51
|
Qian H, Le Blanc K, Sigvardsson M. Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44 protein. J Biol Chem 2012; 287:25795-807. [PMID: 22654106 DOI: 10.1074/jbc.m112.339622] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.
Collapse
Affiliation(s)
- Hong Qian
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden.
| | | | | |
Collapse
|
52
|
Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat 2012; 134:709-17. [PMID: 22562178 DOI: 10.1007/s10549-012-2084-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/26/2012] [Indexed: 01/27/2023]
Abstract
Patients with locally advanced breast cancer treated with neoadjuvant chemotherapy are at risk of cancer treatment-induced bone loss and consequently of increased skeletal morbidity. In addition, this situation could be worsened by the fact that only a minority of patients with breast cancer have sufficient vitamin D. A comprehensive evaluation of bone homeostasis is critical in this context. We retrospectively evaluated the serum levels of calcium, vitamin D, TRAIL, RANK ligand (RANKL), Osteoprotegerin (OPG), Bone TRAP, CrossLaps and DKK1 in 77 patients (median age: 50 years; range 25-74), with locally advanced breast cancer treated in our institute with anthracyclines-taxane neoadjuvant chemotherapy (7 cycles of 21 days/each) between March 2007 and August 2008. Serum samples were collected before the first (baseline) and the last treatment cycle. Variations and correlations between biomarker levels were evaluated. At baseline, 79.5 % of patients had vitamin D insufficiency (<30 ng/ml), increasing to 97.4 % at the end of the neoadjuvant chemotherapy (p < 0.0001). Calcium and RANKL serum concentrations were also significantly decreased, while OPG was significantly increased, resulting in lower RANKL/OPG ratio. Calcium and vitamin D, RANKL and vitamin D and RANKL and OPG levels were significantly correlated (Spearman's coefficient r = 0.2721, p = 0.0006; r = 0.1916, p = 0.002; and r = -0.179, p = 0.03, respectively). Nearly all included patients suffered from vitamin D insufficiency by the end of the neoadjuvant chemotherapy with changes in the calcium/RANKL/OPG axis that are evocative of deregulation of a functional regulatory mechanism. Further studies are needed to determine how drugs modulate this regulatory mechanism to preserve bone homeostasis in patients with breast cancer.
Collapse
|
53
|
Milner PI, Clegg PD, Stewart MC. Stem cell-based therapies for bone repair. Vet Clin North Am Equine Pract 2012; 27:299-314. [PMID: 21872760 DOI: 10.1016/j.cveq.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This article provides an overview of the cellular and molecular events involved in bone repair and the current approaches to using stem cells as an adjunct to this process. The article emphasizes the key role of osteoprogenitor cells in the formation of bone and where the clinical applications of current research may lend themselves to large animal orthopaedics. The processes involved in osteogenic differentiation are presented and strategies for bone formation, including induction by osteogenic factors, bioscaffolds, and gene therapy, are reviewed.
Collapse
Affiliation(s)
- Peter I Milner
- Department of Musculoskeletal Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK.
| | | | | |
Collapse
|
54
|
Fowler JA, Mundy GR, Lwin ST, Edwards CM. Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt inhibitor Dkk1. Cancer Res 2012; 72:2183-9. [PMID: 22374979 DOI: 10.1158/0008-5472.can-11-2067] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rapid progression of multiple myeloma is dependent upon cellular interactions within the bone marrow microenvironment. In vitro studies suggest that bone marrow stromal cells (BMSC) can promote myeloma growth and survival and osteolytic bone disease. However, it is not possible to recreate all cellular aspects of the bone marrow microenvironment in an in vitro system, and the contributions of BMSCs to myeloma pathogenesis in an intact, immune competent, in vivo system are unknown. To investigate this, we used a murine myeloma model that replicates many features of the human disease. Coinoculation of myeloma cells and a BMSC line, isolated from myeloma-permissive mice, into otherwise nonpermissive mice resulted in myeloma development, associated with tumor growth within bone marrow and osteolytic bone disease. In contrast, inoculation of myeloma cells alone did not result in myeloma. BMSCs inoculated alone induced osteoblast suppression, associated with an increase in serum concentrations of the Wnt signaling inhibitor, Dkk1. Dkk1 was highly expressed in BMSCs and in myeloma-permissive bone marrow. Knockdown of Dkk1 expression in BMSCs decreased their ability to promote myeloma and the associated bone disease in mice. Collectively, our results show novel roles of BMSCs and BMSC-derived Dkk1 in the pathogenesis of multiple myeloma in vivo.
Collapse
Affiliation(s)
- Jessica A Fowler
- Department of Cancer Biology, Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
55
|
Ciapetti G, Granchi D, Devescovi V, Baglio SR, Leonardi E, Martini D, Jurado MJ, Olalde B, Armentano I, Kenny JM, Walboomers FX, Alava JI, Baldini N. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Int J Mol Sci 2012; 13:2439-2458. [PMID: 22408463 PMCID: PMC3292032 DOI: 10.3390/ijms13022439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/16/2022] Open
Abstract
In bone engineering, the adhesion, proliferation and differentiation of mesenchymal stromal cells rely on signaling from chemico-physical structure of the substrate, therefore prompting the design of mimetic "extracellular matrix"-like scaffolds. In this study, three-dimensional porous poly-L-lactic acid (PLLA)-based scaffolds have been mixed with different components, including single walled carbon nanotubes (CNT), micro-hydroxyapatite particles (HA), and BMP2, and treated with plasma (PT), to obtain four different nanocomposites: PLLA + CNT, PLLA + CNTHA, PLLA + CNT + HA + BMP2 and PLLA + CNT + HA + PT. Adult bone marrow mesenchymal stromal cells (MSCs) were derived from the femur of orthopaedic patients, seeded on the scaffolds and cultured under osteogenic induction up to differentiation and mineralization. The release of specific metabolites and temporal gene expression profiles of marrow-derived osteoprogenitors were analyzed at definite time points, relevant to in vitro culture as well as in vivo differentiation. As a result, the role of the different biomimetic components added to the PLLA matrix was deciphered, with BMP2-added scaffolds showing the highest biomimetic activity on cells differentiating to mature osteoblasts. The modification of a polymeric scaffold with reinforcing components which also work as biomimetic cues for cells can effectively direct osteoprogenitor cells differentiation, so as to shorten the time required for mineralization.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto OrtopedicoRizzoli, Bologna 40136, Italy; E-Mails: (D.G.); (V.D.); (S.R.B.); (E.L.); (N.B.)
