51
|
Abstract
Archaeal membrane lipids are structurally different from bacterial and eukaryotic membrane lipids, but little is known about the enzymes involved in their synthesis. In a recent study, Exterkate et al. identified and characterized a cardiolipin synthase from the archaeon Methanospirillum hungatei. This enzyme can synthesize archaeal, bacterial, and mixed archaeal/bacterial cardiolipin species from a wide variety of substrates, some of which are not even naturally occurring. This discovery could revolutionize synthetic lipid biology, being used to construct a variety of lipids with nonnatural head groups and mixed archaeal/bacterial hydrophobic chains.
Collapse
Affiliation(s)
- Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
52
|
Woodall BM, Harp JR, Brewer WT, Tague ED, Campagna SR, Fozo EM. Enterococcus faecalis Readily Adapts Membrane Phospholipid Composition to Environmental and Genetic Perturbation. Front Microbiol 2021; 12:616045. [PMID: 34093456 PMCID: PMC8177052 DOI: 10.3389/fmicb.2021.616045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/15/2021] [Indexed: 11/22/2022] Open
Abstract
The bacterial lipid membrane, consisting both of fatty acid (acyl) tails and polar head groups, responds to changing conditions through alteration of either the acyl tails and/or head groups. This plasticity is critical for cell survival as it allows maintenance of both the protective nature of the membrane as well as functioning membrane protein complexes. Bacteria that live in fatty-acid rich environments, such as those found in the human host, can exploit host fatty acids to synthesize their own membranes, in turn, altering their physiology. Enterococcus faecalis is such an organism: it is a commensal of the mammalian intestine where it is exposed to fatty-acid rich bile, as well as a major cause of hospital infections during which it is exposed to fatty acid containing-serum. Within, we employed an untargeted approach to detect the most common phospholipid species of E. faecalis OG1RF via ultra-high performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). We examined not only how the composition responds upon exposure to host fatty acids but also how deletion of genes predicted to synthesize major polar head groups impact lipid composition. Regardless of genetic background and differing basal lipid composition, all strains were able to alter their lipid composition upon exposure to individual host fatty acids. Specific gene deletion strains, however, had altered survival to membrane damaging agents. Combined, the enterococcal lipidome is highly resilient in response to both genetic and environmental perturbation, likely contributing to stress survival.
Collapse
Affiliation(s)
- Brittni M. Woodall
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - John R. Harp
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - William T. Brewer
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric D. Tague
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
53
|
Sieniawska E, Sawicki R, Truszkiewicz W, Marchev AS, Georgiev MI. Usnic Acid Treatment Changes the Composition of Mycobacterium tuberculosis Cell Envelope and Alters Bacterial Redox Status. mSystems 2021; 6:e00097-21. [PMID: 33947802 PMCID: PMC8269206 DOI: 10.1128/msystems.00097-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis developed efficient adaptation mechanisms in response to different environmental conditions. This resulted in the ability to survive in human macrophages and in resistance to numerous antibiotics. To get insight into bacterial responses to potent antimycobacterial natural compounds, we tested how usnic acid, a lichen-derived secondary metabolite, would influence mycobacteria at transcriptomic and metabolomic levels. The analysis of expression of sigma factors revealed a profound impact of usnic acid on one of the primary genetic regulatory systems of M. tuberculosis Combined liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses allowed us to observe the perturbations in metabolic pathways, as well as in lipid composition, which took place within 24 h of exposure. Early bacterial response was related to redox homeostasis, lipid synthesis, and nucleic acid repair. Usnic acid treatment provoked disturbances of redox state in mycobacterial cells and increased production of structural elements of the cell wall and cell membrane. In addition, to increase the number of molecules related to restoration of redox balance, the rearrangements of the cell envelope were the first defense mechanisms observed under usnic acid treatment.IMPORTANCE The evaluation of mechanisms of mycobacterial response to natural products has been barely studied. However, it might be helpful to reveal bacterial adaptation strategies, which are eventually crucial for the discovery of new drug targets and, hence, understanding the resistance mechanisms. This study showed that the first-line mycobacterial defense against usnic acid, a potent antimicrobial agent, is the remodeling of the cell envelope and restoring redox homeostasis. Transcriptomic data correlated with metabolomics analysis. The observed metabolic changes appeared similar to those exerted by antibiotics.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Medical University of Lublin, Chair and Department of Pharmacognosy, Lublin, Poland
| | - Rafal Sawicki
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Wieslaw Truszkiewicz
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Lublin, Poland
| | - Andrey S Marchev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Bulgarian Academy of Sciences, The Stephan Angeloff Institute of Microbiology, Laboratory of Metabolomics, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
54
|
Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 2021; 20:384-405. [PMID: 33692549 PMCID: PMC7944254 DOI: 10.1038/s41573-021-00154-z] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/09/2022]
Abstract
Gasdermins were recently identified as the mediators of pyroptosis - inflammatory cell death triggered by cytosolic sensing of invasive infection and danger signals. Upon activation, gasdermins form cell membrane pores, which release pro-inflammatory cytokines and alarmins and damage the integrity of the cell membrane. Roles for gasdermins in autoimmune and inflammatory diseases, infectious diseases, deafness and cancer are emerging, revealing potential novel therapeutic avenues. Here, we review current knowledge of the family of gasdermins, focusing on their mechanisms of action and roles in normal physiology and disease. Efforts to develop drugs to modulate gasdermin activity to reduce inflammation or activate more potent immune responses are highlighted.
