51
|
Black tea affects obesity by reducing nutrient intake and activating AMP-activated protein kinase in mice. Mol Biol Rep 2018; 45:689-697. [PMID: 29923153 DOI: 10.1007/s11033-018-4205-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
The effects of certain tea components on the prevention of obesity in humans have been reported recently. However, whether Yinghong NO. 9 black tea consumption has beneficial effects on obesity are not known. Here, we obtained a Yinghong NO. 9 black tea infusion (Y9 BTI) and examined the anti-obesity effects of its oral administration. ICR mice were fed a standard diet supplemented with Y9 BTI at 0.5, 1.0, or 2.0 g/kg body weight for two weeks, and the body weight were recorded. HE staining was used to evaluate the effect of Y9 BTI on mice liver. Western blot analysis was used to detect the expression levels of related proteins in the mice liver and adipose. We found that the body weights of the mice in the control group were significantly higher than those of the mice in the middle and high dose groups. The results of western blot showed that Y9 BTI up-regulated the expression of liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and also increased in AMPK phosphorylation (p-AMPK) and LKB1 phosphorylation (p-LKB1). Y9 BTI significantly down-regulated Fas Cell Surface Death Receptor(FAS) and activated the phosphorylation of acetyl-CoA carboxylase (ACC). Furthermore, Y9 BTI (2.0 g/kg BW) down-regulated the expression of three factors (IL-1β, Cox-2, and iNOS). Altogether, Y9 BTI supplementation reduced the feed intake of mice and may prevent obesity by inhibiting lipid absorption. These results suggest that Y9 BTI may regulate adipogenic processes through the LKB1/AMPK pathway.
Collapse
|
52
|
Effect of Fermentation Conditions and Plucking Standards of Tea Leaves on the Chemical Components and Sensory Quality of Fermented Juice. J CHEM-NY 2018. [DOI: 10.1155/2018/4312875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of fermentation conditions (temperature, time, and pH) and plucking standards (one leaf and a bud to four leaves and a bud) on the chemical components and sensory quality of the fermented juices processed from crushed fresh tea leaves were investigated. The results showed that optimum fermentation conditions that resulted in fermented juices of the best sensory quality and the highest content of TFs were a temperature of 35°C, time duration of 75 min, and pH 5.1. The fermented juices processed from new shoots with three leaves and a bud or four leaves and a bud afforded high overall acceptability and TF concentration. These differences arise because tea leaves with different plucking standards have different catechin content and enzyme activities. Fermented tea juice possessed higher concentrations of chemical components such as soluble solids, amino acids, and TFs and exhibited better sensory quality as compared to black tea infusion. The TF concentrations decreased as the pH of the fermenting juice increased, and the fermented juice showed the best overall acceptability. These results provide essential information for the improvement of the processing of black tea beverage by suggesting fermentation of fresh tea leaves as a better alternative to their infusion.
Collapse
|
53
|
Fernando WMADB, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention? J Alzheimers Dis 2018; 59:481-501. [PMID: 28582855 DOI: 10.3233/jad-161200] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.
Collapse
Affiliation(s)
- Warnakulasuriya M A D B Fernando
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia
| | - Geeshani Somaratne
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kathryn G Goozee
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Shehan Williams
- Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | - Harjinder Singh
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
54
|
Narai-Kanayama A, Saruwatari K, Mori N, Nakayama T. Theaflavin-3-gallate specifically interacts with phosphatidylcholine, forming a precipitate resistant against the detergent action of bile salt. Biosci Biotechnol Biochem 2018; 82:466-475. [DOI: 10.1080/09168451.2017.1422967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Black tea is a highly popular beverage, and its pigments, polymerized catechins such as theaflavins (TFs), are attracting attention due to their beneficial health effects. In this study, to test the inhibitory activities of TFs on the intestinal absorption of cholesterol, we investigated their effects on phosphatidylcholine (PC) vesicles in the absence or presence of a bile salt. (−)-Epicatechin gallate, (−)-epigallocatechin gallate, and TFs formed insoluble complexes with PC vesicles. Galloylated TFs such as TF2A, TF2B, and TF3 precipitated far more than other polyphenols. The subsequent addition of taurocholate redispersed the polyphenol-PC complexes, except that a large amount of TF2A remained insoluble. After incubation with taurocholate-PC micelles, TF2A elevated the turbidity of the micelle solution, providing red sediments. The TF2A-specific effect was dependent on the PC concentration. These results suggest that TF2A interacts with PC and aggregates in a specific manner different from catechins and other TFs.
Collapse
Affiliation(s)
- Asako Narai-Kanayama
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kosuke Saruwatari
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Natsumi Mori
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tsutomu Nakayama
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
55
|
Mi Y, Zhang W, Tian H, Li R, Huang S, Li X, Qi G, Liu X. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition. Food Funct 2018; 9:1510-1523. [PMID: 29423494 DOI: 10.1039/c7fo01554b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a major nutraceutical component of green tea (-)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists due to its well-documented antioxidant and antiobesity bioactivities. In the current study, we aimed to investigate the protective effect of EGCG on metabolic misalignment and in balancing the redox status in mice liver and HepG2 cells under insulin resistance condition. Our results indicated that EGCG accelerates the glucose uptake and evokes IRS-1/Akt/GLUT2 signaling pathway via dampening the expression of protein tyrosine phosphatase 1B (PTP1B). Consistently, ectopic expression of PTP1B by Ad-PTP1B substantially impaired EGCG-elicited IRS-1/Akt/GLUT2 signaling pathway. Moreover, EGCG co-treatment stimulated nuclear translocation of Nrf2 by provoking P13K/AKT signaling pathway and thus modulated the downstream expressions of antioxidant enzymes such as HO-1 and NQO-1 in HepG2 cells. Furthermore, knockdown Nrf2 by small interfering RNA (siRNA) notably enhanced the expression of PTP1B and blunt EGCG-stimulated glucose uptake. Consistent with these results, in vivo study revealed that EGCG supplement significantly ameliorated high-fat and high-fructose diet (HFFD)-triggered insulin resistance and oxidative stress by up-regulating the IRS-1/AKT and Keap1/Nrf2 transcriptional pathways. Administration of an appropriate chemopreventive agent, such as EGCG, could potentially serve as an additional therapeutic intervention in the arsenal against obesity.
