51
|
Tempesta C, Hijazi A, Moussian B, Roch F. Boudin trafficking reveals the dynamic internalisation of specific septate junction components in Drosophila. PLoS One 2017; 12:e0185897. [PMID: 28977027 PMCID: PMC5627947 DOI: 10.1371/journal.pone.0185897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The maintenance of paracellular barriers in invertebrate epithelia depends on the integrity of specific cell adhesion structures known as septate junctions (SJ). Multiple studies in Drosophila have revealed that these junctions have a stereotyped architecture resulting from the association in the lateral membrane of a large number of components. However, little is known about the dynamic organisation adopted by these multi-protein complexes in living tissues. We have used live imaging techniques to show that the Ly6 protein Boudin is a component of these adhesion junctions and can diffuse systemically to associate with the SJ of distant cells. We also observe that this protein and the claudin Kune-kune are endocytosed in epidermal cells during embryogenesis. Our data reveal that the SJ contain a set of components exhibiting a high membrane turnover, a feature that could contribute in a tissue-specific manner to the morphogenetic plasticity of these adhesion structures.
Collapse
Affiliation(s)
- Camille Tempesta
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Assia Hijazi
- Lebanese University, Faculty of Sciences I and V—Doctorate School of Science and Technology-PRASE, Campus Rafic Hariri, Hadath-Beirut, Lebanon
| | - Bernard Moussian
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Fernando Roch
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
53
|
Watanabe H, Takeda R, Hirota K, Kondoh G. Lipid raft dynamics linked to sperm competency for fertilization in mice. Genes Cells 2017; 22:493-500. [PMID: 28425215 DOI: 10.1111/gtc.12491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2017] [Indexed: 12/13/2022]
Abstract
It is well known that mammalian sperm acquires fertilization ability after several maturation processes, particularly within the female reproductive tract. In a previous study, we found that both glycosylphosphatidylinositol (GPI)-anchored protein (GPI-AP) release and lipid raft movement occur during the sperm maturation process. In several genetic studies, release of GPI-AP is a crucial step for sperm fertilization ability in the mouse. Here, we show that lipid raft movement is also fundamental for sperm to be competent for fertilization by comparing the sperm maturation process of two mouse inbred strains, C57BL/6 and BALB/c. We found that ganglioside GM1 movement was exclusively reduced in BALB/c compared with C57BL/6 among other examined sperm maturation parameters, such as GPI-AP release, sperm migration to the oviduct, cholesterol efflux, protein tyrosine phosphorylation and acrosome reaction, and was strongly linked to sperm fertility phenotype. The relationship between GM1 movement and in vitro fertilization ability was confirmed in other mouse strains, suggesting that lipid raft movement is one of the important steps for completing the sperm maturation process.
Collapse
Affiliation(s)
- Hitomi Watanabe
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Rie Takeda
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
54
|
Huang X, Xu J, Wang Y, Guo C, Chen L, Gu X, Lai W, Peng X, Yang G. GP50 as a promising early diagnostic antigen for Taenia multiceps infection in goats by indirect ELISA. Parasit Vectors 2016; 9:618. [PMID: 27903284 PMCID: PMC5131396 DOI: 10.1186/s13071-016-1915-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Background Coenurosis is caused by coenurus, the metacestode of Taenia multiceps, which mainly parasitizes the brain and spinal cord of cattle, sheep and goats. To date, no widely-approved methods are available to identify early coenurus infection. Methods In this study, we identified a full-length cDNA that encodes GP50 (TmGP50) from the transcriptome of T. multiceps, and then cloned and expressed in E. coli. The native proteins in adult stage and coenurus were located via immunofluorescence assays, while the potential of recombinant TmGP50 protein (rTmGP50) for indirect ELISA-based serodiagnostics was assessed using native goat sera. In addition, we orally infected 20 goats with mature T. multiceps eggs. Praziquantel (10%) was given to 10 of the goats 45 days post-infection (p.i.). Blood samples were collected for 17 weeks p.i. from the 20 goats and anti-rTmGP50 antibodies were evaluated using the indirect ELISA established here. Results The TmGP50 contains an 897 bp open reading frame, in which signal sequence resides in 1 ~ 48 sites and mature polypeptide consists of 282 amino acid residues. Immunofluorescence staining showed that native TmGP50 was localized to the microthrix and parenchymatous zone of the adult parasite and coenurus, and the coenurus cystic wall. The indirect ELISA based on rTmGP50 exhibited a sensitivity of 95.0% and a specificity of 92.6% when detecting GP50 antibodies in sera of naturally infected goats and sheep. In goats experimentally infected with T. multiceps, anti-TmGP50 antibody was detectable from 2 to 17 weeks p.i. in the control group, while the antibody fell below the cut-off value about 3 weeks after praziquantel treatment. Conclusion Our results indicate that recombinant TmGP50 is a suitable early diagnostic antigen for coenurus infection in goats.
Collapse
Affiliation(s)
- Xing Huang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Chengdu Agricultural College, Chengdu, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cheng Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuerong Peng
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
55
|
Lee GH, Fujita M, Takaoka K, Murakami Y, Fujihara Y, Kanzawa N, Murakami KI, Kajikawa E, Takada Y, Saito K, Ikawa M, Hamada H, Maeda Y, Kinoshita T. A GPI processing phospholipase A2, PGAP6, modulates Nodal signaling in embryos by shedding CRIPTO. J Cell Biol 2016; 215:705-718. [PMID: 27881714 PMCID: PMC5147002 DOI: 10.1083/jcb.201605121] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/24/2016] [Accepted: 11/02/2016] [Indexed: 01/22/2023] Open
Abstract
Lee et al. show that PGAP6 is a glycosylphosphatidylinositol (GPI)-specific phospholipase A2 expressed on the cell surface. PGAP6 selectively acts on a GPI anchor of CRIPTO, but not its close homologue CRYPTIC, and modulates Nodal signaling during embryonic development. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be shed from the cell membrane by GPI cleavage. In this study, we report a novel GPI-processing enzyme, termed post-glycosylphosphatidylinositol attachment to proteins 6 (PGAP6), which is a GPI-specific phospholipase A2 mainly localized at the cell surface. CRIPTO, a GPI-AP, which plays critical roles in early embryonic development by acting as a Nodal coreceptor, is a highly sensitive substrate of PGAP6, whereas CRYPTIC, a close homologue of CRIPTO, is not sensitive. CRIPTO processed by PGAP6 was released as a lysophosphatidylinositol-bearing form, which is further cleaved by phospholipase D. CRIPTO shed by PGAP6 was active as a coreceptor in Nodal signaling, whereas cell-associated CRIPTO activity was reduced when PGAP6 was expressed. Homozygous Pgap6 knockout mice showed defects in early embryonic development, particularly in the formation of the anterior–posterior axis, which are common features with Cripto knockout embryos. These results suggest PGAP6 plays a critical role in Nodal signaling modulation through CRIPTO shedding.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Morihisa Fujita
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriyuki Kanzawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei-Ichi Murakami
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eriko Kajikawa
- Center for Developmental Biology, Institute of Physical and Chemical Research, Kobe, Hyogo 650-0047, Japan
| | - Yoko Takada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazunobu Saito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Hamada
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Developmental Biology, Institute of Physical and Chemical Research, Kobe, Hyogo 650-0047, Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan .,World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|