Collapse
Affiliation(s)
- Xing Liu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Shiyu Xia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Vítová M, Stránská M, Palyzová A, Řezanka T. Detailed structural characterization of cardiolipins from various biological sources using a complex analytical strategy comprising fractionation, hydrolysis and chiral chromatography. J Chromatogr A 2021; 1648:462185. [PMID: 33984647 DOI: 10.1016/j.chroma.2021.462185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Cardiolipins (1,3-bis(sn-3'-phosphatidyl)-sn-glycerol) (CLs) are widespread in many organisms, from bacteria to higher green plants and mammals. CLs were observed in Gram-positive bacterium of the genus Kocuria, brewer's yeast Saccharomyces, the green alga Chlamydomonas, spinach and beef heart. A mixture of molecular species of CLs was obtained from total lipids by hydrophilic interaction liquid chromatography (HILIC), and these were further separated and identified by reversed phase LC/MS with negative tandem electrospray ionization. The majority of CLs molecular species from each organism were cleaved using phospholipase C from Bacillus cereus. This phospholipase cleaves CLs into 1,2-diglycerols and phosphatidylglycerol 3-phosphates, which were then separated. After CLs cleavage, diacylglycerols such as sn-1,2-diacyl-3-acetyl-glycerols (i.e., triacylglycerols) were separated and identified by chiral chromatography/MS-positive tandem ESI. Significant differences in the composition of the molecular species between the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties of CLs were found in all organisms tested. Molecular species of CLs that contained four different fatty acids were identified in all five samples, and CLs containing very long chain fatty acids were identified in yeast. In addition, CLs containing both enantiomers (at the sn-2 carbon) were present in the bacterium tested. These findings were further supported by data already published in GenBank where, in the same family - Micrococcaceae - both enzymes responsible for chirality in the sn-2 position, glycerol-3-phosphate and glycerol-1-phosphate dehydrogenases, were present.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Milena Stránská
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technická 3, 166 28 Prague, Czech Republic
| | - Andrea Palyzová
- University of Chemistry and Technology Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
56
|
Oemer G, Koch J, Wohlfarter Y, Alam MT, Lackner K, Sailer S, Neumann L, Lindner HH, Watschinger K, Haltmeier M, Werner ER, Zschocke J, Keller MA. Phospholipid Acyl Chain Diversity Controls the Tissue-Specific Assembly of Mitochondrial Cardiolipins. Cell Rep 2021; 30:4281-4291.e4. [PMID: 32209484 DOI: 10.1016/j.celrep.2020.02.115] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mohammad T Alam
- Warwick Medical School, The University of Warwick, Warwick, CV4 7AL Coventry, UK
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Neumann
- Department of Basic Sciences in Engineering Science, University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert H Lindner
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Haltmeier
- Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
57
|
Demicheli V, Tomasina F, Sastre S, Zeida A, Tórtora V, Lima A, Batthyány C, Radi R. Cardiolipin interactions with cytochrome c increase tyrosine nitration yields and site-specificity. Arch Biochem Biophys 2021; 703:108824. [PMID: 33675813 DOI: 10.1016/j.abb.2021.108824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
The interaction between cytochrome c and cardiolipin is a relevant process in the mitochondrial redox homeostasis, playing roles in the mechanism of electron transfer to cytochrome c oxidase and also modulating cytochrome c conformation, reactivity and function. Peroxynitrite is a widespread nitrating agent formed in mitochondria under oxidative stress conditions, and can result in the formation of tyrosine nitrated cytochrome c. Some of the nitro-cytochrome c species undergo conformational changes at physiological pH and increase its peroxidase activity. In this work we evaluated the influence of cardiolipin on peroxynitrite-mediated cytochrome c nitration yields and site-specificity. Our results show that cardiolipin enhances cytochrome c nitration by peroxynitrite and targets it to heme-adjacent Tyr67. Cytochrome c nitration also modifies the affinity of protein with cardiolipin. Using a combination of experimental techniques and computer modeling, it is concluded that structural modifications in the Tyr67 region are responsible for the observed changes in protein-derived radical and tyrosine nitration levels, distribution of nitrated proteoforms and affinity to cardiolipin. Increased nitration of cytochrome c in presence of cardiolipin within mitochondria and the gain of peroxidatic activity could then impact events such as the onset of apoptosis and other processes related to the disruption of mitochondrial redox homeostasis.
Collapse
Affiliation(s)
- Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Florencia Tomasina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Santiago Sastre
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Verónica Tórtora
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Institut Pasteur de Montevideo, Uruguay; Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Carlos Batthyány
- Institut Pasteur de Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
58
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
59
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Localization of Carbon-Carbon Double Bond and Cyclopropane Sites in Cardiolipins via Gas-Phase Charge Inversion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:455-464. [PMID: 33370110 PMCID: PMC8557092 DOI: 10.1021/jasms.0c00348] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cardiolipins (CLs) are comprised of two phosphatic acid moieties bound to a central glycerol backbone and are substituted with four acyl chains. Consequently, a vast number of distinct CL structures are possible in different biological contexts, representing a significant analytical challenge. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) has become a widely used approach for the detection, characterization, and quantitation of complex lipids, including CLs. Central to this approach is fragmentation of the [CLs - H]- or [CL - 2H]2- anions by collision-induced dissociation (CID). Product ions in the resulting tandem mass spectra confirm the CL subclass assignment and reveal the numbers of carbons and degrees of unsaturation in each of the acyl chains. Conventional CID, however, affords limited structural elucidation of the fatty acyl chains, failing to discriminate isomers arising from different site(s) of unsaturation or cyclopropanation and potentially obscuring their metabolic origins. Here, we report the application of charge inversion ion/ion chemistry in the gas phase to enhance the structural elucidation of CLs. Briefly, CID of [CL - H]2- anions generated via negative ion ESI allowed for the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Next, gas-phase derivatization of the resulting CL product ions, including fatty acyl carboxylate anions, was effected with gas-phase ion/ion charge inversion reactions with tris-phenanthroline magnesium reagent dications. Subsequent isolation and activation of the charge-inverted fatty acyl complex cations permitted the localization of both carbon-carbon double bond and cyclopropane motifs within each of the four acyl chains of CLs. This approach was applied to the de novo elucidation of unknown CLs in a biological extract revealing distinct isomeric populations and regiochemical relationships between double bonds and carbocyles.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
60
|
Léger JL, Pichaud N, Boudreau LH. Purification of Functional Platelet Mitochondria Using a Discontinuous Percoll Gradient. Methods Mol Biol 2021; 2276:57-66. [PMID: 34060032 DOI: 10.1007/978-1-0716-1266-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The isolation of mitochondria is gaining importance in experimental and clinical laboratory settings. Of interest, mitochondria and mitochondrial components (i.e., circular mitochondrial DNA, N-formylated peptides, cardiolipin) have been involved in several human inflammatory pathologies, such as cancer, Alzheimer's disease, Parkinson's disease, and rheumatoid arthritis. While several mitochondrial isolation methods have been previously published, these techniques are aimed at yielding mitochondria from cell types other than platelets. In addition, little information is known on the number of platelet-derived microvesicles that can contaminate the mitochondrial preparation or even the overall quality as well as functional and structural integrity of mitochondria. Here we describe a purification method, using a discontinuous Percoll gradient, yielding mitochondria of high purity and integrity from human platelets.
Collapse
Affiliation(s)
- Jacob L Léger
- Department of Chemistry and Biochemistry, Universite de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Universite de Moncton, Moncton, NB, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Universite de Moncton, Moncton, NB, Canada.
| |
Collapse
|
61
|
Meex RCR, Blaak EE. Mitochondrial Dysfunction is a Key Pathway that Links Saturated Fat Intake to the Development and Progression of NAFLD. Mol Nutr Food Res 2021; 65:e1900942. [PMID: 32574416 PMCID: PMC7816225 DOI: 10.1002/mnfr.201900942] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and is characterized by fat accumulation in the liver. Hypercaloric diets generally increase hepatic fat accumulation, whereas hypocaloric diets decrease liver fat content. In addition, there is evidence to suggest that moderate amounts of unsaturated fatty acids seems to be protective for the development of a fatty liver, while consumption of saturated fatty acids (SFA) appears to predispose toward hepatic steatosis. Recent studies highlight a key role for mitochondrial dysfunction in the development and progression of NAFLD. It is proposed that changes in mitochondrial structure and function are key mechanisms by which SFA lead to the development and progression of NAFLD. In this review, it is described how SFA intake is associated with liver steatosis and decreases the efficiency of the respiratory transport chain. This results in the production of reactive oxygen species and damage to nearby structures, eventually leading to inflammation, apoptosis, and scarring of the liver. Furthermore, studies demonstrating that SFA intake affects the composition of mitochondrial membranes are presented, and this process accelerates the progression of NAFLD. It is likely that events are intertwined and reinforce each other, leading to a constant deterioration in health.