Collapse
Affiliation(s)
- Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haoyu Tian
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Runnan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuxian Huang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xingyu Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
56
|
Abstract
A growing body of nutritional science highlights the complex mechanisms and pleiotropic pathways of cardiometabolic effects of different foods. Among these, some of the most exciting advances are occurring in the area of flavonoids, bioactive phytochemicals found in plant foods; and in the area of dairy, including milk, yogurt, and cheese. Many of the relevant ingredients and mechanistic pathways are now being clarified, shedding new light on both the ingredients and the pathways for how diet influences health and well-being. Flavonoids, for example, have effects on skeletal muscle, adipocytes, liver, and pancreas, and myocardial, renal, and immune cells, for instance, related to 5'-monophosphate-activated protein kinase phosphorylation, endothelial NO synthase activation, and suppression of NF-κB (nuclear factor-κB) and TLR4 (toll-like receptor 4). Effects of dairy are similarly complex and may be mediated by specific amino acids, medium-chain and odd-chain saturated fats, unsaturated fats, branched-chain fats, natural trans fats, probiotics, vitamin K1/K2, and calcium, as well as by processing such as fermentation and homogenization. These characteristics of dairy foods influence diverse pathways including related to mammalian target of rapamycin, silent information regulator transcript-1, angiotensin-converting enzyme, peroxisome proliferator-activated receptors, osteocalcin, matrix glutamate protein, hepatic de novo lipogenesis, hepatic and adipose fatty acid oxidation and inflammation, and gut microbiome interactions such as intestinal integrity and endotoxemia. The complexity of these emerging pathways and corresponding biological responses highlights the rapid advances in nutritional science and the continued need to generate robust empirical evidence on the mechanistic and clinical effects of specific foods.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.).
| | - Jason H Y Wu
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.)
| |
Collapse
|
57
|
He D, Zhang P, Sai X, Li X, Wang L, Xu Y. Camellia euphlebia flower extract inhibits oleic acid-induced lipid accumulation via reduction of lipogenesis in HepG2 cells. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
58
|
Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8526438. [PMID: 29317985 PMCID: PMC5727797 DOI: 10.1155/2017/8526438] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.
Collapse
|
59
|
Antilipotoxicity Activity of Osmanthus fragrans and Chrysanthemum morifolium Flower Extracts in Hepatocytes and Renal Glomerular Mesangial Cells. Mediators Inflamm 2017; 2017:4856095. [PMID: 29358848 PMCID: PMC5735667 DOI: 10.1155/2017/4856095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
The excess influx of free fatty acids (FFAs) into nonadipose tissues, such as those of liver and kidney, induces lipotoxicity leading to hepatic steatosis and renal dysfunction. The aim of this study was to investigate the protective effects of methanolic flower extracts of Osmanthus fragrans (OF) and Chrysanthemum morifolium (CM) against FFA-induced lipotoxicity in hepatocytes (human HepG2 cells) and renal glomerular mesangial cells (mouse SV40-Mes13 cells). The results showed that OF and CM significantly suppressed FFA-induced intracellular triacylglycerol accumulation via partially inhibiting the gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and glycerol-3-phosphate acyltransferase (GPAT) in HepG2 cells. Both extracts inhibited reactive oxygen species (ROS) generation by FFA-stimulated HepG2 cells. OF and CM also suppressed the mRNA expression of interleukin- (IL-) 1β, IL-6, IL-8, tumor necrosis factor- (TNF-) α, and transforming growth factor- (TGF-) β by HepG2 cells treated with conditioned medium derived from lipopolysaccharide-treated THP-1 monocytes. Furthermore, OF and CM effectively inhibited oleate-induced cellular lipid accumulation, TGF-β secretion, and overexpression of fibronectin in mesangial cells. In conclusion, OF and CM possess hepatoprotective activity by inhibiting hepatic fat load and inflammation and renal protection by preventing FFA-induced mesangial extracellular matrix formation.
Collapse
|
60
|
Chang JJ, Chung DJ, Lee YJ, Wen BH, Jao HY, Wang CJ. Solanum nigrum Polyphenol Extracts Inhibit Hepatic Inflammation, Oxidative Stress, and Lipogenesis in High-Fat-Diet-Treated Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9255-9265. [PMID: 28982243 DOI: 10.1021/acs.jafc.7b03578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Patients with diabetes, obesity, and hyperlipidemia are all high-risk groups for fatty liver; however, the mechanism of fatty liver formation is not completely understood. Studies have indicated that abnormal fat metabolism, oxidative stress, and insulin resistance are positively correlated with peroxidation and abnormal cytokine production. Recent studies have revealed that Solanum nigrum extracts (SNE) possess anti-inflammatory, antioxidation, antihyperlipidemia, and liver protection abilities. Therefore, the present study investigated the in vivo and in vitro effects of an SNE on nonalcoholic fatty liver (NAFL)-induced hepatitis. In vivo data demonstrated that the SNE reduced blood triglyceride, sugar, and cholesterol levels, as well as fat accumulation, oxidative stress, and lipid peroxidation in high-fat-diet-treated mice. The results indicated that the SNE downregulated the expression of fatty acid synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), and sterol regulatory element-binding proteins (SREBPs) through the AMP-activated protein kinase (AMPK) pathway and upregulated the expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha. Furthermore, we prepared a Solanum nigrum polyphenol extract (SNPE) from the SNE; the SNPE reduced hepatic lipid (oleic acid) accumulation. Therefore, SNE have the potential to alleviate NAFL-induced hepatitis, and polyphenolic compounds are the main components of SNE. Moreover, SNE can be used to develop health-food products for preventing NAFL disease.
Collapse
Affiliation(s)
- Ja-Jen Chang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Dai-Jung Chung
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Yi-Ju Lee
- Institute of Medicine, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Bo-Han Wen
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Hsing-Yu Jao
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
- Department of Medical Research, Chung-Shan Medical University Hospital , Number 110, Section 1, Jianguo North Road, Taichung 402, Taiwan
| |
Collapse
|
61
|
Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong CC, Su H, Zhou T, Xia H, Liu W. mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Mol Cell 2017; 68:323-335.e6. [PMID: 29033323 DOI: 10.1016/j.molcel.2017.09.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 12/25/2022]
Abstract
Acetylation is increasingly recognized as one of the major post-translational mechanisms for the regulation of multiple cellular functions in mammalian cells. Acetyltransferase p300, which acetylates histone and non-histone proteins, has been intensively studied in its role in cell growth and metabolism. However, the mechanism underlying the activation of p300 in cells remains largely unknown. Here, we identify the homeostatic sensor mTORC1 as a direct activator of p300. Activated mTORC1 interacts with p300 and phosphorylates p300 at 4 serine residues in the C-terminal domain. Mechanistically, phosphorylation of p300 by mTORC1 prevents the catalytic HAT domain from binding to the RING domain, thereby eliminating intra-molecular inhibition. Functionally, mTORC1-dependent phosphorylation of p300 suppresses cell-starvation-induced autophagy and activates cell lipogenesis. These results uncover p300 as a direct target of mTORC1 and suggest that the mTORC1-p300 pathway plays a pivotal role in cell metabolism by coordinately controlling cell anabolism and catabolism.
