51
|
SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci Rep 2016; 6:35732. [PMID: 27767079 PMCID: PMC5073315 DOI: 10.1038/srep35732] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 01/04/2023] Open
Abstract
Dysregulated autophagy is associated with steatosis and non-alcoholic fatty liver disease (NAFLD), however the mechanisms connecting them remain poorly understand. Here, we show that co-administration of lovastatin and ezetimibe (L/E) significantly reverses hepatic triglyceride accumulation concomitant with an increase in SREBP-2 driven autophagy in mice fed a high-fat diet (HFD). We further show that the statin mediated increase in SREBP-2 directly activates expression of patatin-like phospholipase domain-containing enzyme 8 (PNPLA8) gene, and PNPLA8 associates with autophagosomes and is associated with a decrease in cellular triglyceride. Moreover, we show that over-expression of PNPLA8 dramatically decreases hepatic steatosis through increased autophagy in hepatocytes of HFD-fed mice. Live-cell imaging analyses also reveal that PNPLA8 dynamically interacts with LC3 and we suggest that the SREBP-2/PNPLA8 axis represents a novel regulatory mechanism for lipid homeostasis. These data provide a possible mechanism for the reported beneficial effects of statins for decreasing hepatic triglyceride levels in NAFLD patients.
Collapse
|
52
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
53
|
Charytoniuk T, Drygalski K, Konstantynowicz-Nowicka K, Berk K, Chabowski A. Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials. Nutrition 2016; 34:108-117. [PMID: 28063505 DOI: 10.1016/j.nut.2016.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered to be one of the most common liver pathologies that occur widely among societies with a predominance of the Western dietary pattern. NAFLD may progress from hepatic steatosis to nonalcoholic steatohepatitis (NASH), subsequently leading to cirrhosis and becoming a major cause of hepatocellular carcinoma. Thus its prevention and therapy play an important role in hepatology. To our knowledge, there is no effective treatment for patients with NAFLD. The aim of this review was to summarize the results of recent alternative treatment studies conducted both on cell cultures and in vivo that concern molecular effects of resveratrol (3,5,4'-trihydroxystilbene) in the treatment of NAFLD. The precise metabolism, pharmacology, and clinical trials with different concentrations of resveratrol were described. The review also presents a brief summary of other alternative treatment methods of NAFLD and their mechanisms compared with current clinical understanding.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Drygalski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
54
|
Houben T, Brandsma E, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Oxidized LDL at the crossroads of immunity in non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:416-429. [PMID: 27472963 DOI: 10.1016/j.bbalip.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is viewed as the hepatic manifestation of the metabolic syndrome and is a condition hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). Currently, the etiology and mechanisms leading to obesity-induced hepatic inflammation are not clear and, as a consequence, strategies to diagnose or treat NASH in an accurate manner do not exist. In the current review, we put forward the concept of oxidized lipids as a significant risk factor for NASH. We will focus on the contribution of the different types of oxidized lipids as part of the oxidized low-density lipoprotein (oxLDL) to the hepatic inflammatory response. Furthermore, we will elaborate on the underlying mechanisms linking oxLDL to inflammatory responses in the liver and on how these cascades can be used as therapeutic targets to combat NASH. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- T Houben
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - E Brandsma
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - S M A Walenbergh
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - M H Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - R Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands.