Collapse
Affiliation(s)
- Ruth C. R. Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| |
Collapse
|
62
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
63
|
Manrique-Moreno M, Suwalsky M, Patiño-González E, Fandiño-Devia E, Jemioła-Rzemińska M, Strzałka K. Interaction of the antimicrobial peptide ∆M3 with the Staphylococcus aureus membrane and molecular models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183498. [PMID: 33157098 DOI: 10.1016/j.bbamem.2020.183498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is one of the most pathogenic bacteria; infections with it are associated with significant morbidity and mortality in health care facilities. Antimicrobial peptides are a promising next generation antibiotic with great potential against bacterial infections. In this study, evidence is presented of the biological and biophysical properties of the novel synthetic peptide ΔM3. Its antimicrobial activity against the ATCC 25923 and methicillin-resistant S. aureus strains was evaluated. The results showed that ΔM3 has activity in the same μM range as vancomycin. Biophysical studies were performed with palmitoyloleoylphosphatidylglycerol and cardiolipin liposomes loaded with calcein and used to follow the lytic activity of the peptide by fluorescence spectroscopy. On the other hand, ΔM3 was induced to interact with molecular models of the erythrocyte membrane buil-up of dimiristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative lipids of the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ΔM3 to interact with the bacteria and erythrocyte model membranes was also evaluated by X-ray diffraction and differential scanning calorimetry. The morphological changes induced by the peptide to human erythrocytes were observed by scanning electron microscopy. Results with these techniques indicated that ΔM3 interacted with the inner monolayer of the erythrocyte membrane, which is rich in anionic lipids. Additionally, the cytotoxic effects of ΔM3 on red blood cells were evaluated by monitoring the hemoglobin release from erythrocytes. The results obtained from these different approaches showed ΔM3 to be a non-cytotoxic peptide with antibacterial activity.
Collapse
Affiliation(s)
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | | | | | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, JagiellonianUniversity, Krakow, Poland
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, JagiellonianUniversity, Krakow, Poland
| |
Collapse
|
64
|
Cardiolipin in Immune Signaling and Cell Death. Trends Cell Biol 2020; 30:892-903. [DOI: 10.1016/j.tcb.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
65
|
Ahmadpour ST, Mahéo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the Mitochondrial Signature Lipid: Implication in Cancer. Int J Mol Sci 2020; 21:E8031. [PMID: 33126604 PMCID: PMC7662448 DOI: 10.3390/ijms21218031] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiolipins (CLs) are specific phospholipids of the mitochondria composing about 20% of the inner mitochondria membrane (IMM) phospholipid mass. Dysregulation of CL metabolism has been observed in several types of cancer. In most cases, the evidence for a role for CL in cancer is merely correlative, suggestive, ambiguous, and cancer-type dependent. In addition, CLs could play a pivotal role in several mitochondrial functions/parameters such as bioenergetics, dynamics, mitophagy, and apoptosis, which are involved in key steps of cancer aggressiveness (i.e., migration/invasion and resistance to treatment). Therefore, this review focuses on studies suggesting that changes in CL content and/or composition, as well as CL metabolism enzyme levels, may be linked with the progression and the aggressiveness of some types of cancer. Finally, we also introduce the main mitochondrial function in which CL could play a pivotal role with a special focus on its implication in cancer development and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jean-François Dumas
- Université de Tours, Inserm, Nutrition, Croissance et Cancer UMR1069, 37032 Tours, France; (S.T.A.); (K.M.); (S.S.); (L.B.)
| |
Collapse
|
66
|
Morales-Aparicio JC, Lara Vasquez P, Mishra S, Barrán-Berdón AL, Kamat M, Basso KB, Wen ZT, Brady LJ. The Impacts of Sortase A and the 4'-Phosphopantetheinyl Transferase Homolog Sfp on Streptococcus mutans Extracellular Membrane Vesicle Biogenesis. Front Microbiol 2020; 11:570219. [PMID: 33193163 PMCID: PMC7649765 DOI: 10.3389/fmicb.2020.570219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are produced by many Gram-positive organisms, but information regarding vesiculogenesis is incomplete. We used single gene deletions to evaluate the impacts on Streptococcus mutans EMV biogenesis of Sortase A (SrtA), which affects S. mutans EMV composition, and Sfp, a 4'-phosphopantetheinyl transferase that affects Bacillus subtilis EMV stability. ΔsrtA EMVs were notably larger than Δsfp and wild-type (WT) EMVs. EMV proteins identified from all three strains are known to be involved in cell wall biogenesis and cell architecture, bacterial adhesion, biofilm cell density and matrix development, and microbial competition. Notably, the AtlA autolysin was not processed to its mature active form in the ΔsrtA mutant. Proteomic and lipidomic analyses of all three strains revealed multiple dissimilarities between vesicular and corresponding cytoplasmic membranes (CMs). A higher proportion of EMV proteins are predicted substrates of the general secretion pathway (GSP). Accordingly, the GSP component SecA was identified as a prominent EMV-associated protein. In contrast, CMs contained more multi-pass transmembrane (TM) protein substrates of co-translational transport machineries than EMVs. EMVs from the WT, but not the mutant strains, were enriched in cardiolipin compared to CMs, and all EMVs were over-represented in polyketide flavonoids. EMVs and CMs were rich in long-chain saturated, monounsaturated, and polyunsaturated fatty acids, except for Δsfp EMVs that contained exclusively polyunsaturated fatty acids. Lipoproteins were less prevalent in EMVs of all three strains compared to their CMs. This study provides insight into biophysical characteristics of S. mutans EMVs and indicates discrete partitioning of protein and lipid components between EMVs and corresponding CMs of WT, ΔsrtA, and Δsfp strains.
Collapse
Affiliation(s)
| | | | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Ana L. Barrán-Berdón
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zezhang T. Wen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
67
|
Gilmozzi V, Gentile G, Castelo Rueda MP, Hicks AA, Pramstaller PP, Zanon A, Lévesque M, Pichler I. Interaction of Alpha-Synuclein With Lipids: Mitochondrial Cardiolipin as a Critical Player in the Pathogenesis of Parkinson's Disease. Front Neurosci 2020; 14:578993. [PMID: 33122994 PMCID: PMC7573567 DOI: 10.3389/fnins.2020.578993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Alpha-Synuclein (α-Syn) is a central protein in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders including Parkinson’s disease (PD). Although its role in neurotransmission is well established, the precise role of this protein in disease pathogenesis is still not fully understood. It is, however, widely regarded to be associated with the misfolding and accumulation of toxic intracellular aggregates. In fact, α-Syn is the most abundant protein component of Lewy bodies and Lewy neurites, which are also characterized by a high lipid content. Lipids, the main constituents of cellular membranes, have been implicated in many aspects of PD-related processes. α-Syn interacts with membrane phospholipids and free fatty acids via its N-terminal domain, and altered lipid-protein complexes might enhance both its binding to synaptic and mitochondrial membranes and its oligomerization. Several studies have highlighted a specific interaction of α-Syn with the phospholipid cardiolipin (CL), a major constituent of mitochondrial membranes. By interacting with CL, α-Syn is able to disrupt mitochondrial membrane integrity, leading to mitochondrial dysfunction. Additionally, externalized CL is able to facilitate the refolding of toxic α-Syn species at the outer mitochondrial membrane. In this review, we discuss how α-Syn/lipid interactions, in particular the α-Syn/CL interaction at the mitochondrial membrane, may affect α-Syn aggregation and mitochondrial dysfunction and may thus represent an important mechanism in the pathogenesis of PD.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Cervo Brain Research Centre, Université Laval, Quebec, QC, Canada
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
68
|
Bozelli JC, Epand RM. Determinants of lipids acyl chain specificity: A tale of two enzymes. Biophys Chem 2020; 265:106431. [DOI: 10.1016/j.bpc.2020.106431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
|
69
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
70
|
Pfefferle K, Lopalco P, Breisch J, Siemund A, Corcelli A, Averhoff B. In vivo synthesis of monolysocardiolipin and cardiolipin by Acinetobacter baumannii phospholipase D and effect on cationic antimicrobial peptide resistance. Environ Microbiol 2020; 22:5300-5308. [PMID: 32929857 DOI: 10.1111/1462-2920.15231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.