Collapse
|
62
|
He HF. Research progress on theaflavins: efficacy, formation, and preparation. Food Nutr Res 2017; 61:1344521. [PMID: 28747864 PMCID: PMC5510227 DOI: 10.1080/16546628.2017.1344521] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Theaflavins (TFs) are a category of natural compounds characterized with the benzotropolone skeleton. The prominent benefits of TFs have been well documented. Amount of research were conducted and excellent achievements were disclosed during the past years. However, as far as we know, there is no comprehensive review about TFs. Scope and approach: This review summarized the recent research progress. The activity of TFs on anti-oxidation, anti-mutagenicity, hypolipidemic, anti-inflammatory, anti-cancer, anti-viral effect as well as the epidemiological cure were sorted. Converging pioneer literature and deduction, the underlying formation mechanism of TFs was proposed. Subsequently, acquisition of TFs was pointed out to be the fundament for further research. Accelerated by enzyme, bio-synthesis of TFs were reviewed simultaneously. At the end, employing modern analysis instrument and technology, isolations of TFs were enumerated. Key findings and conclusions: Structure of the skeleton as well as functional groups were paramount related with the bio-activity of TFs. Meanwhile, oxidation pathway of two catechin molecules to form TFs were hypothesized. Also, ascertainment of the several therapeutic efficiency of the family members of TFs would be the next step in the future.
Collapse
Affiliation(s)
- Hua-Feng He
- Key Laboratory of Tea Processing Engineering of Zhejiang Province, Tea Research Institute, Chinese Academy of Agricultural Sciences, HangZhou, China
- National Engineering Technology Research Center for Tea Industry, HangZhou, China
| |
Collapse
|
63
|
Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation. Acta Pharmacol Sin 2017; 38:998-1008. [PMID: 28344322 DOI: 10.1038/aps.2016.175] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Although the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is not completely understood, the increased influx of free fatty acids (FFAs) into the liver and the FFA-induced hepatic endoplasmic reticulum (ER) stress are two crucial pathogenic processes in the initiation and development of NAFLD. In this study we investigated the effects of astragaloside IV (AS-IV), a bioactive compound purified from Astragali Radix, on FFA-induced lipid accumulation in hepatocytes and elucidated the underlying mechanisms. Human HepG2 cells and primary murine hepatocytes were exposed to FFAs (1 mmol/L, oleate/palmitate, 2:1 ratio) with or without AS-IV for 24 h. Exposure to FFAs induced marked lipid accumulation in hepatocytes, whereas co-treatment with AS-IV (100 μg/mL) significantly attenuated this phenomenon. Notably, AS-IV (50-200 μg/mL) concentration-dependently enhanced the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC) and SREBP-1c, inhibited the accumulation and nuclear translocation of mature SREBP-1 and subsequently decreased the mRNA levels of lipogenic genes including acc1, fas and scd1. AS-IV treatment also concentration-dependently attenuated FFA-induced hepatic ER stress evidenced by the reduction of the key markers, GRP78, CHOP and p-PERK. Pretreated the cells with the AMPK inhibitor compound C (20 μmol/L) greatly diminished these beneficial effects of AS-IV. Our results demonstrate that AS-IV attenuates FFA-induced ER stress and lipid accumulation in an AMPK-dependent manner in hepatocytes, which supports its use as promising therapeutics for hepatic steatosis.
Collapse
|
64
|
Yamashita M, Kumazoe M, Nakamura Y, Won YS, Bae J, Yamashita S, Tachibana H. The Combination of Green Tea Extract and Eriodictyol Inhibited High-Fat/High-Sucrose Diet-Induced Cholesterol Upregulation Is Accompanied by Suppression of Cholesterol Synthesis Enzymes. J Nutr Sci Vitaminol (Tokyo) 2017; 62:249-256. [PMID: 27725410 DOI: 10.3177/jnsv.62.249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Western diets induce obesity associated with an increased risk of hypercholesterolaemia. Indeed, obesity-induced hypercholesterolaemia is correlated with increased coronary cardiovascular disease (CVD) risk. Male C57BL/6J mice were fed a normal diet, high-fat and high-sucrose diet (HF/HS), HF/HS with green tea extract powder diet (HF/HS+GT), HF/HS with eriodictyol diet (HF/HS+Eri), or HF/HS with green tea extract powder and eriodictyol diet (HF/HS+GT+Eri) for 8 wk. Body weight was lower in the HF/HS+GT+Eri group than in the HF/HS group (-8.3%, p<0.01). The HF/HS diet elicited an upregulation of total cholesterol levels (-63%, p<0.001), and low-density lipoprotein (LDL) levels (-89%, p<0.001) were significantly suppressed by the GT+Eri diet. Conversely, no change (p>0.05) was observed in the HF/HS+GT and HF/HS+Eri groups. The HF/HS diet-induced hepatic mRNA increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was ameliorated (-73%) by the oral administration of green tea extract and eriodictyol. Moreover, the GT+Eri diet suppressed HF/HS diet-induced upregulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS) (-75%, p<0.05). Furthermore, the LDL receptor (LDLR) levels were higher in the HF/HS+GT+Eri group (+50%, p<0.05) than in the HF/HS group. These results suggest that a combination of green tea and eriodictyol decreases cholesterol levels, particularly LDL levels, accompanied by the suppression of HMGCR and HMGCS levels and upregulation of LDLR levels in the liver.