| | - Donatella Granchi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto OrtopedicoRizzoli, Bologna 40136, Italy; E-Mails: (D.G.); (V.D.); (S.R.B.); (E.L.); (N.B.)
| | - Valentina Devescovi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto OrtopedicoRizzoli, Bologna 40136, Italy; E-Mails: (D.G.); (V.D.); (S.R.B.); (E.L.); (N.B.)
| | - Serena R. Baglio
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto OrtopedicoRizzoli, Bologna 40136, Italy; E-Mails: (D.G.); (V.D.); (S.R.B.); (E.L.); (N.B.)
| | - Elisa Leonardi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto OrtopedicoRizzoli, Bologna 40136, Italy; E-Mails: (D.G.); (V.D.); (S.R.B.); (E.L.); (N.B.)
| | - Desirèe Martini
- Dipartimento di Scienze Anatomiche e dell’Apparato Locomotore, University of Bologna, Bologna 40136, Italy; E-Mail:
| | - Maria Jesus Jurado
- Health Unit, INASMET-Tecnalia, San Sebastian E-20009, Spain; E-Mails: (M.J.J.); (B.O.); (J.I.A.)
| | - Beatriz Olalde
- Health Unit, INASMET-Tecnalia, San Sebastian E-20009, Spain; E-Mails: (M.J.J.); (B.O.); (J.I.A.)
| | - Ilaria Armentano
- Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni 05100, Italy; E-Mails: (I.A.); (J.M.K.)
| | - Josè M. Kenny
- Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni 05100, Italy; E-Mails: (I.A.); (J.M.K.)
| | - Frank X. Walboomers
- Department of Biomaterials, Radboud University, Nijmegen Medical Centre, Nijmegen 6525 GA, The Netherlands; E-Mail:
| | - Josè Inaki Alava
- Health Unit, INASMET-Tecnalia, San Sebastian E-20009, Spain; E-Mails: (M.J.J.); (B.O.); (J.I.A.)
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto OrtopedicoRizzoli, Bologna 40136, Italy; E-Mails: (D.G.); (V.D.); (S.R.B.); (E.L.); (N.B.)
- Dipartimento di Scienze Anatomiche e dell’Apparato Locomotore, University of Bologna, Bologna 40136, Italy; E-Mail:
| |
Collapse
|
56
|
Neman J, Hambrecht A, Cadry C, Goodarzi A, Youssefzadeh J, Chen MY, Jandial R. Clinical Efficacy of Stem Cell Mediated Osteogenesis and Bioceramics for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:174-87. [DOI: 10.1007/978-1-4614-4090-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
57
|
Wnt signaling and cardiac differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:153-74. [PMID: 22917230 DOI: 10.1016/b978-0-12-398459-3.00007-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Wnt family of secreted glycoproteins participates in a wide array of biological processes, including cellular differentiation, proliferation, survival, apoptosis, adhesion, angiogenesis, hypertrophy, and aging. The canonical Wnt signaling primarily utilizes β-catenin-mediated activation of transcription, while the noncanonical mechanisms involve a calcium-dependent protein kinase C-mediated Wnt/Ca(2+) pathway and a dishevelled-dependent c-Jun N-terminal kinase-mediated planar cell polarity pathway. Although both canonical and noncanonical Wnts have been implicated in cardiac specification, morphogenesis, and differentiation; the molecular events remain unclear and often depend on the cell type and biological context. In this regard, growing evidence indicates that Wnt11 is able to induce cardiogenesis not only during embryonic development but also in adult cells. The cardiogenic properties of Wnt11 may prove useful for preprogramming adult stem cells before myocardial transplantation. Further, elucidation of the molecular steps in Wnt11-induced cardiac differentiation will be necessary to enhance the outcomes of cardiac cell therapy.
Collapse
|
58
|
Higuera GA, Schop D, Spitters TWGM, van Dijkhuizen-Radersma R, Bracke M, de Bruijn JD, Martens D, Karperien M, van Boxtel A, van Blitterswijk CA. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells. Tissue Eng Part A 2011; 18:654-64. [PMID: 21943055 DOI: 10.1089/ten.tea.2011.0223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consumed and/or secreted by hMSCs and at what rates? To answer these questions, hMSCs were cultured on tissue culture plastic and in a bioreactor, and their amino acid profile was analyzed. The results showed that the kinetics of hMSCs growth and amino acid metabolism were significantly higher for hMSCs in tissue culture plastic than in the bioreactor. Despite differences in culture conditions, 8 essential and 6 nonessential amino acids were consumed by hMSCs in both tissue culture plastic and bioreactor cultures. Glutamine was the most consumed amino acid with significantly higher rates than for any other amino acid. The metabolism of nonessential amino acids by hMSCs deviated significantly from that of other cell lines. The secretion of alanine, glycine, glutamate, and ornithine by hMSCs showed that there is a strong overflow metabolism that can be due to the high concentrations of amino acids provided in the medium. In addition, the data showed that there is a metabolic pattern for proliferating hMSCs, which can contribute to the design of medium without animal serum for stem cells. Further, this study shows how to implement amino acid rates and metabolic principles in three-dimensional stem cell biology.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 2011; 19:534-45. [PMID: 22015605 PMCID: PMC3278737 DOI: 10.1038/cdd.2011.137] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SOX2 is a well-known core transcription factor in embryonic stem cells (ESCs) and has an important role in the maintenance of pluripotency. Recently, SOX2 expression has also been reported in adult stem cells (ASCs), but the role of SOX2 in ASCs remains unknown. In this study, we examined the molecular mechanisms of SOX2 in human mesenchymal stem cells (hMSCs), a type of ASCs, by performing inhibition studies. SOX2 inhibition resulted in altered cell growth and differentiation capabilities. These changes coincided with a decrease in Dickkopf-1 (DKK1), a soluble inhibitor of WNT signaling. Chromatin immunoprecipitation and luciferase assays showed that SOX2 binds to DKK1 and has a positive regulatory role in transcription. The enforced expression of DKK1 in SOX2-inhibited hMSCs reversed the differentiation deformities, but could not abrogate the cell proliferation defect. Proliferation was regulated by c-MYC, whose expression can also be controlled by SOX2. Our study shows that SOX2 directly regulates DKK1 expression and, as a consequence, determines the differentiation lineage of hMSCs. Moreover, SOX2 also regulates proliferation by affecting c-MYC. Therefore, these results suggest that SOX2 might have a specific function by regulating DKK1 and c-MYC in the differentiation and growth of ASCs, which is separate from its roles in ESCs.