Collapse
Affiliation(s)
- Katharina Pfefferle
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Jennifer Breisch
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Anna Siemund
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Beate Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
71
|
Randolph CE, Fabijanczuk KC, Blanksby SJ, McLuckey SA. Proton Transfer Reactions for the Gas-Phase Separation, Concentration, and Identification of Cardiolipins. Anal Chem 2020; 92:10847-10855. [PMID: 32639138 PMCID: PMC7490759 DOI: 10.1021/acs.analchem.0c02545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiolipin (CL) analysis demands high specificity, due to the extensive diversity of CL structures, and high sensitivity, due to their low relative abundance within the lipidome. While electrospray ionization mass spectrometry (ESI-MS) is the most widely used technology in lipidomics, the potential for multiple charging presents unique challenges for CL identification and quantification. Depending on the conditions, ESI-MS of lipid extracts in negative ion mode can give rise to cardiolipins ionized as both singly and doubly deprotonated anions. This signal degeneracy diminishes the signal-to-noise ratio, while in addition (for direct infusion), the dianion population falls within a m/z range already heavily congested with monoanions from more abundant glycerophospholipid subclasses. Herein, we describe a direct infusion strategy for CL profiling from total lipid extracts utilizing gas-phase proton-transfer ion/ion reactions. In this approach, lipid extracts are ionized by negative ion ESI generating both singly deprotonated phospholipids and doubly deprotonated CL anions. Charge reduction of the negative ion population by ion/ion reactions leads to an enhancement in singly deprotonated [CL - H]- species via proton transfer to the corresponding [CL - 2H]2-̅ dianions. To concentrate the [CL - H]- anion signal, multiple iterations of ion accumulation and proton-transfer ion/ion reaction can be performed prior to subsequent interrogation. Mass selection and collisional activation of the enriched population of [CL - H]- anions facilitates the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Demonstrated advantages of this new approach derive from the improved performance in complex mixture analysis affording detailed characterization of low abundant CLs directly from a total biological extract.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
72
|
Le CH, Benage LG, Specht KS, Li Puma LC, Mulligan CM, Heuberger AL, Prenni JE, Claypool SM, Chatfield KC, Sparagna GC, Chicco AJ. Tafazzin deficiency impairs CoA-dependent oxidative metabolism in cardiac mitochondria. J Biol Chem 2020; 295:12485-12497. [PMID: 32665401 DOI: 10.1074/jbc.ra119.011229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Barth syndrome is a mitochondrial myopathy resulting from mutations in the tafazzin (TAZ) gene encoding a phospholipid transacylase required for cardiolipin remodeling. Cardiolipin is a phospholipid of the inner mitochondrial membrane essential for the function of numerous mitochondrial proteins and processes. However, it is unclear how tafazzin deficiency impacts cardiac mitochondrial metabolism. To address this question while avoiding confounding effects of cardiomyopathy on mitochondrial phenotype, we utilized Taz-shRNA knockdown (TazKD ) mice, which exhibit defective cardiolipin remodeling and respiratory supercomplex instability characteristic of human Barth syndrome but normal cardiac function into adulthood. Consistent with previous reports from other models, mitochondrial H2O2 emission and oxidative damage were greater in TazKD than in wild-type (WT) hearts, but there were no differences in oxidative phosphorylation coupling efficiency or membrane potential. Fatty acid and pyruvate oxidation capacities were 40-60% lower in TazKD mitochondria, but an up-regulation of glutamate oxidation supported respiration rates approximating those with pyruvate and palmitoylcarnitine in WT. Deficiencies in mitochondrial CoA and shifts in the cardiac acyl-CoA profile paralleled changes in fatty acid oxidation enzymes and acyl-CoA thioesterases, suggesting limitations of CoA availability or "trapping" in TazKD mitochondrial metabolism. Incubation of TazKD mitochondria with exogenous CoA partially rescued pyruvate and palmitoylcarnitine oxidation capacities, implicating dysregulation of CoA-dependent intermediary metabolism rather than respiratory chain defects in the bioenergetic impacts of tafazzin deficiency. These findings support links among cardiolipin abnormalities, respiratory supercomplex instability, and mitochondrial oxidant production and shed new light on the distinct metabolic consequences of tafazzin deficiency in the mammalian heart.
Collapse
Affiliation(s)
- Catherine H Le
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA
| | - Lindsay G Benage
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Kalyn S Specht
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Mulligan
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam J Chicco
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA .,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
73
|
Mass spectrometric investigation of cardiolipins and their oxidation products after two-dimensional heart-cut liquid chromatography. J Chromatogr A 2020; 1619:460918. [DOI: 10.1016/j.chroma.2020.460918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
|
74
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
75
|
Lamade AM, Anthonymuthu TS, Hier ZE, Gao Y, Kagan VE, Bayır H. Mitochondrial damage & lipid signaling in traumatic brain injury. Exp Neurol 2020; 329:113307. [PMID: 32289317 DOI: 10.1016/j.expneurol.2020.113307] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are essential for neuronal function because they serve not only to sustain energy and redox homeostasis but also are harbingers of death. A dysregulated mitochondrial network can cascade until function is irreparably lost, dooming cells. TBI is most prevalent in the young and comes at significant personal and societal costs. Traumatic brain injury (TBI) triggers a biphasic and mechanistically heterogenous response and this mechanistic heterogeneity has made the development of standardized treatments challenging. The secondary phase of TBI injury evolves over hours and days after the initial insult, providing a window of opportunity for intervention. However, no FDA approved treatment for neuroprotection after TBI currently exists. With recent advances in detection techniques, there has been increasing recognition of the significance and roles of mitochondrial redox lipid signaling in both acute and chronic central nervous system (CNS) pathologies. Oxidized lipids and their downstream products result from and contribute to TBI pathogenesis. Therapies targeting the mitochondrial lipid composition and redox state show promise in experimental TBI and warrant further exploration. In this review, we provide 1) an overview for mitochondrial redox homeostasis with emphasis on glutathione metabolism, 2) the key mechanisms of TBI mitochondrial injury, 3) the pathways of mitochondria specific phospholipid cardiolipin oxidation, and 4) review the mechanisms of mitochondria quality control in TBI with consideration of the roles lipids play in this process.
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary E Hier
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Gao
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Institute for Regenerative Medicine, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research UPMC, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
76
|
Fritsch LE, Moore ME, Sarraf SA, Pickrell AM. Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. J Mol Biol 2020; 432:2510-2524. [PMID: 31689437 PMCID: PMC7195237 DOI: 10.1016/j.jmb.2019.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 12/29/2022]
Abstract
Selective autophagy of mitochondria, or mitophagy, refers to the specific removal and degradation of damaged or surplus mitochondria via targeting to the lysosome for destruction. Disruptions in this homeostatic process may contribute to disease. The identification of diverse mitophagic pathways and how selectivity for each of these pathways is conferred is just beginning to be understood. The removal of both damaged and healthy mitochondria under disease and physiological conditions is controlled by either ubiquitin-dependent or receptor-dependent mechanisms. In this review, we will discuss the known types of mitophagy observed in mammals, recent findings related to PINK1/Parkin-mediated mitophagy (which is the most well-studied form of mitophagy), the implications of defective mitophagy to neurodegenerative processes, and unanswered questions inspiring future research that would enhance our understanding of mitochondrial quality control.