Collapse
Affiliation(s)
- Mai Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | | | | | | | | | | | | |
Collapse
|
65
|
Antioxidant properties of tea blunt ROS-dependent lipogenesis: beneficial effect on hepatic steatosis in a high fat-high sucrose diet NAFLD obese rat model. J Nutr Biochem 2017; 40:95-104. [DOI: 10.1016/j.jnutbio.2016.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022]
|
66
|
Lei S, Xie M, Hu B, Zhou L, Sun Y, Saeeduddin M, Zhang H, Zeng X. Effective synthesis of theaflavin-3,3′-digallate with epigallocatechin-3- O -gallate and epicatechin gallate as substrates by using immobilized pear polyphenol oxidase. Int J Biol Macromol 2017; 94:709-718. [DOI: 10.1016/j.ijbiomac.2016.10.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
|
67
|
Mechanisms of Body Weight Reduction by Black Tea Polyphenols. Molecules 2016; 21:molecules21121659. [PMID: 27941615 PMCID: PMC6273558 DOI: 10.3390/molecules21121659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the most common nutritional diseases worldwide. This disease causes health problems, such as dyslipidemia, hyperglycemia, hypertension and inflammation. There are drugs used to inhibit obesity. However, they have serious side effects outweighing their beneficial effects. Black tea, commonly referred to as “fermented tea”, has shown a positive effect on reducing body weight in animal models. Black tea polyphenols are the major components in black tea which reduce body weight. Black tea polyphenols are more effective than green tea polyphenols. Black tea polyphenols exert a positive effect on inhibiting obesity involving in two major mechanisms: (i) inhibiting lipid and saccharide digestion, absorption and intake, thus reducing calorie intake; and (ii) promoting lipid metabolism by activating AMP-activated protein kinase to attenuate lipogenesis and enhance lipolysis, and decreasing lipid accumulation by inhibiting the differentiation and proliferation of preadipocytes; (iii) blocking the pathological processes of obesity and comorbidities of obesity by reducing oxidative stress. Epidemiological studies of the health relevance between anti-obesity and black tea polyphenols consumption remain to be further investigated.
Collapse
|
68
|
Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 2016; 31:55-66. [PMID: 27453478 DOI: 10.1016/j.arr.2016.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/19/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Current ageing research is aimed not only at the promotion of longevity, but also at improving health span through the discovery and development of new therapeutic strategies by investigating molecular and cellular pathways involved in cellular senescence. Understanding the mechanism of action of polyphenolic compounds targeting mTOR (mechanistic target of rapamycin) and related pathways opens up new directions to revolutionize ways to slow down the onset and development of age-dependent degeneration. Herein, we will discuss the mechanisms by which polyphenols can delay the molecular pathogenesis of ageing via manipulation or more specifically inhibition of mTOR-signaling pathways. We will also discuss the implications of polyphenols in targeting mTOR and its related pathways on health life span extension and longevity..
Collapse
|
69
|
Shen CY, Jiang JG, Yang L, Wang DW, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol 2016; 174:1395-1425. [PMID: 27659301 DOI: 10.1111/bph.13631] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Ageing, an unanswered question in the medical field, is a multifactorial process that results in a progressive functional decline in cells, tissues and organisms. Although it is impossible to prevent ageing, slowing down the rate of ageing is entirely possible to achieve. Traditional Chinese medicine (TCM) is characterized by the nourishing of life and its role in anti-ageing is getting more and more attention. This article summarizes the work done on the natural products from TCM that are reported to have anti-ageing effects, in the past two decades. The effective anti-ageing ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, alkaloids and others. Astragaloside, Cistanche tubulosa acteoside, icariin, tetrahydrocurcumin, quercetin, butein, berberine, catechin, curcumin, epigallocatechin gallate, gastrodin, 6-Gingerol, glaucarubinone, ginsenoside Rg1, luteolin, icarisid II, naringenin, resveratrol, theaflavin, carnosic acid, catalpol, chrysophanol, cycloastragenol, emodin, galangin, echinacoside, ferulic acid, huperzine, honokiol, isoliensinine, phycocyanin, proanthocyanidins, rosmarinic acid, oxymatrine, piceid, puerarin and salvianolic acid B are specified in this review. Simultaneously, chemical structures of the monomers with anti-ageing activities are listed, and their source, model, efficacy and mechanism are also described. The TCMs with anti-ageing function are classified according to their action pathways, including the telomere and telomerase, the sirtuins, the mammalian target of rapamycin, AMP-activated kinase and insulin/insulin-like growth factor-1 signalling pathway, free radicals scavenging and the resistance to DNA damage. Finally, Chinese compound prescription and extracts related to anti-ageing are introduced, which provides the basis and the direction for the further development of novel and potential drugs. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Li Yang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Da-Wei Wang
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
70
|
Ham H, Woo KS, Lee YY, Lee B, Kim IH, Lee J. Unsaponifiable Matter from Rice Bran Attenuates High Glucose-Induced Lipid Accumulation by Activating AMPK in HepG2 Cells. J Food Biochem 2016. [DOI: 10.1111/jfbc.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyeonmi Ham
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Koan Sik Woo
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Yu Young Lee
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - Byongwon Lee
- Department of Central Area; National Institute of Crop Science, Rural Development Administration; Suwon Gyeonggi 16613 Republic of Korea
| | - In-Hwan Kim
- Department of Food and Nutrition; Korea University; Seoul 02841 Republic of Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk 28644 Republic of Korea
| |
Collapse
|
71
|
Pan JH, Lee KY, Kim JH, Shin H, Lee JH, Kim YJ. Prunus mume Sieb. et Zucc. fruit ameliorates alcoholic liver injury in mice by inhibiting apoptosis and inflammation through oxidative stress. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
72
|
Wang S, Huang Y, Xu H, Zhu Q, Lu H, Zhang M, Hao S, Fang C, Zhang D, Wu X, Wang X, Sheng J. Oxidized tea polyphenols prevent lipid accumulation in liver and visceral white adipose tissue in rats. Eur J Nutr 2016; 56:2037-2048. [PMID: 27271251 DOI: 10.1007/s00394-016-1241-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/30/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tea polyphenols are the prominent component in tea. After the fermentation process, tea polyphenols are oxidized by polyphenol oxidase to form oxidized tea polyphenols (OTPs). OTPs contain a significant amount of hydrophobic phenyl groups that can bind with non-aqueous materials. Here, we determined whether OTPs can bind with lipids and reduce fat uptake and assessed the effect of OTPs on decreasing obesity and alleviating hyperlipidaemia and other metabolic syndromes. METHODS Rats were divided into three groups: control, high-fat diet (HFD) and OTP groups. The control and HFD groups were fed a chow diet and a high-fat diet, respectively, for 12 weeks; the OTP group was fed a high-fat diet for 6 weeks and then a high-fat diet containing 2 % OTP for 6 weeks. The serum and excrement triglyceride (TAG) and total cholesterol (CHOL) concentrations were determined, and liver tissue and white adipose tissue were collected to detect the expression levels of genes involved in lipid metabolism. RESULTS Our results revealed that OTPs failed to decrease the serum concentrations of TAG and CHOL. OTPs alleviated the accumulation of lipids in the liver tissue and changed the expression levels of the regulators of lipid metabolism, i.e., peroxisome proliferation-activated receptors (ppars), compared with the rats fed a high-fat diet alone. We also observed a significantly decreased reduction of weight in the visceral white adipose, enhanced regulation of fatty acid β-oxidation by PPARα and enhanced biosynthesis of mitochondria in the visceral white adipose of the OTP rats compared with the HFD rats. Additionally, OTPs promoted the excretion of lipids. CONCLUSION Our results suggest that OTPs alleviate the accumulation of lipids in liver and visceral white adipose tissue and promote lipid excretion in rats in vivo.