Collapse
|
60
|
Proulx-Bonneau S, Annabi B. The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: a role for the secreted frizzled-related proteins. Biomark Insights 2011; 6:107-18. [PMID: 22084569 PMCID: PMC3201088 DOI: 10.4137/bmi.s8247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A pivotal role in guiding mesenchymal stem cell (MSC) differentiation has recently been attributed to the primary cilium. This solitary, non-motile microtubule-based organelle emerging from the cell surface acts as a sensorial membrane structure reflecting developmental and adaptive processes associated with pathologies including human cystic kidney disease, skeletal malformations, obesity and cancer. Given that the intrinsic hypoxic adaptation of MSC remains poorly understood within ischemic tissues or hypoxic tumours, we questioned whether the hypoxia inducible factor-1α (HIF-1α) might be a downstream effector regulating cilium maintenance. We show that murine bone marrow-derived MSC cultured under hypoxic conditions (1.2% O(2)) lose their primary cilia in a time-dependent manner. Gene silencing of HIF-1α prevented cilia loss in hypoxic cultures, and generation of MSC expressing a constitutively active HIF-1α (MSC-HIF) was found to decrease primary cilium formation. A Wnt pathway-related gene expression array was also performed on MSC-HIF and indicated that the secreted Frizzled-related proteins (sFRP)-1, -3 and -4 were down-regulated, while sFRP-2 was up-regulated. Overexpression of recombinant sFRP-2 or gene silencing of sFRP-1, -3 and -4 in MSC led to primary cilium disruption. These results indicate a molecular signalling mechanism for the hypoxic disruption of the primary cilium in MSC involving an HIF-1α/sFRP axis. This mechanism contributes to our understanding of the adaptive processes possibly involved in the oncogenic transformation and tumour-supporting potential of MSC. Our current observations also open up the possibility for the primary cilia to serve as a biomarker in MSC adaptation to low oxygen tension within (patho)physiological microenvironments.
Collapse
Affiliation(s)
- Sébastien Proulx-Bonneau
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMED, Département de Chimie, Université du Québec à Montréal, Quebec, Canada
| | | |
Collapse
|
61
|
Yang W, Levine AC. Androgens and prostate cancer bone metastases: effects on both the seed and the soil. Endocrinol Metab Clin North Am 2011; 40:643-53, x. [PMID: 21889726 DOI: 10.1016/j.ecl.2011.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Androgens are essential for normal prostate development and are necessary, but not sufficient, for the development of prostate cancer (PCa). Androgen deprivation therapy has long been the mainstay of treatment for PCa bone metastases, providing palliation of symptoms in the majority of patients, followed by relapse and progression. The majority of published preclinical studies demonstrate a stimulatory effect of androgens and androgen receptor signaling on the multistep process of PCa bone metastases, including androgenic promotion of local PCa growth, angiogenesis, invasion, bone targeting, stimulation of PCa growth factors that enhance osteoclastogenesis, and enhancement of Wnt signaling in osteoblasts.
Collapse
Affiliation(s)
- Wei Yang
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
62
|
Impairment in immunomodulatory function of mesenchymal stem cells from multiple myeloma patients. Arch Med Res 2011; 41:623-33. [PMID: 21199732 DOI: 10.1016/j.arcmed.2010.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 11/10/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Abnormality of immune regulation exists in multiple myeloma (MM). Mesenchymal stem cells (MSCs), a key regulator for immunomodulatory function, have decreased osteogenic potential in MM patients. Here we investigated the immunomodulatory function of MSCs from MM patients (MM-MSCs) and its relationship with decreased osteogenic potential. METHODS Real-time PCR was performed to detect the cytokines expressed in MM-MSCs (n = 22) and MSCs from normal donors (ND-MSCs, n = 11). Lymphocyte proliferative assay was used to detect the effect of MSCs on T cell proliferation. The effect of MSCs on T-cell cycle and T-cell activation markers expression were analyzed by flow cytometry. Flow cytometry and Western blot were used to detect apoptosis of T cells. Influence of T cells on osteogenic potential of MSCs was detected. RESULTS MM-MSCs exhibited increased expression of TGF-β1, IL-6, IL-3, TNF-α and RANKL and decreased expression of TGF-β2, TGF-β3 and FasL. The inhibitory effect of MM-MSCs on T.cell proliferative ability was attenuated. ND-MSCs silence more T cells in G0/G1 phase than MM-MSCs. The apoptosis-promoting effect of MM-MSCs on T cells seemed to be dampened. Expression of T-cell activation markers was significantly inhibited by ND-MSCs. T cells from normal donors possessed the ability to promote osteoblastic differentiation of ND-MSCs, but this ability of T cells both directly from MM patients and co-cultured with MM-MSCs was impaired. CONCLUSIONS MSCs from MM patients showed impaired immunoinhibitory capability on T cells, which in turn lose the ability to stimulate osteogenesis of MSCs.