Collapse
Affiliation(s)
- Lauren E Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - M Elyse Moore
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shireen A Sarraf
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
77
|
Shon JC, Noh YJ, Kwon YS, Kim JH, Wu Z, Seo JS. The impact of phenanthrene on membrane phospholipids and its biodegradation by Sphingopyxis soli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110254. [PMID: 32007746 DOI: 10.1016/j.ecoenv.2020.110254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The direct interactions of bacterial membranes and polycyclic aromatic hydrocarbons (PAHs) strongly influence the biological processes, such as metabolic activity and uptake of substrates due to changes in membrane lipids. However, the elucidation of adaptation mechanisms as well as membrane phospholipid alterations in the presence of phenanthrene (PHE) from α-proteobacteria has not been fully explored. This study was conducted to define the degradation efficiency of PHE by Sphingopyxis soli strain KIT-001 in a newly isolated from Jeonju river sediments and to characterize lipid profiles in the presence of PHE in comparison to cells grown on glucose using quantitative lipidomic analysis. This strain was able to respectively utilize 1-hydroxy-2-naphthoic acid and salicylic acid as sole carbon source and approximately 90% of PHE (50 mg/L) was rapidly degraded via naphthalene route within 1 day incubation. In the cells grown on PHE, strain KIT-001 appeared to dynamically change profiles of metabolite and lipid in comparison to cells grown on glucose. The levels of primary metabolites, phosphatidylethanolamines (PE), and phosphatidic acids (PA) were significantly decreased, whereas the levels of phosphatidylcholines (PC) and phosphatidylglycerols (PG) were significantly increased. The adaptation mechanism of Sphingopyxis sp. regarded mainly the accumulation of bilayer forming lipids and anionic lipids to adapt more quickly under restricted nutrition and toxicity condition. Hence, these findings are conceivable that strain KIT-001 has a good adaptive ability and biodegradation for PHE through the alteration of phospholipids, and will be helpful for applications for effective bioremediation of PAHs-contaminated sites.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Zhexue Wu
- Mass Spectrometry Convergence Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
78
|
Chu J, Liu J, Hoover TR. Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths. Biomolecules 2020; 10:biom10030363. [PMID: 32120823 PMCID: PMC7175336 DOI: 10.3390/biom10030363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.
Collapse
Affiliation(s)
- Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Jun Liu
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, West Haven, CT 06516, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
79
|
Sieniawska E, Sawicki R, Golus J, Georgiev MI. Untargetted Metabolomic Exploration of the Mycobacterium tuberculosis Stress Response to Cinnamon Essential Oil. Biomolecules 2020; 10:biom10030357. [PMID: 32111061 PMCID: PMC7175327 DOI: 10.3390/biom10030357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
The antimycobacterial activity of cinnamaldehyde has already been proven for laboratory strains and for clinical isolates. What is more, cinnamaldehyde was shown to threaten the mycobacterial plasma membrane integrity and to activate the stress response system. Following promising applications of metabolomics in drug discovery and development we aimed to explore the mycobacteria response to cinnamaldehyde within cinnamon essential oil treatment by untargeted liquid chromatography–mass spectrometry. The use of predictive metabolite pathway analysis and description of produced lipids enabled the evaluation of the stress symptoms shown by bacteria. This study suggests that bacteria exposed to cinnamaldehyde could reorganize their outer membrane as a physical barrier against stress factors. They probably lowered cell wall permeability and inner membrane fluidity, and possibly redirected carbon flow to store energy in triacylglycerols. Being a reactive compound, cinnamaldehyde may also contribute to disturbances in bacteria redox homeostasis and detoxification mechanisms.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
- Correspondence:
| | - Rafał Sawicki
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (R.S.); (J.G.)
| | - Joanna Golus
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (R.S.); (J.G.)
| | - Milen I. Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
80
|
Dewey ED, Stokes LM, Burchell BM, Shaffer KN, Huntington AM, Baker JM, Nadendla S, Giglio MG, Bender KS, Touchman JW, Blankenship RE, Madigan MT, Sattley WM. Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis convoluta Strain HH T. Microorganisms 2020; 8:E313. [PMID: 32106460 PMCID: PMC7143216 DOI: 10.3390/microorganisms8030313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.
Collapse
Affiliation(s)
- Emma D. Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Lynn M. Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Brad M. Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Kathryn N. Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Austin M. Huntington
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Jennifer M. Baker
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Suvarna Nadendla
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.N.); (M.G.G.)
| | - Michelle G. Giglio
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.N.); (M.G.G.)
| | - Kelly S. Bender
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.)
| | | | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University in Saint Louis, St. Louis, MO 63130, USA;
| | - Michael T. Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.)
| | - W. Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| |
Collapse
|
81
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Yamskova OV, Lyubetsky VA, Sorokina EV, Shram SI, Markov AV, Vyssokikh MY. Biological Diversity and Remodeling of Cardiolipin in Oxidative Stress and Age-Related Pathologies. BIOCHEMISTRY (MOSCOW) 2020; 84:1469-1483. [PMID: 31870251 DOI: 10.1134/s000629791912006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Age-related dysfunctions are accompanied by impairments in the mitochondrial morphology, activity of signaling pathway, and protein interactions. Cardiolipin is one of the most important phospholipids that maintains the curvature of the cristae and facilitates assembly and interaction of complexes and supercomplexes of the mitochondrial respiratory chain. The fatty acid composition of cardiolipin influences the biophysical properties of the membrane and, therefore, is crucial for the mitochondrial bioenergetics. The presence of unsaturated fatty acids in cardiolipin is the reason of its susceptibility to oxidative damage. Damaged cardiolipin undergoes remodeling by phospholipases, acyltransferases, and transacylases, creating a highly specific fatty acyl profile for each tissue. In this review, we discuss the variability of cardiolipin fatty acid composition in various species and different tissues of the same species, both in the norm and at various pathologies (e.g., age-related diseases, oxidative and traumatic stresses, knockouts/knockdowns of enzymes of the cardiolipin synthesis pathway). Progressive pathologies, including age-related ones, are accompanied by cardiolipin depletion and decrease in the efficiency of its remodeling, as well as the activation of an alternative way of pathological remodeling, which causes replacement of cardiolipin fatty acids with polyunsaturated ones (e.g., arachidonic or docosahexaenoic acids). Drugs or special diet can contribute to the partial restoration of the cardiolipin acyl profile to the one rich in fatty acids characteristic of an intact organ or tissue, thereby correcting the consequences of pathological or insufficient cardiolipin remodeling. In this regard, an urgent task of biomedicine is to study the mechanism of action of mitochondria-targeted antioxidants effective in the treatment of age-related pathologies and capable of accumulating not only in vitro, but also in vivo in the cardiolipin-enriched membrane fragments.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - T S Putyatina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O V Yamskova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - V A Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - E V Sorokina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S I Shram
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A V Markov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
82
|
Quantitative Connection between Cell Size and Growth Rate by Phospholipid Metabolism. Cells 2020; 9:cells9020391. [PMID: 32046235 PMCID: PMC7072380 DOI: 10.3390/cells9020391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
The processes involved in cell growth are extremely complicated even for a single cell organism such as Escherichia coli, while the relationship between growth rate and cell size is simple. We aimed to reveal the systematic link between them from the aspect of the genome-scale metabolic network. Since the growth rate reflects metabolic rates of bacteria and the cell size relates to phospholipid synthesis, a part of bacterial metabolic networks, we calculated the cell length from the cardiolipin synthesis rate, where the cardiolipin synthesis reaction is able to represent the phospholipid metabolism of Escherichia coli in the exponential growth phase. Combined with the flux balance analysis, it enables us to predict cell length and to examine the quantitative relationship between cell length and growth rate. By simulating bacteria growing in various nutrient media with the flux balance analysis and calculating the corresponding cell length, we found that the increase of the synthesis rate of phospholipid, the cell width, and the protein fraction in membranes caused the increase of cell length with growth rate. Different tendencies of phospholipid synthesis rate changing with growth rate result in different relationships between cell length and growth rate. The effects of gene deletions on cell size and growth rate are also examined. Knocking out the genes, such as Δ tktA, Δ tktB, Δ yqaB, Δ pgm, and Δ cysQ, affects growth rate largely while affecting cell length slightly. Results of this method are in good agreement with experiments.