Collapse
Affiliation(s)
- Sumin Wang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Yewei Huang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Huanhuan Xu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Qiangqiang Zhu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Hao Lu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Mengmeng Zhang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Shumei Hao
- Department of Life Science, Yunnan University, Kunming, 650091, China
| | - Chongye Fang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Dongying Zhang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China
| | - Xiaoyun Wu
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jun Sheng
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Research Center for Tea Processing, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Station of Tea Resource and Processing, Ministry of Agriculture, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
73
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
74
|
Yung MMH, Ngan HYS, Chan DW. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim Biophys Sin (Shanghai) 2016; 48:301-17. [PMID: 26764240 PMCID: PMC4886241 DOI: 10.1093/abbs/gmv128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The development and strategic application of effective anticancer therapies have turned out to be one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is the major obstacle for clinical management of these diseases especially ovarian cancer. In the past years, substantial studies have been carried out with the aim of exploring alternative therapeutic approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects caused in order to produce significant advantages in overall survival and to improve patients' quality of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, A23187, metformin, and bitter melon extract not only prevent cancer progression and metastasis but can also be applied as a supplement to enhance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. However, because of the undesirable outcomes along with the frequent toxic side effects of most pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies have been aimed at the identification of replaceable reagents from nutraceuticals or traditional medicines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still remain obscure. Therefore, better understanding of the functional characterization and regulatory mechanism of natural AMPK activators would help pharmaceutical development in opening an area to intervene ovarian cancer and other human cancers.
Collapse
Affiliation(s)
- Mingo M H Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David W Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
75
|
Nakazono S, Cho K, Isaka S, Abu R, Yokose T, Murata M, Ueno M, Tachibana K, Hirasaka K, Kim D, Oda T. Anti-obesity effects of enzymatically-digested alginate oligomer in mice model fed a high-fat-diet. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bcdf.2016.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Salomone F, Godos J, Zelber-Sagi S. Natural antioxidants for non-alcoholic fatty liver disease: molecular targets and clinical perspectives. Liver Int 2016; 36:5-20. [PMID: 26436447 DOI: 10.1111/liv.12975] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), is emerging as a main health problem in industrialized countries. Lifestyle modifications are effective in the treatment of NAFLD; however, the long-term compliance is low. Therefore, several pharmacological treatments have been proposed but none has shown significant efficacy or long-term safety. Natural polyphenols are a heterogeneous class of polyphenolic compounds contained in vegetables, which are being proposed for the treatment of different metabolic disorders. Although the beneficial effect of these compounds has traditionally related to their antioxidant properties, they also exert several beneficial effects on hepatic and extra-hepatic glucose and lipid homeostasis. Furthermore, natural polyphenols exert antifibrogenic and antitumoural effects in animal models, which appear relevant from a clinical point of view because of the association of NASH with cirrhosis and hepatocellular carcinoma. Several polyphenols, such anthocyanins, curcumin and resveratrol and those present in coffee, tea, soy are available in the diet and their consumption can be proposed as part of a healthy diet for the treatment of NAFLD. Other phenolic compounds, such as silymarin, are commonly consumed worldwide as nutraceuticals or food supplements. Natural antioxidants are reported to have beneficial effects in preclinical models of NAFLD and in pilot clinical trials, and thus need clinical evaluation. In this review, we summarize the existing evidence regarding the potential role of natural antioxidants in the treatment of NAFLD and examine possible future clinical applications.
Collapse
Affiliation(s)
- Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Shira Zelber-Sagi
- The Liver Unit, Gastroenterology Department, Tel-Aviv Medical Center, Tel Aviv, Israel.,School of Public Health, University of Haifa, Haifa, Israel
| |
Collapse
|
77
|
Morishita S, Tomita K, Ono T, Murakoshi M, Saito K, Sugiyama K, Nishino H, Kato H. Lactoferrin attenuates fatty acid-induced lipotoxicity via Akt signaling in hepatocarcinoma cells. Biochem Cell Biol 2015; 93:566-73. [DOI: 10.1139/bcb-2015-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of lesions ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). The excess influx of fatty acids (FAs) into the liver is recognized as a main cause of simple steatosis formation and progression to NASH. Recently, administration of lactoferrin (LF), a glycoprotein present in milk, was suggested to prevent NAFLD development. However, the effect of LF on the contribution of FA to NAFLD development remains unclear. In this study, the effects of LF on FA mixture (FAm)-induced lipotoxicity using human hepatocarcinoma G2 cells were assessed. FAm significantly decreased cell viability and increased intracellular lipid accumulation, whereas LF significantly recovered cell viability without affecting lipid accumulation. FAm-induced lactic dehydrogenase (LDH) and caspase-3/7 activities were significantly decreased by LF and SP600125, a c-Jun N-terminal kinase (JNK) specific inhibitor. We also found that LF added to FAm-treated cells induced Akt phosphorylation, which contributed to inhibition of JNK signaling pathway-dependent apoptosis. Akt inhibitor VIII, an allosteric Akt inhibitor, significantly attenuated the effect of LF on LDH activity and abrogated the ones on cell viability and caspase-3/7 activity. In summary, the present study has revealed that LF has a protective effect on FAm-induced lipotoxicity in a HepG2 model of NAFLD and identified the activation of the Akt signaling pathway as a possibly major mechanism.