Collapse
|
63
|
Rajalin AM, Aarnisalo P. Cross-talk between NR4A orphan nuclear receptors and β-catenin signaling pathway in osteoblasts. Arch Biochem Biophys 2011; 509:44-51. [PMID: 21362399 DOI: 10.1016/j.abb.2011.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/15/2022]
Abstract
The canonical Wnt signaling pathway and its key mediator β-catenin are important regulators of osteoblast function. NR4A orphan nuclear receptors (Nurr1, NGFI-B, and Nor1) are expressed in osteoblasts and have been shown to regulate the expression of osteoblastic genes and osteoblastic differentiation. Recently, interplay between Nurr1 and the canonical Wnt signaling pathway was reported in 293F cells. We have studied the potential interplay between NR4A receptors and β-catenin in osteoblasts. NR4A receptors repressed β-catenin-mediated transactivation when cotransfected in U2-OS cells. In addition, Nurr1 inhibited β-catenin-mediated expression of Axin2 in MC3T3-E1 cells. The repression involved the DNA-binding domain of NR4A receptors. The repression of β-catenin did not result from reduced β-catenin expression or direct protein-protein interaction between β-catenin and NR4A receptors. β-Catenin was capable of inhibiting the transcriptional activity of NR4A receptors in U2-OS cells by a mechanism that involved the ligand-binding domain of NR4A receptors. As the canonical Wnt signaling pathway and β-catenin are crucial for the development and function of osteoblasts, the repressive effect of NR4A receptors on β-catenin is of potential biological and pathophysiological importance.
Collapse
Affiliation(s)
- Ann-Marie Rajalin
- Institute of Biomedicine/Physiology, Biomedicum Helsinki, University of Helsinki, Finland
| | | |
Collapse
|
64
|
Defective osteogenic differentiation in the development of osteosarcoma. Sarcoma 2011; 2011:325238. [PMID: 21437219 PMCID: PMC3061279 DOI: 10.1155/2011/325238] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is associated with poor prognosis due to its high incidence of metastasis and chemoresistance. It often arises in areas of rapid bone growth in long bones during the adolescent growth spurt. Although certain genetic conditions and alterations increase the risk of developing OS, the molecular pathogenesis is poorly understood. Recently, defects in differentiation have been linked to cancers, as they are associated with high cell proliferation. Treatments overcoming these defects enable terminal differentiation and subsequent tumor inhibition. OS development may be associated with defects in osteogenic differentiation. While early regulators of osteogenesis are unable to bypass these defects, late osteogenic regulators, including Runx2 and Osterix, are able to overcome some of the defects and inhibit tumor propagation through promoting osteogenic differentiation. Further understanding of the relationship between defects in osteogenic differentiation and tumor development holds tremendous potential in treating OS.
Collapse
|
65
|
Vandamme K, Holy X, Bensidhoum M, Logeart-Avramoglou D, Naert IE, Duyck JA, Petite H. In vivo molecular evidence of delayed titanium implant osseointegration in compromised bone. Biomaterials 2011; 32:3547-54. [PMID: 21324523 DOI: 10.1016/j.biomaterials.2011.01.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
Optimization of implant osseointegration in patients with reduced bone healing potential is a challenge remaining in implant dentistry. Identification of the genes that are modulated during implant osseointegration in normal versus osteopenic bone is needed to successfully address these pertinent clinical needs. The present study aimed to assess the initial and early molecular events following titanium implant installation in normal and compromised bone in a rat tibia model. Peri-implant tissue from a well-defined tissue regeneration compartment was analyzed at 2 and 7 days post-surgery for the expression of select markers of inflammation, angiogenesis, bone resorption and bone formation. Impaired bone was induced by hindlimb unloading and validated using μCT. The essential step of angiogenesis preceding bone regeneration was evidenced for the peri-implant setting in healthy bone. Compromised bone significantly affected the angiogenesis-osteogenesis coupling in the initial phase (2 days post-surgery), with altered expressions of Vegfa and Epas1 coinciding with downregulated expressions of Col1a1, Bmp2, Bmp4, Alpl and Bglap. At 7 days post-implantation, differences between normal and compromised peri-implant bone were no longer observed. This in vivo molecular evidence of delayed implant osseointegration in compromised bone reassert modern strategies in implant development, such as surface modifications and bioengineered approaches, to improve implant osseointegration in compromised conditions.