Collapse
|
83
|
Helmer PO, Korf A, Hayen H. Analysis of artificially oxidized cardiolipins and monolyso-cardiolipins via liquid chromatography/high-resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8566. [PMID: 31469924 DOI: 10.1002/rcm.8566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Cardiolipins (CL) are a special lipid class which plays a main role in energy metabolism in mitochondria and is involved in apoptosis. In contrast to other glycerophospholipids, they contain four fatty acyl residues which results in a high structural diversity. Oxidation, for example by reactive oxygen species, or lyso forms such as monolyso-CL (MLCL), increases this diversity. Mass spectrometric analysis and computational identification of CL, MLCL and their oxidation products is therefore a challenging task. METHODS In order to distinguish CL, MLCL and their oxidation products, a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed. A hydrophilic interaction liquid chromatography (HILIC)-based solid-phase extraction (SPE) clean-up approach was developed for CL enrichment. Graphical analysis of CL, MLCL and their oxidation products was carried out by a three-dimensional Kendrick mass defect (3D-KMD) plot module, as well as a refined lipid search module of the open-source metabolomics data mining software MZmine 2. RESULTS The HILIC-based SPE clean-up enabled complete separation of polar and nonpolar lipid classes. A yeast (Saccharomyces cerevisiae) lipid extract, which was artificially oxidized by means of the Fenton reaction, was analyzed by the developed LC/MS/MS method. CL species with differences in chain length and degree of unsaturation have been separated by high-performance liquid chromatography (HPLC). In total 66 CL, MLCL and oxidized species have been identified utilizing 3D-KMD plots in combination with database matching using MZmine 2. For further characterization of annotated species, MS/MS experiments have been utilized. CONCLUSIONS 3D-KMD plots capturing chromatographic and high-resolution mass spectrometry data have been successfully used for graphical identification of CL, MLCL as well as their oxidized species. Therefore, we chose multiple KMD bases such as hydrogen and oxygen to visualize the degree of unsaturation and oxidation capturing chromatographic data by means of a color-coded paint scale as the third dimension. In combination with database matching, the analysis of low concentrated lipid species in complex samples has been significantly improved.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
84
|
ALCAT1 Overexpression Affects Supercomplex Formation and Increases ROS in Respiring Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9186469. [PMID: 31885824 PMCID: PMC6925921 DOI: 10.1155/2019/9186469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
Cardiolipin (CL) is a multifunctional dimeric phospholipid that physically interacts with electron transport chain complexes I, III, and IV, and ATP synthase (complex V). The enzyme ALCAT1 catalyzes the conversion of cardiolipin by incorporating polyunsaturated fatty acids into cardiolipin. The resulting CL species are said to be more susceptible to oxidative damage. This is thought to negatively affect the interaction of cardiolipin and electron transport chain complexes, leading to increased ROS production and mitochondrial dysfunction. Furthermore, it is discussed that ALCAT1 itself is upregulated due to oxidative stress. Here, we investigated the effects of overexpression of ALCAT1 under different metabolic conditions. ALCAT1 is located at the ER and mitochondria, probably at contact sites. We found that respiration stimulated by galactose supply promoted supercomplex assembly but also led to increased mitochondrial ROS levels. Endogeneous ALCAT1 protein expression levels showed a fairly high variability. Artificially induced ALCAT1 overexpression reduced supercomplex formation, further promoted ROS production, and prevented upregulation of coupled respiration. Taken together, our data suggest that the amount of the CL conversion enzyme ALCAT1 is critical for coupling mitochondrial respiration and metabolic plasticity.
Collapse
|
85
|
Schädeli D, Serricchio M, Ben Hamidane H, Loffreda A, Hemphill A, Beneke T, Gluenz E, Graumann J, Bütikofer P. Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB J 2019; 33:13161-13175. [DOI: 10.1096/fj.201901184rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
86
|
The Role of Cardiolipin and Mitochondrial Damage in Kidney Transplant. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3836186. [PMID: 31885786 PMCID: PMC6899302 DOI: 10.1155/2019/3836186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is highly incident and prevalent in the world. The death of patients with CKD is primarily due to cardiovascular disease. Renal transplantation (RT) emerges as the best management alternative for patients with CKD. However, the incidence of acute renal graft dysfunction is 11.8% of the related living donor and 17.4% of the cadaveric donor. Anticardiolipin antibodies (ACAs) or antiphospholipid antibodies (APAs) are important risk factors for acute renal graft dysfunction. The determination of ACA or APA to candidates for RT could serve as prognostic markers of early graft failure and would indicate which patients could benefit from anticoagulant therapy. Cardiolipin is a fundamental molecule that plays an important role in the adequate conformation of the mitochondrial cristae and the correct assembly of the mitochondrial respiratory supercomplexes and other proteins essential for proper mitochondrial function. Cardiolipin undergoes a nonrandom oxidation process by having pronounced specificity unrelated to the polyunsaturation pattern of its acyl groups. Accumulation of hydroxyl derivatives and cardiolipin hydroperoxides has been observed in the affected tissues, and recent studies showed that oxidation of cardiolipin is carried out by a cardiolipin-specific peroxidase activity of cardiolipin-bound cytochrome c. Cardiolipin could be responsible for the proapoptotic production of death signals. Cardiolipin modulates the production of energy and participates in inflammation, mitophagy, and cellular apoptosis. The determination of cardiolipin or its antibodies is an attractive therapeutic, diagnostic target in RT and kidney diseases.
Collapse
|
87
|
Deschamps E, Schmitz-Afonso I, Schaumann A, Dé E, Loutelier-Bourhis C, Alexandre S, Afonso C. Determination of the collision cross sections of cardiolipins and phospholipids from Pseudomonas aeruginosa by traveling wave ion mobility spectrometry-mass spectrometry using a novel correction strategy. Anal Bioanal Chem 2019; 411:8123-8131. [DOI: 10.1007/s00216-019-02194-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022]
|
88
|
New C-Terminal Conserved Regions of Tafazzin, a Catalyst of Cardiolipin Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2901057. [PMID: 31781330 PMCID: PMC6855050 DOI: 10.1155/2019/2901057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Cardiolipin interacts with many proteins of the mitochondrial inner membrane and, together with cytochrome C and creatine kinase, activates them. It can be considered as an integrating factor for components of the mitochondrial respiratory chain, which provides for an efficient transfer of electrons and protons. The major, if not the only, factor of cardiolipin maturation is tafazzin. Variations of isoform proportions of this enzyme can cause severe diseases such as Barth syndrome. Using bioinformatic methods, we have found conserved C-terminal regions in many tafazzin isoforms and identified new mammalian species that acquired exon 5 as well as rare occasions of intron retention between exons 8 and 9. The regions in the C-terminal part arise from frameshifts relative to the full-length TAZ transcript after skipping exon 9 or retention of the intron between exons 10 and 11. These modifications demonstrate specific distribution among the orders of mammals. The dependence of the species maximum lifespan, body weight, and mitochondrial metabolic rate on the modifications has been demonstrated. Arguably, unconventional tafazzin isoforms provide for the optimal balance between the increased biochemical activity of mitochondria (resulting from specific environmental or nutritional conditions) and lifespan maintenance; and the functional role of such isoforms is linked to the modification of the primary and secondary structures at their C-termini.