Collapse
Affiliation(s)
- Satoru Morishita
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- “Food for Life,” Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiko Tomita
- “Food for Life,” Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoji Ono
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-0841, Japan
| | - Kenji Saito
- “Food for Life,” Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keikichi Sugiyama
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hoyoku Nishino
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-0841, Japan
| | - Hisanori Kato
- “Food for Life,” Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
78
|
Huang Q, Chen L, Teng H, Song H, Wu X, Xu M. Phenolic compounds ameliorate the glucose uptake in HepG2 cells' insulin resistance via activating AMPK. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
79
|
Rui BB, Chen H, Jang L, Li Z, Yang JM, Xu WP, Wei W. Melatonin Upregulates the Activity of AMPK and Attenuates Lipid Accumulation in Alcohol-induced Rats. Alcohol Alcohol 2015; 51:11-9. [PMID: 26564773 DOI: 10.1093/alcalc/agv126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Melatonin is supposed to be an effective hepatoprotective agent. The effects and mechanisms of melatonin on alcoholic fatty liver (AFL) have not been well explored. The aim of this study was to investigate the preventive and therapeutic effects of melatonin on alcohol-induced fatty liver rats. METHODS The AFL rats were induced by intragastric infusion of alcohol plus a high-fat diet for 6 weeks, and melatonin (10, 20, 40 mg/kg) was administered by gastric perfusion. We also established fatty acid overload cell model in HepG2 cells to investigate the effect of melatonin on AMP-activated protein kinase (AMPK) activity. RESULTS The results showed that melatonin (20 and 40 mg/kg) administration significantly reduced alcohol-induced hepatic steatosis with lowering activities of serum alanine aminotransferase, aspartate aminotransferase and levels of serum and hepatic triglyceride. The activity of superoxide dismutase was increased and the content of malondialdehyde was decreased in liver homogenates of rats treated with melatonin. Melatonin increased the phosphorylation of AMPK in the liver tissues of alcohol-induced rats as well. Additionally, in vitro studies showed that melatonin increased the expression of melatonin1A receptor (MT1R), whereas luzindole, a receptor antagonist of melatonin, had no effect on its expression. In addition, melatonin reduced the levels of adenosine 3',5'-cyclic monophosphate (cAMP) and increased the phosphorylation of AMPK, and melatonin treatment could markedly reverse these effects. CONCLUSION In conclusion, melatonin could protect against liver injury caused by alcohol gastric perfusion. The effect may be related to alleviating lipid peroxidation and upregulating the activity of AMPK mediated by MT1R signaling pathway.
Collapse
Affiliation(s)
- Bei-bei Rui
- Anhui No. 2 Province People's Hospital, Hefei, Anhui 200041, China
| | - Hao Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Lei Jang
- Anhui No. 2 Province People's Hospital, Hefei, Anhui 200041, China
| | - Zhen Li
- Anhui No. 2 Province People's Hospital, Hefei, Anhui 200041, China
| | - Jing-mo Yang
- Anhui Provincial Cancer Hospital, Hefei, Anhui 230001, China
| | - Wei-ping Xu
- Anhui Medical University affiliated Provincial Hospital, Hefei, Anhui 230001, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| |
Collapse
|
80
|
Bai-Hu-Jia-Ren-Shen-Tang Decoction Reduces Fatty Liver by Activating AMP-Activated Protein Kinase In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:651734. [PMID: 26508982 PMCID: PMC4609840 DOI: 10.1155/2015/651734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/14/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Obesity and associated conditions, such as type 2 diabetes mellitus (T2DM) and
nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem.
In Asian traditional medicine, Bai-Hu-Jia-Ren-Shen-Tang (BHJRST) is widely used in
diabetes patients to reduce thirst. However, whether it has a therapeutic effect on
T2DM or NAFLD is not known. The aim of this study was to examine whether BHJRST
had a lipid-lowering effect using a HuS-E/2 cell model of fatty liver induced by palmitate
and in a db/db mouse model of dyslipidemia. Incubation of HuS-E/2 cells with palmitate
markedly increased lipid accumulation and expression of adipose triglyceride lipase (ATGL),
which is involved in lipolysis. BHJRST significantly decreased lipid accumulation and increased
ATGL levels and phosphorylation of AMP-activated protein kinase (AMPK)
and its primary downstream target, acetyl-CoA carboxylase (ACC), which are
involved in fatty acid oxidation. Furthermore, after twice daily oral administration
for six weeks, BHJRST significantly reduced hepatic fat accumulation in db/db mice,
as demonstrated by increased hepatic AMPK and ACC phosphorylation, reduced serum
triglyceride levels, and reduced hepatic total lipid content. The results show that BHJRST
has a lipid-lowering effect in the liver that is mediated by activation of the AMPK signaling pathway.
Collapse
|
81
|
Postprandial insulin and glucose levels are reduced in healthy subjects when a standardised breakfast meal is supplemented with a filtered sugarcane molasses concentrate. Eur J Nutr 2015; 55:2365-2376. [DOI: 10.1007/s00394-015-1043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 01/17/2023]
|
82
|
Matsui T. Condensed catechins and their potential health-benefits. Eur J Pharmacol 2015; 765:495-502. [PMID: 26386288 DOI: 10.1016/j.ejphar.2015.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 01/05/2023]
Abstract
Condensed catechins are commonly present in fermented tea, and are produced by the oxidation of monomeric catechins. Due to their auto-oxidation, catechins have diverse structural features, including different binding modes and degrees of polymerization. Because of their structural complexity, their physiological functions and possible health-benefits have not yet been fully investigated. This review focuses on the physiological potentials of dimeric and trimeric catechins in the intestine (regulation of absorption across the intestinal membrane), blood vessels (vasorelaxation in vessel regulation), and muscle organs (promotion of glucose uptake resulting in an anti-diabetic effect). Furthermore, the roles of non-absorbable theaflavins (dimeric catechins), absorbable theasinensins (dimeric catechins), and absorbable procyanidins (dimeric and trimeric catechins) on target organs are discussed.