| |
Collapse
|
55
|
Bashiri A, Nesan D, Tavallaee G, Sue-Chue-Lam I, Chien K, Maguire GF, Naples M, Zhang J, Magomedova L, Adeli K, Cummins CL, Ng DS. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:594-605. [DOI: 10.1016/j.bbalip.2016.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 01/19/2023]
|
56
|
Sedger LM, Tull DL, McConville MJ, De Souza DP, Rupasinghe TWT, Williams SJ, Dayalan S, Lanzer D, Mackie H, Lam TC, Boyages J. Lipidomic Profiling of Adipose Tissue Reveals an Inflammatory Signature in Cancer-Related and Primary Lymphedema. PLoS One 2016; 11:e0154650. [PMID: 27182733 PMCID: PMC4868287 DOI: 10.1371/journal.pone.0154650] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer-related and primary lymphedema (LE) are associated with the production of adipose tissue (AT). Nothing is known, however, about the lipid-based molecules that comprise LE AT. We therefore analyzed lipid molecules in lipoaspirates and serum obtained from LE patients, and compared them to lipoaspirates from cosmetic surgery patients and healthy control cohort serum. LE patient serum analysis demonstrated that triglycerides, HDL- and LDL-cholesterol and lipid transport molecules remained within the normal range, with no alterations in individual fatty acids. The lipidomic analysis also identified 275 lipid-based molecules, including triacylglycerides, diacylglycerides, fatty acids and phospholipids in AT oil and fat. Although the majority of lipid molecules were present in a similar abundance in LE and non-LE samples, there were several small changes: increased C20:5-containing triacylglycerides, reduced C10:0 caprinic and C24:1 nervonic acids. LE AT oil also contained a signature of increased cyclopropane-type fatty acids and inflammatory mediators arachidonic acid and ceramides. Interestingly C20:5 and C22:6 omega-3-type lipids are increased in LE AT, correlating with LE years. Hence, LE AT has a normal lipid profile containing a signature of inflammation and omega-3-lipids. It remains unclear, however, whether these differences reflect a small-scale global metabolic disturbance or effects within localised inflammatory foci.
Collapse
Affiliation(s)
- Lisa M. Sedger
- Department of Clinical Medicine, Faculty of Medicine & Health Science, Macquarie University, Sydney, NSW, Australia
- * E-mail:
| | - Dedreia L. Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Malcolm J. McConville
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Spencer J. Williams
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Lanzer
- Daniel Lanzer Clinic, Malvern, Melbourne, VIC, Australia
| | - Helen Mackie
- Macquarie University Hospital, North Ryde, Sydney, NSW, Australia
| | - Thomas C. Lam
- Macquarie University Hospital, North Ryde, Sydney, NSW, Australia
| | - John Boyages
- Department of Clinical Medicine, Faculty of Medicine & Health Science, Macquarie University, Sydney, NSW, Australia
- Macquarie University Hospital, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
57
|
Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T, Chatzigeorgiou A. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord 2016; 17:29-39. [PMID: 26847547 DOI: 10.1007/s11154-016-9339-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The low grade inflammatory state present in obesity promotes the progression of Non-Alcoholic Fatty Liver Disease (NAFLD). In Non-Alcoholic Steatohepatitis (NASH), augmented hepatic steatosis is accompanied by aberrant intrahepatic inflammation and exacerbated hepatocellular injury. NASH is an important disorder and can lead to fibrosis, cirrhosis and even neoplasia. The pathology of NASH involves a complex network of mechanisms, including increased infiltration of different subsets of immune cells, such as monocytes, T-lymphocytes and neutrophils, to the liver, as well as activation and in situ expansion of liver resident cells such as Kupffer cells or stellate cells. In this review, we summarize recent advances regarding understanding the role of the various cells of the innate and adaptive immunity in NASH development and progression, and discuss possible future therapeutic options and tools to interfere with disease progression.
Collapse
Affiliation(s)
- Marina Nati
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - David Haddad
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Christian A Koch
- Division of Endocrinology, Endocrine Tumor Program, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany.
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
58
|
Ioannou GN. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol Metab 2016; 27:84-95. [PMID: 26703097 DOI: 10.1016/j.tem.2015.11.008] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
Lipotoxicity drives the development of progressive hepatic inflammation and fibrosis in a subgroup of patients with nonalcoholic fatty liver disease (NAFLD), causing nonalcoholic steatohepatitis (NASH) and even progression to cirrhosis and hepatocellular carcinoma (HCC). While the underlying molecular mechanisms responsible for the development of inflammation and fibrosis that characterize progressive NASH remain unclear, emerging evidence now suggests that hepatic free cholesterol (FC) is a major lipotoxic molecule critical in the development of experimental and human NASH. In this review, we examine the effects of excess FC in hepatocytes, Kupffer cells (KCs), and hepatic stellate cells (HSCs), and the subcellular mechanisms by which excess FC can induce cellular toxicity or proinflammatory and profibrotic effects in these cells.