Collapse
Affiliation(s)
- Katleen Vandamme
- Laboratory of Bioengineering and Biomechanics for Bone Articulation (B2OA - UMR CNRS 7052), University Paris Diderot, 10 Avenue de Verdun, 75010 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
66
|
Granchi D, Corrias MV, Garaventa A, Baglìo SR, Cangemi G, Carlini B, Paolucci P, Giunti A, Baldini N. Neuroblastoma and bone metastases: clinical significance and prognostic value of Dickkopf 1 plasma levels. Bone 2011; 48:152-9. [PMID: 20603237 DOI: 10.1016/j.bone.2010.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 02/05/2023]
Abstract
The critical role of the Wnt pathway inhibition in sustaining the onset of bone lesions has been demonstrated in a variety of bone diseases and tumors, and it has been associated with cancer aggressiveness. We have previously demonstrated that neuroblastoma cells express Dickkopf 1 (Dkk1), an inhibitor of the canonical Wnt pathway which prevents the differentiation of bone-forming cells. Since Dkk1 is a secreted factor, it could have potential clinical application as tumor marker for detecting bone metastasis and monitoring of disease. In this study, we investigated the diagnostic and prognostic value of Dkk1 plasma levels in 92 children affected by neuroblastoma, including 32 with bone metastases. Fifty-seven children hospitalized for minor surgical problems served as control group. Circulating levels of Dkk1 were higher in healthy children than in normal adults and were comparable to those found in adult patients with aggressive tumors. No significant differences were found between neuroblastoma patients and controls and between patients with and without bone metastases. However, when only patients with metastatic neuroblastoma were considered, the highest Dkk1 levels were detected in patients that poorly responded to induction chemotherapy and in subjects with unamplified MYCN and three or more different metastatic sites. The 'Receiver Operating Characteristic' curve enabled us to identify a threshold value to distinguish patients who were unresponsive to induction treatment. The relationship between Dkk1 and drug resistance was supported by in vitro experiments, since an increased sensitivity to doxorubicin was found in neuroblastoma cells releasing low Dkk1 levels, either constitutively or experimentally following the treatment with specific siRNA. In conclusion, Dkk1 is released by neuroblastoma cells and is able to affect the balance between osteoblastogenesis and osteoclastogenesis, thus favoring the onset of osteolytic metastases. Nevertheless, Dkk1 plasma levels do not allow the detection of bone lesions in neuroblastoma but seem to have a predictive value with regard to the severity and the prognosis of the disease in a subset of patients with metastatic tumor. New knowledge on the biological role of Dkk1 in driving the natural history of neuroblastoma has to be further investigated and could help to establish specific therapeutic strategies able to target key factors of tumor progression.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee CH, Kim JH, Park YS, Kim TH. Early union of grafted bone in ankylosing spondylitis: comparative study with degenerative spinal disease. Clin Orthop Surg 2010; 2:209-13. [PMID: 21119936 PMCID: PMC2981776 DOI: 10.4055/cios.2010.2.4.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/24/2010] [Indexed: 11/25/2022] Open
Abstract
Background Patients with ankylosing spondylitis (AS) achieve early bone union compared to those with other spinal diseases. This study compared the time to bone union after surgery between AS patients and degenerative spinal disease patients. Methods Patients with degenerative spinal diseases (control group) and AS (experimental group) underwent pedicle subtraction osteotomy followed by posterolateral fusion, and decompression and posterolateral fusion, respectively. There were 10 patients in the experimental group. The control group included 26 patients who were less than 50 years of age and underwent two-level autogenous grafting after decompression and spinal fusion. Autogenous grafts and a range of bone substitutes were used in the experimental group, whereas only autogenous grafts were used in the control group. Bone union was determined on the radiographs and 3-dimensional CT scan images. The level of union was assessed using the Lenke's and Christensen's classification systems. Results In the experimental group, the mean age was 41.3 years (range, 30 to 67 years), the mean follow-up period was 21.7 months (range, 12 to 43 months), and bone union was confirmed at an average of 3.5 months (range, 3 to 5 months) after surgery. In the control group, the mean age was 43.1 years (range, 35 to 50 years), the mean follow-up period was 21.8 months (range, 12 to 74 months), and bone union was observed at an average of 5.6 months (range, 4 to 12 months) after surgery. The difference in the time to bone union between the two groups was significant (p = 0.023). Conclusions The union of grafted bone was obtained earlier in patients with AS than in those with degenerative spinal diseases. Therefore, future studies should examine the factors affecting the early union in AS patients.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Orthopaedic Surgery, Guri Hospital, Hanyang Universtiy College of Medicine, Guri, Korea
| | | | | | | |
Collapse
|
68
|
Piazza F, Manni S, Tubi LQ, Montini B, Pavan L, Colpo A, Gnoato M, Cabrelle A, Adami F, Zambello R, Trentin L, Gurrieri C, Semenzato G. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer 2010; 10:526. [PMID: 20920357 PMCID: PMC2958942 DOI: 10.1186/1471-2407-10-526] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 10/04/2010] [Indexed: 12/21/2022] Open
Abstract
Background Glycogen Synthase Kinase-3 (GSK-3) α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM). Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB) and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i) play distinct roles in cell survival and ii) modulate the sensitivity to proteasome inhibitors.
Collapse
Affiliation(s)
- Francesco Piazza
- Department of Clinical and Experimental Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Via Giustiniani 2 -35128-Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fu J, Wang P, Zhang X, Ju S, Li J, Li B, Yu S, Zhang J, Zhang X. Myeloma cells inhibit osteogenic differentiation of mesenchymal stem cells and kill osteoblasts via TRAIL-induced apoptosis. Arch Med Sci 2010; 6:496-504. [PMID: 22371791 PMCID: PMC3284062 DOI: 10.5114/aoms.2010.14459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/05/2009] [Accepted: 09/15/2009] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Myeloma bone disease (MBD) is the result of the increased activity of osteoclasts (OCs), which is not accompanied by a comparable increase of osteoblast (OB) function, thus leading to enhanced bone resorption. Osteoblasts can also regulate osteoclast activity through expression of cytokines, such as receptor activator of nuclear factor-κB ligand (RANKL), which activates osteoclast differentiation, and osteoprotegerin (OPG), which inhibits RANKL by acting as a decoy receptor. MATERIAL AND METHODS Based on a series of 21 patients with multiple myeloma (MM) and human osteoblast cell line HFOB1.19, we provide evidence that the bone marrow-derived mesenchymal stem cells (BMMSCs) of patients with MM exhibit normal phenotype, but showed reduced efficiency to differentiate into OBs as compared with normal controls. RESULTS In vitro assays showed that MM cells inhibited the potential of osteogenic differentiation of BMMSCs from healthy controls and rendered the OBs sensitive to TRAIL-induced apoptosis. There was no evidence of the formation of tartrate-resistant acid phosphatase positive OCs. The osteogenic differentiation of HFOB1.19 was also inhibited in the presence of RPMI 8266 or XG7 MM cells, as confirmed by von Kossa and ALP staining. Osteoblast s induced from BMMSCs supported survival and proliferation of MM cells, especially when the MM cells were cultured in medium containing rhTRAIL and dexamethasone. Multiple myeloma cells proliferated and grew well in the presence of residual OBs. CONCLUSIONS Besides OCs, our results demonstrated that OBs and MM cells were dependent upon each other and made a microenvironment suitable for MM cells.