Collapse
Affiliation(s)
- Toshiro Matsui
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| |
Collapse
|
83
|
Cordero-Herrera I, Martín MÁ, Fernández-Millán E, Álvarez C, Goya L, Ramos S. Cocoa and cocoa flavanol epicatechin improve hepatic lipid metabolism in in vivo and in vitro models. Role of PKCζ. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
84
|
Ko HJ, Lo CY, Wang BJ, Chiou RYY, Lin SM. Theaflavin-3,3′-digallate, a black tea polyphenol, stimulates lipolysis associated with the induction of mitochondrial uncoupling proteins and AMPK–FoxO3A–MnSOD pathway in 3T3-L1 adipocytes. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
85
|
Zhu W, Zou B, Nie R, Zhang Y, Li CM. A-type ECG and EGCG dimers disturb the structure of 3T3-L1 cell membrane and strongly inhibit its differentiation by targeting peroxisome proliferator-activated receptor γ with miR-27 involved mechanism. J Nutr Biochem 2015; 26:1124-35. [PMID: 26145192 DOI: 10.1016/j.jnutbio.2015.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
The effects of four proanthocyanidin dimers including epicatechin-(4β→8, 2β→O→7)-epicatechin (A-type EC dimer), epicatechin-(4β→8)-epicatechin (B-type EC dimer), epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) on 3T3-L1 preadipocyte cell differentiation and the underlying mechanisms were explored and compared. The results showed that A-type ECG dimer and A-type EGCG dimer significantly reduced the intracellular lipid accumulation in 3T3-L1 preadipocyte cells by targeting miR-27a and miR-27b as well as peroxisome proliferator-activated receptor γ (PPARγ) in the early stage of differentiation, while A-type EC dimer and B-type EC dimer showed little effect. In addition, our results revealed that the inhibitory effects of proanthocyanidin dimers on 3T3-L1 preadipocyte differentiation were highly structure-dependent and the effects were associated with the dimer-membrane interactions. The presence of galloyl moieties and A-type linkage within the structure of proanthocyanidins might be crucial for their inhibitory effect on adipogenesis. The strong disturbing effects of A-type ECG and A type EGCG dimers on the fluidity, hydrophobicity and permeability of membrane of 3T3-L1 preadipocyte cell were at least, in part, responsible for their distinct inhibitory effects on adipocyte hyperplasia.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Rongzu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan, China.
| |
Collapse
|
86
|
Liu YJ, Shieh PC, Lee JC, Chen FA, Lee CH, Kuo SC, Ho CT, Kuo DH, Huang LJ, Way TD. Hypolipidemic activity of Taraxacum mongolicum associated with the activation of AMP-activated protein kinase in human HepG2 cells. Food Funct 2015; 5:1755-62. [PMID: 24903219 DOI: 10.1039/c4fo00183d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the hypolipidemic effect and potential mechanisms of T. mongolicum extracts. T. mongolicum was extracted by refluxing three times with water (TM-1), 50% ethanol (TM-2) and 95% ethanol (TM-3). TM-2 contained components with the most effective hypolipidemic potentials in HepG2 cells. Extended administration of TM-2 stimulated a significant reduction in body weight and levels of serum triglyceride LDL-C and total cholesterol in rats. To evaluate the bioactive compounds, we successively fractionated TM-2 with n-hexane (TM-4), dichloromethane (TM-5), ethyl acetate (TM-6), and water (TM-7). TM-4 fraction had the most effective hypolipidemic potential in HepG2 cells, and it decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) through the phosphorylation of AMP-activated protein kinase (AMPK). Linoleic acid, phytol and tetracosanol are bioactive compounds identified from TM-4. These results suggest that T. mongolicum is expected to be useful for hypolipidemic effects.
Collapse
Affiliation(s)
- Yan-Jin Liu
- Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Escalona-Nandez I, Guerrero-Escalera D, Estanes-Hernández A, Ortíz-Ortega V, Tovar AR, Pérez-Monter C. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions. Biochem Biophys Res Commun 2015; 458:751-6. [PMID: 25686501 DOI: 10.1016/j.bbrc.2015.01.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 12/30/2022]
Abstract
Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and other proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions.
Collapse
Affiliation(s)
- Ivonne Escalona-Nandez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F., Mexico
| | - Dafne Guerrero-Escalera
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F., Mexico
| | - Alma Estanes-Hernández
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F., Mexico
| | - Victor Ortíz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F., Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F., Mexico
| | - Carlos Pérez-Monter
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Sección XVI, Tlalpan, 14000, México, D.F., Mexico.
| |
Collapse
|
88
|
Kim E, Kim S, Park Y. Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. Int J Food Sci Nutr 2015; 66:308-13. [PMID: 25582172 DOI: 10.3109/09637486.2014.1000839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of this study is to investigate that sorghum extract (SE) exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism-related protein expression. C57BL/6 mice were fed a modified AIN-93G diet (NC) with saline, or a modified AIN-93G diet with 2% cholesterol and 0.25% cholic acid with either saline (HC) or 600 mg SE/kg body weight (HC-SE). Levels of total cholesterol and triglycerides in serum and liver were significantly lower in HC-SE than in HC. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, sterol regulatory elementary binding protein2 and fatty acid synthase were significantly lower, whereas phosphorylated AMP-activated protein kinase expression was significantly higher in HC-SE than in HC. Cholesterol 7-α hydroxylase expression was also significantly higher in mice given SE than in those given HC. These results suggest that the cholesterol-lowering effect of SE may be related to the regulation of hepatic cholesterol metabolism in this mouse model.
Collapse
Affiliation(s)
- Eunyoung Kim
- Department of Food and Nutrition, Hanyang University , Seoul , South Korea
| | | | | |
Collapse
|
89
|
Rojas C, Pan-Castillo B, Valls C, Pujadas G, Garcia-Vallve S, Arola L, Mulero M. Resveratrol enhances palmitate-induced ER stress and apoptosis in cancer cells. PLoS One 2014; 9:e113929. [PMID: 25436452 PMCID: PMC4250062 DOI: 10.1371/journal.pone.0113929] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/03/2014] [Indexed: 01/01/2023] Open
Abstract
Background Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines. Principal Findings We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity. Conclusions Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy.