Collapse
|
89
|
Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene 2019; 726:144148. [PMID: 31647997 DOI: 10.1016/j.gene.2019.144148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
Collapse
Affiliation(s)
- Anders O Garlid
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA.
| | - Calvin T Schaffer
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Jaewoo Kim
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Hirsh Bhatt
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Vladimir Guevara-Gonzalez
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Mathematics, University of California at Los Angeles, CA 90095, USA
| | - Peipei Ping
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA; Department of Medicine/Cardiology, University of California at Los Angeles, CA 90095, USA; Department of Bioinformatics, University of California at Los Angeles, CA 90095, USA; Scalable Analytics Institute (ScAi), University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
90
|
Effects of Sterols on the Interaction of SDS, Benzalkonium Chloride, and A Novel Compound, Kor105, with Membranes. Biomolecules 2019; 9:biom9100627. [PMID: 31635312 PMCID: PMC6843611 DOI: 10.3390/biom9100627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Sterols change the biophysical properties of lipid membranes. Here, we analyzed how sterols affect the activity of widely used antimicrobial membrane-active compounds, sodium dodecyl sulfate (SDS) and benzalkonium chloride (BAC). We also tested a novel benzalkonium-like substance, Kor105. Our data suggest that benzalkonium and Kor105 disturb the ordering of the membrane lipid packaging, and this disturbance is dampened by cholesterol. The disturbance induced by Kor105 is stronger than that induced by BAC because of the higher rigidity of the Kor105 molecule due to a shorter linker between the phenyl group and quaternary nitrogen. On the contrary, individual SDS molecules do not cause the disturbance. Thus, in the tested range of concentrations, SDS-membrane interaction is not influenced by cholesterol. To study how sterols influence the biological effects of these chemicals, we used yeast strains lacking Lam1-4 proteins. These proteins transport sterols from the plasma membrane into the endoplasmic reticulum. We found that the mutants are resistant to BAC and Kor105 but hypersensitive to SDS. Together, our findings show that sterols influence the interaction of SDS versus benzalkonium chloride and Kor105 with the membranes in a completely different manner.
Collapse
|
91
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
92
|
Elmer-Dixon MM, Hoody J, Steele HBB, Becht DC, Bowler BE. Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles. J Phys Chem B 2019; 123:9111-9122. [DOI: 10.1021/acs.jpcb.9b07690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
93
|
Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry Localizes Cardiolipin Unsaturations. Anal Chem 2019; 91:12509-12516. [PMID: 31490676 DOI: 10.1021/acs.analchem.9b03278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developing alternative MS/MS strategies to distinguish isomeric lipids has become a high impact goal in shotgun lipidomics. Novel approaches have been developed to resolve structural features that are not discernible by traditional shotgun methods and have consequently promoted the discovery of new disease biomarkers. However, these methods have largely been limited to characterizing lipids with low structural complexity. Here, ultraviolet photodissociation (UVPD) strategies for phospholipid characterization are expanded for analysis of cardiolipins (CL), a class of phospholipids that exhibits a higher degree of structural complexity. A hybrid collision induced dissociation/193 nm UVPD (CID/UVPD) approach was implemented to pinpoint the location of both double bond and cyclopropyl unsaturations on the four acyl chains of CLs. This strategy was complemented with CID for the de novo elucidation of unknown CLs in biological extracts.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Clara L Feider
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Livia S Eberlin
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
94
|
Suzuki-Hatano S, Sriramvenugopal M, Ramanathan M, Soustek M, Byrne BJ, Cade WT, Kang PB, Pacak CA. Increased mtDNA Abundance and Improved Function in Human Barth Syndrome Patient Fibroblasts Following AAV- TAZ Gene Delivery. Int J Mol Sci 2019; 20:E3416. [PMID: 31336787 PMCID: PMC6678701 DOI: 10.3390/ijms20143416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Barth syndrome (BTHS) is a rare, X-linked, mitochondrial disorder caused by mutations in the gene encoding tafazzin. BTHS results in cardiomyopathy, muscle fatigue, and neutropenia in patients. Tafazzin is responsible for remodeling cardiolipin, a key structural lipid of the inner mitochondrial membrane. As symptoms can vary in severity amongst BTHS patients, we sought to compare mtDNA copy numbers, mitochondrial fragmentation, and functional parameters between primary dermal BTHS fibroblasts isolated from patients with two different mutations in the TAZ locus. To confirm cause‒effect relationships and further support the development of gene therapy for BTHS, we also characterized the BTHS cells following adeno-associated virus (AAV)-TAZ transduction. Our data show that, in response to AAV-TAZ transduction, these remarkably dynamic organelles show recovery of mtDNA copy numbers, mitochondrial structure, and mitochondrial function, providing additional evidence to support the therapeutic potential of AAV-mediated gene delivery for BTHS. This study also demonstrates the direct relationship between healthy mitochondrial membrane structure and maintenance of proper levels of mtDNA copy numbers.
Collapse
Affiliation(s)
- Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mughil Sriramvenugopal
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Manash Ramanathan
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Meghan Soustek
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter B Kang
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
95
|
Evans CS, Holzbaur ELF. Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. J Mol Biol 2019; 432:240-260. [PMID: 31295455 DOI: 10.1016/j.jmb.2019.06.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
Abstract
The cargo-specific removal of organelles via selective autophagy is important to maintain neuronal homeostasis. Genetic studies indicate that deficits in these pathways are implicated in neurodegenerative diseases, including Parkinson's and amyotrophic lateral sclerosis. Here, we review our current understanding of the pathways that regulate mitochondrial quality control, and compare these mechanisms to those regulating turnover of the endoplasmic reticulum and the clearance of protein aggregates. Research suggests that there are multiple mechanisms regulating the degradation of specific cargos, such as dysfunctional organelles and protein aggregates. These mechanisms are critical for neuronal health, as neurons are uniquely vulnerable to impairment in organelle quality control pathways due to their morphology, size, polarity, and postmitotic nature. We highlight the consequences of dysregulation of selective autophagy in neurons and discuss current challenges in correlating noncongruent findings from in vitro and in vivo systems.
Collapse
Affiliation(s)
- Chantell S Evans
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
96
|
Léger JL, Jougleux JL, Savadogo F, Pichaud N, Boudreau LH. Rapid isolation and purification of functional platelet mitochondria using a discontinuous Percoll gradient. Platelets 2019; 31:258-264. [PMID: 31057000 DOI: 10.1080/09537104.2019.1609666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The isolation of mitochondria is gaining importance in experimental and clinical laboratory settings. The mitochondrion is known as the powerhouse of the cell as it produces the energy to power most cellular functions but is also involved in many cellular processes. Of interest, mitochondria and mitochondrial components (i.e. circular DNA, N-formylated peptides, cardiolipin) have been involved in several human inflammatory pathologies, such as cancer, Alzheimer's disease, Parkinson's disease, and rheumatoid arthritis. Therefore, stringent methods of isolation and purification of mitochondria are of the utmost importance in assessing mitochondrial-related diseases. While several mitochondrial isolation methods have been previously published, these techniques are aimed at yielding mitochondria from cells types other than platelets. In addition, little information is known on the number of platelet-derived microparticles that can contaminate the mitochondrial preparation or even the overall quality and integrity of the mitochondria. In this project, we provide an alternate purification method yielding mitochondria of high purity and integrity from human platelets. Using human platelets, flow cytometry and transmission electron microscopy experiments were performed to demonstrate that the Percoll gradient method yielded significantly purified mitochondria by removing platelet membrane debris. Mitochondrial respiration following the substrate-uncoupler-inhibitor-titration (SUIT) protocol was similar in both the purified and crude mitochondrial extraction methods. Finally, the cytochrome c effect and JC-1 staining did not exhibit a significant difference between the two methods, suggesting that the mitochondrial integrity was not affected. Our study suggests that the Percoll discontinuous gradient purifies viable platelet-derived mitochondria by removing platelet-derived debris, including microparticles, therefore confirming that this isolation method is ideal for studying the downstream effects of intact mitochondria in mitochondrial-related diseases.