Collapse
Affiliation(s)
- Jinxiang Fu
- Department of Haematology, No. 2 Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Panjun Wang
- Department of Haematology, No. 2 Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaohui Zhang
- Department of Haematology, No. 2 Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Suguang Ju
- Institute of Biotechnology, Soochow University, China
| | - Jie Li
- Department of Haematology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Binzhou Li
- Department of Haematology, No. 2 Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Sun Yu
- Department of Haematology, No. 2 Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jianhua Zhang
- Department of Haematology, No. 2 Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | |
Collapse
|
70
|
Olkku A, Leskinen JJ, Lammi MJ, Hynynen K, Mahonen A. Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells. Bone 2010; 47:320-30. [PMID: 20435172 DOI: 10.1016/j.bone.2010.04.604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/25/2010] [Accepted: 04/23/2010] [Indexed: 11/30/2022]
Abstract
The benefit from an ultrasound (US) exposure for fracture healing has been clearly shown. However, the molecular mechanisms behind this effect are not fully known. Recently, the canonical Wnt signaling pathway has been recognized as one of the essential regulators of osteoblastogenesis and bone mass, and thereby considered crucial for bone health. Mechanical loading and fluid shear stress have been reported to activate the canonical Wnt signaling pathway in bone cells, but previous reports on the effects of therapeutic US on Wnt signaling in general or in bone, in particular, have not been published yet. Therefore, activation of Wnt signaling pathway was assayed in human osteoblastic cells, and indeed, this pathway was found to be activated in MG-63 cells through the phosphoinositol 3-kinase/Akt (PI3K/Akt) and mTOR cascades following a single 10 min US exposure (2 W, 1.035 MHz). In addition to the reporter assay results, the Wnt pathway activation was also observed as nuclear localization of beta-catenin. Wnt activation showed also temperature dependence at elevated temperatures, and the expression of canonical Wnt ligands was induced under the thermal exposures. However, existence of a specific, non-thermal US component was evident as well, perhaps evidence of a potential dual action of therapeutic US on bone. Neither US nor heat exposures affected cell viability in our experiments. In summary, this is the first study to report that Wnt signaling cascade, important for osteoblast function and bone health, is one of the pathways activated by therapeutic US as well as by hyperthermia in human osteoblastic cells. Our results provide evidence for the potential molecular mechanisms behind the beneficial effects of US on fracture healing. Combinations of US, heat, and possible pharmacological treatment could provide useful flexibility for clinical cases in treating various bone disorders.
Collapse
Affiliation(s)
- Anu Olkku
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
71
|
Anastasilakis AD, Polyzos SA, Avramidis A, Toulis KA, Papatheodorou A, Terpos E. The effect of teriparatide on serum Dickkopf-1 levels in postmenopausal women with established osteoporosis. Clin Endocrinol (Oxf) 2010; 72:752-7. [PMID: 19832854 DOI: 10.1111/j.1365-2265.2009.03728.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Parathyroid hormone increases the differentiation of osteoblast precursors through canonical wingless (Wnt) signalling, resulting in an osteoanabolic effect. We aimed to evaluate serum levels of the Wnt-inhibitor Dickkopf-1 (Dkk-1) in postmenopausal women with established osteoporosis and their changes with teriparatide (TPTD - human recombinant PTH 1-34). DESIGN AND PATIENTS A total of 31 postmenopausal Caucasian women with established osteoporosis (mean age 66.3 +/- 1.4 years) received daily injections of 20 microg TPTD for 18 months. Follow-up was continued for another 6 months after treatment discontinuation (total duration of treatment 24 months). MEASUREMENTS Serum samples for total calcium (Ca), intact PTH (iPTH), bone-specific alkaline phosphatase, C-terminal cross-linking telopeptide of type 1 collagen (CTx) and Dkk-1 were obtained at baseline, and at 6, 18 and 24 months after TPTD initiation. Lumbar spine bone mineral density (BMD) was measured before and after 18 months of TPTD treatment. A total of 16 age- and gender-matched healthy controls were also analysed at baseline. RESULTS Serum Dkk-1 levels at baseline were significantly higher in osteoporotic women compared with that in controls (P < 0.002). Dkk-1 increased significantly during TPTD administration (P < 0.044) and decreased to baseline 6 months after TPTD discontinuation. Dkk-1 change was positively correlated to Ca (r = 0.530, P = 0.004) and negatively correlated to iPTH change (r = -0.398, P = 0.040). There was no correlation between Dkk-1 and BMD changes. CONCLUSIONS Our data suggest that Dkk-1 levels are increased in women with postmenopausal osteoporosis. TPTD therapy results in further increase of Dkk-1 that may be compensative to TPTD-induced enhanced Wnt signalling.
Collapse
|
72
|
Hamidouche Z, Fromigué O, Nuber U, Vaudin P, Pages JC, Ebert R, Jakob F, Miraoui H, Marie PJ. Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells. J Cell Physiol 2010; 224:509-15. [DOI: 10.1002/jcp.22152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
73
|
Tate CC, Fonck C, McGrogan M, Case CC. Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant 2010; 19:973-84. [PMID: 20350349 DOI: 10.3727/096368910x494885] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell transplantation is a promising treatment strategy for many neurological disorders, including stroke, which can target multiple therapeutic mechanisms in a sustained fashion. We investigated the ability of human mesenchymal stromal cells (MSCs) and MSC-derived SB623 cells to rescue neural cells via trophic support following an in vitro stroke model. Following oxygen glucose deprivation, cortical neurons or hippocampal slices were cocultured with either MSCs or SB623 cells separated by a semiporous membrane (prohibits cell-cell contact) or with MSC- or SB623 cell-conditioned medium. MSCs, SB623 cells, MSC-conditioned media, and SB623 cell-conditioned media all significantly reduced neural cell damage/death compared to untreated conditions, and the rescue effect of the conditioned media was dose dependent. We identified 11 neurotrophic factors secreted by MSCs and/or SB623 cells. This study emphasizes the importance of trophic support provided by marrow-derived cells, which likely contributes to the efficacy of cell therapy for brain injury.