Collapse
Affiliation(s)
- Cristina Rojas
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Belén Pan-Castillo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
- Reproductive Biology and Gynecological Oncology Group, Center for Nanohealth, Institute of Life, Swansea University, Swansea, SA28PP, United Kingdom
| | - Cristina Valls
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Gerard Pujadas
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, 43204, Spain
| | - Santi Garcia-Vallve
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, 43204, Spain
| | - Lluis Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, 43204, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, 43007, Spain
- * E-mail:
| |
Collapse
|
90
|
Zanotti I, Dall'Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D. Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 2014; 6:13-31. [PMID: 25367393 DOI: 10.1039/c4fo00670d] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Collated observations from several epidemiological studies have demonstrated that dietary intake of (poly)phenols from nuts, coffee, cocoa, grapes, and berries may protect against the development of atherosclerosis. Whereas this beneficial activity has previously been linked mainly to antioxidant or anti-inflammatory properties, recently emerging data suggest mechanisms by which (poly)phenolic substances can modulate cellular lipid metabolism, thereby mitigating atherosclerotic plaque formation. In this review, both experimental studies and clinical trials investigating the atheroprotective effects of the most relevant dietary (poly)phenols are critically discussed.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
91
|
Zou B, Nie R, Zeng J, Ge Z, Xu Z, Li C. Persimmon tannin alleviates hepatic steatosis in L02 cells by targeting miR-122 and miR-33b and its effects closely associated with the A type ECG dimer and EGCG dimer structural units. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
92
|
Theaflavin-3, 3′-digallate, a black tea polyphenol, attenuates adipocyte-activated inflammatory response of macrophage associated with the switch of M1/M2-like phenotype. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
93
|
Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct 2014; 5:2420-9. [PMID: 25098399 DOI: 10.1039/c4fo00095a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is well known that tea has a variety of beneficial impacts on human health, including anti-obesity effects. It is well documented that green tea and its constituent catechins suppress obesity, but the effects of other types of tea on obesity and the potential mechanisms involved are not yet fully understood. In this study, we investigated the suppression of adiposity by oolong, black and pu-erh tea and characterized the underlying molecular mechanism in vivo. We found that the consumption of oolong, black or pu-erh tea for a period of one week significantly decreased visceral fat without affecting body weight in male ICR mice. On a mechanistic level, the consumption of tea enhanced the phosphorylation of AMP-activated protein kinase (AMPK) in white adipose tissue (WAT). This was accompanied by the induction of WAT protein levels of uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results indicate that oolong, black and pu-erh tea, and in particular, black tea, suppresses adiposity via phosphorylation of the key metabolic regulator AMPK and increases browning of WAT.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
94
|
Yuliana ND, Korthout H, Wijaya CH, Kim HK, Verpoorte R. Plant-derived food ingredients for stimulation of energy expenditure. Crit Rev Food Sci Nutr 2014; 54:373-88. [PMID: 24188308 DOI: 10.1080/10408398.2011.586739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of obesity is related to the regulation of energy intake, energy expenditure, and energy storage in the body. Increasing energy expenditure by inducing lipolysis followed by fat oxidation is one of the alternatives which could help to reverse this increasingly widespread condition. Currently, there is no approved drug targeting on stimulation of energy expenditure available. The use of herbal medicines has become a preferred alternative, supported by the classical consensus on the innocuity of herbal medicine vs synthetic drugs, something that often lacks a scientific basis (ban on Ephedra, for example). The inclusion of functional food in the daily diet has also been promoted although its efficacy requires further investigation. This review summarizes the results of recent work focused on the investigation of edible plant materials targeted at various important pathways related to stimulation of energy expenditure. The aim is to evaluate a number of plants that may be of interest for further studies because of their potential to provide novel lead compounds or functional foods which may be used to combat obesity, but require further studies to evaluate their antiobesity activity in humans.
Collapse
Affiliation(s)
- Nancy Dewi Yuliana
- a Department of Pharmacognosy, Section of Metabolomics , Leiden University , Einsteinweg 55, 2333 CC , Leiden , The Netherlands
| | | | | | | | | |
Collapse
|
95
|
An Active Part ofArtemisia sacrorumLedeb. Suppresses Gluconeogenesis through AMPK Mediated GSK3β and CREB Phosphorylation in Human HepG2 Cells. Biosci Biotechnol Biochem 2014; 75:1079-84. [DOI: 10.1271/bbb.100881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 2014; 356:251-62. [PMID: 24530513 DOI: 10.1016/j.canlet.2014.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/02/2014] [Accepted: 02/09/2014] [Indexed: 12/15/2022]
Abstract
Cells reprogram their metabolism very early during carcinogenesis; this event is critical for the establishment of other cancer hallmarks. Many oncogenes and tumor suppressor genes control metabolism by interplaying with the existing nutrient-sensing intracellular pathways. Mammalian target of rapamycin, mTOR, is emerging as a collector and sorter of a metabolic network controlling upstream and downstream modulation of these same genes. Natural compounds represent a source of anti-cancer molecules with chemopreventive and therapeutic properties. This review describes selected pathways and genes orchestrating the metabolic reprogramming and discusses the potential of natural compounds to target oncogenic metabolic aberrations.
Collapse
|
97
|
Zhou J, Farah BL, Sinha RA, Wu Y, Singh BK, Bay BH, Yang CS, Yen PM. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS One 2014; 9:e87161. [PMID: 24489859 PMCID: PMC3906112 DOI: 10.1371/journal.pone.0087161] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/18/2013] [Indexed: 12/19/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has been shown to have anti-inflammatory, anti-cancer, anti-steatotic effects on the liver. Autophagy also mediates similar effects; however, it is not currently known whether EGCG can regulate hepatic autophagy. Here, we show that EGCG increases hepatic autophagy by promoting the formation of autophagosomes, increasing lysosomal acidification, and stimulating autophagic flux in hepatic cells and in vivo. EGCG also increases phosphorylation of AMPK, one of the major regulators of autophagy. Importantly, siRNA knockdown of AMPK abrogated autophagy induced by EGCG. Interestingly, we observed lipid droplet within autophagosomes and autolysosomes and increased lipid clearance by EGCG, suggesting it promotes lipid metabolism by increasing autophagy. In mice fed with high-fat/western style diet (HFW; 60% energy as fat, reduced levels of calcium, vitamin D3, choline, folate, and fiber), EGCG treatment reduces hepatosteatosis and concomitantly increases autophagy. In summary, we have used genetic and pharmacological approaches to demonstrate EGCG induction of hepatic autophagy, and this may contribute to its beneficial effects in reducing hepatosteatosis and potentially some other pathological liver conditions.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Benjamin Livingston Farah
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rohit Anthony Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brijesh Kumar Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung S. Yang
- Departments of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Paul Michael Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
98
|
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr Neurosci 2014; 18:49-65. [DOI: 10.1179/1476830513y.0000000099] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99
|
Zou B, Ge ZZ, Zhang Y, Du J, Xu Z, Li CM. Persimmon Tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing NF-κB activation and inflammatory responses in High-Fat Diet Rats. Food Funct 2014; 5:1536-46. [DOI: 10.1039/c3fo60635j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High molecular weight persimmon tannin is a central component accounting for the anti-hyperlipidemic effects of consuming persimmon fruits via AMPK pathway.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan, China
| | - Zhen-zhen Ge
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan, China
| | - Ying Zhang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan, China
| | - Jing Du
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan, China
| | - Ze Xu
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan, China
| | - Chun-mei Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan, China
- Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University)
- Ministry of Education
| |
Collapse
|
100
|
Seo KI, Lee J, Choi RY, Lee HI, Lee JH, Jeong YK, Kim MJ, Lee MK. Anti-obesity and anti-insulin resistance effects of tomato vinegar beverage in diet-induced obese mice. Food Funct 2014; 5:1579-86. [DOI: 10.1039/c4fo00135d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|