Collapse
Affiliation(s)
- Jacob L Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada
| | - Jean-Luc Jougleux
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada
| | - Fanta Savadogo
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, Canada
| |
Collapse
|
97
|
Mahajan N, Hoover B, Rajendram M, Shi HY, Kawasaki K, Weibel DB, Zhang M. Maspin binds to cardiolipin in mitochondria and triggers apoptosis. FASEB J 2019; 33:6354-6364. [PMID: 30786218 PMCID: PMC6463914 DOI: 10.1096/fj.201802182r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
A central question in cell biology is how cells respond to stress signals and biochemically regulate apoptosis. One critical pathway involves the change of mitochondrial function and release of cytochrome c to initiate apoptosis. In response to apoptotic stimuli, we found that maspin-a noninhibitory member of the serine protease inhibitor superfamily-translocates from the cytosol to mitochondria and binds to cardiolipin in the inner mitochondrial membrane. Biolayer interferometry assay revealed that recombinant maspin binds cardiolipin with an apparent Kd,of ∼15.8 μM and competes with cytochrome c (apparent Kd of ∼1.31 μM) for binding to cardiolipin-enriched membranes. A hydrophobic, lysine-rich domain in maspin consists of 27 aa, is located at position 268-294, and is responsible for the interaction of this protein with cardiolipin. Depletion of cardiolipin in cells significantly prevents maspin binding to the inner mitochondrial membrane and decreases cytochrome c release and apoptosis. Alteration to maspin's cardiolipin binding domain changes its ability to bind cardiolipin, and tumor cells expressing this mutant have a low frequency of apoptosis. We propose a model of apoptosis in which maspin binds to cardiolipin, displaces cytochrome c from the membrane, and facilitates its release to the cytoplasm.-Mahajan, N., Hoover, B., Rajendram, M., Shi, H. Y., Kawasaki, K., Weibel, D. B., Zhang, M. Maspin binds to cardiolipin in mitochondria and triggers apoptosis.
Collapse
Affiliation(s)
- Nitin Mahajan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brandon Hoover
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Manohary Rajendram
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Heidi Y. Shi
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women’s University, Kyoto, Japan
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ming Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
98
|
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1039-1052. [PMID: 30951877 DOI: 10.1016/j.bbalip.2019.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Cardiolipin (CL) is a key phospholipid of the mitochondria. A loss of CL content and remodeling of CL's acyl chains is observed in several pathologies. Strong shifts in CL concentration and acyl chain composition would presumably disrupt mitochondrial inner membrane biophysical organization. However, it remains unclear in the literature as to which is the key regulator of mitochondrial membrane biophysical properties. We review the literature to discriminate the effects of CL concentration and acyl chain composition on mitochondrial membrane organization. A widely applicable theme emerges across several pathologies, including cardiovascular diseases, diabetes, Barth syndrome, and neurodegenerative ailments. The loss of CL, often accompanied by increased levels of lyso-CLs, impairs mitochondrial inner membrane organization. Modest remodeling of CL acyl chains is not a major driver of impairments and only in cases of extreme remodeling is there an influence on membrane properties.
Collapse
|
99
|
Suzuki-Hatano S, Saha M, Soustek MS, Kang PB, Byrne BJ, Cade WT, Pacak CA. AAV9- TAZ Gene Replacement Ameliorates Cardiac TMT Proteomic Profiles in a Mouse Model of Barth Syndrome. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:167-179. [PMID: 30788385 PMCID: PMC6369239 DOI: 10.1016/j.omtm.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/16/2019] [Indexed: 12/23/2022]
Abstract
Barth syndrome (BTHS) is a rare mitochondrial disease that causes severe cardiomyopathy and has no disease-modifying therapy. It is caused by recessive mutations in the gene tafazzin (TAZ), which encodes tafazzin-an acyltransferase that remodels the inner mitochondrial membrane lipid cardiolipin. To identify novel mechanistic pathways involved in BTHS and evaluate the effects of gene therapy on proteomic profiles, we performed a multiplex tandem mass tagging (TMT) quantitative proteomics analysis to compare protein expression profiles from heart lysates isolated from BTHS, healthy wild-type (WT), and BTHS treated with adeno-associated virus serotype 9 (AAV9)-TAZ gene replacement as neonates or adults. 197 proteins with ≥2 unique peptides were identified. Of these, 91 proteins were significantly differentially expressed in BTHS compared to WT controls. Cause-effect relationships between tafazzin deficiency and altered protein profiles were confirmed through demonstrated significant improvements in expression levels following administration of AAV9-TAZ. The importance of TMEM65 in Cx43 localization to cardiac intercalated discs was revealed as a novel consequence of tafazzin deficiency that was improved following gene therapy. This study identifies novel mechanistic pathways involved in the pathophysiology of BTHS, demonstrates the ability of gene delivery to improve protein expression profiles, and provides support for clinical translation of AAV9-TAZ gene therapy.
Collapse
Affiliation(s)
- Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Madhurima Saha
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Meghan S Soustek
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Peter B Kang
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
100
|
Tyurina YY, Shrivastava I, Tyurin VA, Mao G, Dar HH, Watkins S, Epperly M, Bahar I, Shvedova AA, Pitt B, Wenzel SE, Mallampalli RK, Sadovsky Y, Gabrilovich D, Greenberger JS, Bayır H, Kagan VE. "Only a Life Lived for Others Is Worth Living": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 2018; 29:1333-1358. [PMID: 28835115 PMCID: PMC6157439 DOI: 10.1089/ars.2017.7124] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Oxygenated polyunsaturated lipids are known to play multi-functional roles as essential signals coordinating metabolism and physiology. Among them are well-studied eicosanoids and docosanoids that are generated via phospholipase A2 hydrolysis of membrane phospholipids and subsequent oxygenation of free polyunsaturated fatty acids (PUFA) by cyclooxygenases and lipoxygenases. Recent Advances: There is an emerging understanding that oxygenated PUFA-phospholipids also represent a rich signaling language with yet-to-be-deciphered details of the execution machinery-oxygenating enzymes, regulators, and receptors. Both free and esterified oxygenated PUFA signals are generated in cells, and their cross-talk and inter-conversion through the de-acylation/re-acylation reactions is not sufficiently explored. CRITICAL ISSUES Here, we review recent data related to oxygenated phospholipids as important damage signals that trigger programmed cell death pathways to eliminate irreparably injured cells and preserve the health of multicellular environments. We discuss the mechanisms underlying the trans-membrane redistribution and generation of oxygenated cardiolipins in mitochondria by cytochrome c as pro-apoptotic signals. We also consider the role of oxygenated phosphatidylethanolamines as proximate pro-ferroptotic signals. FUTURE DIRECTIONS We highlight the importance of sequential processes of phospholipid oxygenation and signaling in disease contexts as opportunities to use their regulatory mechanisms for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Indira Shrivastava
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gaowei Mao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haider H. Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Epperly
- Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna A. Shvedova
- Exposure Assessment Branch/NIOSH/CDC, West Virginia University, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Bruce Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally E. Wenzel
- Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Asthma Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rama K. Mallampalli
- Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoel Sadovsky
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|