Collapse
Affiliation(s)
- George N Ioannou
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
| |
Collapse
|
59
|
Musso G, Cassader M, Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 2016; 15:249-74. [PMID: 26794269 DOI: 10.1038/nrd.2015.3] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease - the most common chronic liver disease - encompasses a histological spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Over the next decade, NASH is projected to be the most common indication for liver transplantation. The absence of an effective pharmacological therapy for NASH is a major incentive for research into novel therapeutic approaches for this condition. The current focus areas for research include the modulation of nuclear transcription factors; agents that target lipotoxicity and oxidative stress; and the modulation of cellular energy homeostasis, metabolism and the inflammatory response. Strategies to enhance resolution of inflammation and fibrosis also show promise to reverse the advanced stages of liver disease.
Collapse
Affiliation(s)
- Giovanni Musso
- Gradenigo Hospital, Corso Regina Margherita 8, 10132 Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Corso A.M. Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
60
|
Role of NLRP3 Inflammasome in the Progression of NAFLD to NASH. Can J Gastroenterol Hepatol 2016; 2016:6489012. [PMID: 27446858 PMCID: PMC4904645 DOI: 10.1155/2016/6489012] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been recognized as a major public health problem worldwide. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD that may progress to cirrhosis and hepatocellular carcinoma. The pathogenesis of disease progression from NAFLD to NASH has not been fully understood. Immunological mechanisms that have been increasingly recognized in the disease progression include defects in innate immunity, adaptive immunity, Toll-like receptor (TLR) signaling, and gut-liver axis. The NLRP3 inflammasome is an intracellular multiprotein complex involved in the production of mature interleukin 1-beta (IL-1β) and induces metabolic inflammation. NLRP3 inflammasome has been recently demonstrated to play a crucial role in the progression of NASH. This review highlights the recent findings linking NLRP3 inflammasome to the progression of NASH.
Collapse
|
61
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
62
|
Mashek DG, Khan SA, Sathyanarayan A, Ploeger JM, Franklin MP. Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology 2015; 62:964-7. [PMID: 25854913 PMCID: PMC4549163 DOI: 10.1002/hep.27839] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/04/2015] [Indexed: 12/22/2022]
Abstract
Hepatic steatosis is defined by the accumulation of lipid droplets (LDs). Once thought to be only inert energy storage depots, LDs are increasingly recognized as organelles that have important functions in hepatocytes beyond lipid storage. The lipid and protein composition of LDs is highly dynamic and influences their intrinsic metabolism and signaling properties, which ultimately links them to the changes in hepatic function. This concise review highlights recent discoveries in LD biology and unique aspects of hepatic LDs and their role in liver disease.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Salmaan A Khan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | | | - Jonathan M Ploeger
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Mallory P Franklin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
63
|
Husain NE, Hassan AT, Elmadhoun WM, Ahmed MH. Evaluating the safety of Liptruzet (ezetimibe and atorvastatin): what are the potential benefits beyond low-density lipoprotein cholesterol-lowering effect? Expert Opin Drug Saf 2015; 14:1445-55. [DOI: 10.1517/14740338.2015.1063613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
64
|
Abstract
Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia-reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
65
|