Collapse
|
74
|
Liu XH, Kirschenbaum A, Weinstein BM, Zaidi M, Yao S, Levine AC. Prostaglandin E2 modulates components of the Wnt signaling system in bone and prostate cancer cells. Biochem Biophys Res Commun 2010; 394:715-20. [PMID: 20227393 DOI: 10.1016/j.bbrc.2010.03.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 12/19/2022]
Abstract
Both Wnt signaling and prostaglandin E(2) (PGE(2)) play pivotal roles in bone development, remodeling, osteoporosis and prostate cancer (PCa) bone metastases. We investigated the effects of PGE(2) on Wnt signaling in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells. We demonstrate that low dose PGE(2) (0.1 microM) promotes Wnt signaling while higher doses of PGE(2) (1.0-10 microM) inhibit these same parameters in osteoblast-lineage cells. The differential effects of low vs high-dose PGE(2) on pre-osteoblasts may be attributed to dose-dependent modulation of prostaglandin receptor (EP) subtype expression; with lower doses increasing the expression the cAMP-stimulatory EP4 receptor subtype and higher doses increasing the expression of the cAMP-inhibitory EP3 receptor subtype. Moreover, we demonstrate that high expression levels of COX-2 and PGE(2) promote the secretion of Wnt inhibitors from prostate cancer cells. These data demonstrate that there are dose-dependent effects of PGE(2) on Wnt activation in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells which may have clinical implications in the management.
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
75
|
Jansen JHW, Eijken M, Jahr H, Chiba H, Verhaar JAN, van Leeuwen JPTM, Weinans H. Stretch-induced inhibition of Wnt/beta-catenin signaling in mineralizing osteoblasts. J Orthop Res 2010; 28:390-6. [PMID: 19780202 DOI: 10.1002/jor.20991] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wnt signaling is important for bone formation and osteoblastic differentiation. Recent findings indicate a stimulating role of Wnt signaling in bone mechanotransduction. However, negative effects of Wnt signaling on osteoblast differentiation and mineralization have been described as well. We conducted in vitro stretch experiments using human pre-osteoblasts to study short- and long-term effects of mechanical loading on Wnt/beta-catenin signaling. As the extracellular regulated kinase (ERK) pathway is known to be involved in mechanotransduction in osteoblasts, we also evaluated its role in Wnt/beta-catenin signaling. Stretch experiments up to 21 days (using stretch episodes of 15 min, alternated with 90 min rest) resulted in higher mineralization compared to static control cultures. We found that 15 min of stretch initially increased nuclear beta-catenin, but ultimately resulted in significant decrease at 12 and 40 h after stretch. Downregulation of Wnt-responsive element activity 16 h after stretch, using a luciferase construct, further supported these findings. The presence of the ERK inhibitor U0126 did not alter the stretch-induced decrease of beta-catenin levels. Our data indicate a biphasic effect of mechanical loading on beta-catenin in mineralizing human differentiating osteoblasts, which is independent of the ERK pathway. The osteogenic potential of our loading regime was confirmed by an increase in osteogenic differentiation markers such as alkaline phosphatase activity and calcium deposition after 3 weeks of culture. We conjecture that the biphasic aspect of Wnt/beta-catenin signaling with a strong decrease up to 40 h after the stretch induction, is important for the anabolic effects of mechanical stretch on bone.
Collapse
Affiliation(s)
- Justus H W Jansen
- Department of Orthopaedics, Erasmus University Medical Centre, Room Ee 1614, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
76
|
Gustafson B, Smith U. Activation of canonical wingless-type MMTV integration site family (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads to cell dedifferentiation and insulin resistance. J Biol Chem 2010; 285:14031-41. [PMID: 20179324 DOI: 10.1074/jbc.m110.102855] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Canonical Wnt ligands are secreted by several cell types in the adipose tissue. We examined if mature adipocytes can also be target cells and found that canonical Wnt activation by Wnt3a induced a marked dedifferentiation of both 3T3-L1 and human adipocytes. Typical adipogenic markers were reduced while undifferentiated cell markers like Pref-1/Dlk1, Wnt10b, and Gata2 were increased. The cells also became insulin-resistant with impaired upstream insulin signaling and reduced glucose uptake. Wnt3a stabilized beta-catenin in the absence of the LRP6 receptor and with maintained axin and Dickkopf-1 protein expression. PPARgamma was repressed and PPARgamma ligands could not restore the adipogenic markers or reduce the beta-catenin levels. The dedifferentiated adipocytes expressed the myofibroblast marker alpha-smooth muscle actin and were also susceptible to osteogenic transdifferentiation. These results identify a novel pathway in mature adipose cells that is critical for maintaining the normal adipocyte phenotype and insulin sensitivity.
Collapse
Affiliation(s)
- Birgit Gustafson
- Lundberg Laboratory for Diabetes Research, Center of Excellence for Metabolic and Cardiovascular Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | | |
Collapse
|
77
|
Bernardini C, Saulnier N, Parrilla C, Pola E, Gambotto A, Michetti F, Robbins PD, Lattanzi W. Early transcriptional events during osteogenic differentiation of human bone marrow stromal cells induced by Lim mineralization protein 3. Gene Expr 2010; 15:27-42. [PMID: 21061915 PMCID: PMC6043822 DOI: 10.3727/105221610x12819686555097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lim mineralization protein-3 (LMP3) induces osteoblast differentiation by regulating the expression and activity of certain molecules involved in the osteogenic cascade, including those belonging to the bone morphogenetic protein (BMP) family. The complete network of molecular events involved in LMP3-mediated osteogenesis is still unknown. The aim of this study was to analyze the genome-wide gene expression profiles in human mesenchymal stem cells (hMSC) induced by exogenous LMP3 to mediate osteogenesis. For this purpose hMSC were transduced with a defective adenoviral vector expressing the human LMP3 gene and microarray analysis was performed 1 day post-adenoviral transduction. Cells transduced with the vector backbone and untransduced cells were used as independent controls in the experiments. Microarray data were independently validated by means of real-time PCR on selected transcripts. The statistical analysis of microarray data produced a list of 263 significantly (p < 0.01) differentially expressed transcripts. The biological interpretation of the results indicated, among the most noteworthy effects, the modulation of genes involved in the TGF-beta1 pathway: 88 genes coding for key regulators of the cell cycle regulatory machinery and 28 genes implicated in the regulation of cell proliferation along with the development of connective, muscular, and skeletal tissues. These results suggested that LMP3 could affect the fine balance between cell proliferation/differentiation of mesenchymal cells mostly by modulating the TGF-beta1 signaling pathway.
