicine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Wen-Qian Wang
- Department of Medical Sciences, Medical College, Jinhua College of Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| |
Collapse
|