Jindal A, Bruzzì S, Sutti S, Locatelli I, Bozzola C, Paternostro C, Parola M, Albano E. Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH). Exp Mol Pathol 2015; 99:155-62. [PMID: 26112094 DOI: 10.1016/j.yexmp.2015.06.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 12/22/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by extensive hepatic monocyte infiltration and monocyte-derived macrophages have an important role in regulating the disease evolution. However, little is known about the functional changes occurring in liver macrophages during NASH progression. In this study, we investigated phenotypic and functional modifications of hepatic macrophages in experimental NASH induced by feeding C57BL/6 mice with a methionine-choline deficient (MCD) diet up to 8weeks. In mice with steatohepatitis liver F4/80-positive macrophages increased in parallel with the disease progression and formed small clusters of enlarged and vacuolated cells. At immunofluorescence these cells contained lipid vesicles positive for the apoptotic cell marker Annexin V suggesting the phagocytosis of apoptotic bodies derived from dead fat-laden hepatocytes. Flow cytometry revealed that these enlarged macrophages expressed inflammatory monocyte (CD11b, Ly6C, TNF-α) markers. However, as compared to regular size macrophages the enlarged sub-set was characterized by an enhanced production of arginase-1 and of the anti-inflammatory mediators IL-10 and annexin A1. Similar vacuolated macrophages producing annexin A1 were also evident in liver biopsies of NASH patients. In mice with NASH, the accumulation of enlarged F4/80(+) cells paralleled with a decline in the expression of the macrophage M1 activation markers iNOS, IL-12 and CXCL10, while the levels of M2 polarization markers arginase-1 and MGL-1 were unchanged. Interestingly, the lowering of IL-12 expression mainly involved the macrophage sub-set with regular size. We conclude that during the progression of NASH fat accumulation within liver macrophages promotes the production of anti-inflammatory mediators that influence hepatic inflammatory responses.
Collapse
Affiliation(s)
- Aastha Jindal
- Dept. of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Novara, Italy; Interdisciplinary Research Centre for Autoimmune Diseases, University "Amedeo Avogadro" of East Piedmont, Novara, Italy
| | - Stefania Bruzzì
- Dept. of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Novara, Italy; Interdisciplinary Research Centre for Autoimmune Diseases, University "Amedeo Avogadro" of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Dept. of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Novara, Italy; Interdisciplinary Research Centre for Autoimmune Diseases, University "Amedeo Avogadro" of East Piedmont, Novara, Italy
| | - Irene Locatelli
- Dept. of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Novara, Italy; Interdisciplinary Research Centre for Autoimmune Diseases, University "Amedeo Avogadro" of East Piedmont, Novara, Italy
| | - Cristina Bozzola
- Dept. of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Novara, Italy; Interdisciplinary Research Centre for Autoimmune Diseases, University "Amedeo Avogadro" of East Piedmont, Novara, Italy
| | | | - Maurizio Parola
- Dept of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Emanuele Albano
- Dept. of Health Sciences, University "Amedeo Avogadro" of East Piedmont, Novara, Italy; Interdisciplinary Research Centre for Autoimmune Diseases, University "Amedeo Avogadro" of East Piedmont, Novara, Italy.
| |
Collapse
|
66
|
Zhou TZ, He K, Gong JP. Kupffer cells and hepatic lipid metabolism disorder. Shijie Huaren Xiaohua Zazhi 2015; 23:2071-2076. [DOI: 10.11569/wcjd.v23.i13.2071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder of our times in both developed and developing countries, which is associated with insulin resistance and genetic susceptibility. Simple steatosis, a seemingly innocent manifestation of early stage NAFLD, may progress into steatohepatitis and cirrhosis, which may even progress into hepatocellular carcinoma. Kupffer cells (KCs) constitute the first firewall of the liver, representing 80%-90% of all tissue macrophages in the body and taking part in various acute and chronic inflammatory reactions. It is deemed that the genesis and development of NAFLD are closely related to the chronic metabolic inflammation induced by KCs. KCs could be activated by lipids accumulated in the liver, and activated KCs participate in metabolic inflammation through releasing pro-inflammatory factors. In this review, we focus on recently uncovered aspects of the biochemical, immunological and molecular events that are responsible for the development and progression of this highly prevalent and potentially serious disease, and summarize the role of KCs in the pathogenesis of NAFLD.
Collapse
|