Collapse
Affiliation(s)
- Camilla Bernardini
- *Institute of Anatomy and Cell Biology, Catholic University, School of Medicine, Rome, Italy
| | - Nathalie Saulnier
- †Department of Internal Medicine, Catholic University, School of Medicine, Rome, Italy
| | - Claudio Parrilla
- ‡Department of Otolaryngology, Catholic University, School of Medicine, Rome, Italy
| | - Enrico Pola
- §Department of Orthopedics, Catholic University, School of Medicine, Rome, Italy
| | - Andrea Gambotto
- ¶Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Fabrizio Michetti
- *Institute of Anatomy and Cell Biology, Catholic University, School of Medicine, Rome, Italy
- #Latium Musculo-Skeletal Tissue Bank, Rome, Italy
| | - Paul D. Robbins
- ¶Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Wanda Lattanzi
- *Institute of Anatomy and Cell Biology, Catholic University, School of Medicine, Rome, Italy
| |
Collapse
|
78
|
N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS One 2009; 4:e8284. [PMID: 20011526 PMCID: PMC2788421 DOI: 10.1371/journal.pone.0008284] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/29/2009] [Indexed: 12/31/2022] Open
Abstract
Background Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies indicate that the cell-cell adhesion molecule N-cadherin interacts with the Wnt co-receptors LRP5/6 to regulate osteoblast differentiation and bone accrual. The role of N-cadherin in the control of osteoblast proliferation and survival remains unknown. Methods and Principal Findings Using murine MC3T3-E1 osteoblastic cells and N-cadherin transgenic mice, we demonstrate that N-cadherin overexpression inhibits cell proliferation in vitro and in vivo. The negative effect of N-cadherin on cell proliferation results from decreased Wnt, ERK and PI3K/Akt signalling and is restored by N-cadherin neutralizing antibody that antagonizes N-cadherin-LRP5 interaction. Inhibition of Wnt signalling using DKK1 or Sfrp1 abolishes the ability of N-cadherin blockade to restore ERK and PI3K signalling and cell proliferation, indicating that the altered cell growth in N-cadherin overexpressing cells is in part secondary to alterations in Wnt signalling. Consistently, we found that N-cadherin overexpression inhibits the expression of Wnt3a ligand and its downstream targets c-myc and cyclin D1, an effect that is partially reversed by N-cadherin blockade. We also show that N-cadherin overexpression decreases osteoblast survival in vitro and in vivo. This negative effect on cell survival results from inhibition of PI3K/Akt signalling and increased Bax/Bcl-2, a mechanism that is rescued by Wnt3a. Conclusion The data show that N-cadherin negatively controls osteoblast proliferation and survival via inhibition of autocrine/paracrine Wnt3a ligand expression and attenuation of Wnt, ERK and PI3K/Akt signalling, which provides novel mechanisms by which N-cadherin regulates osteoblast number.
Collapse
|
79
|
El Tamer MK, Reis RL. Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med 2009; 3:327-37. [PMID: 19418440 DOI: 10.1002/term.173] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research in regenerative medicine is developing at a significantly quick pace. Cell-based bone and cartilage replacement is an evolving therapy aiming at the treatment of patients who suffer from limb amputation, damaged tissues and various bone and cartilage-related disorders. Stem cells are undifferentiated cells with the capability to regenerate into one or more committed cell lineages. Stem cells isolated from multiple sources have been finding widespread use to advance the field of tissue repair. The present review gives a comprehensive overview of the developments in stem cells originating from different tissues and suggests future prospects for functional bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- M K El Tamer
- 3Bs Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | |
Collapse
|
80
|
Gimble JM, Floyd ZE, Bunnell BA. The 4th dimension and adult stem cells: Can timing be everything? J Cell Biochem 2009; 107:569-78. [PMID: 19384905 DOI: 10.1002/jcb.22153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The rotation of the earth on its axis influences the physiology of all organisms. A highly conserved set of genes encoding the core circadian regulatory proteins (CCRP) has evolved across species. The CCRP acts through transcriptional and post-transcriptional mechanisms to direct the oscillatory expression of genes essential for key metabolic events. In addition to the light:dark cycle, the CCRP expression can be entrained by changes in feeding and physical activity patterns. While mammalian CCRP were originally associated with the central clock located within the suprachiasmatic nucleus of the brain, there is a growing body of evidence documenting the presence of the CCRP in peripheral tissues. It is now evident that the CCRP play a role in regulating the proliferation, differentiation, and function of adult stem cells in multiple organs. This concise review highlights findings concerning the role of the CCRP in modulating the adult stem cell activities. Although the manuscript focuses on hematopoietic stem cells (HSCs), bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived stem cells (ASCs) and cancer stem cells, it is likely that the contribution of the CCRP merits consideration and evaluation in all stem cell pathways.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
81
|
Abstract
Multiple myeloma is the most common form of plasma cell dyscrasia and virtually all cases of myeloma exhibit osteolytic lesions, which result in bone pain, pathological fractures, spinal cord compression, and hypercalcaemia. Malignant plasma cells disrupt the delicate balance between bone formation and bone resorption, which ultimately leads to the debilitating osteolytic lesions. This review focuses principally on mechanisms of osteoblast inhibition by malignant plasma cells with emphasis placed on our experimental findings, which support a model for abnormal Wnt signaling in osteoblast suppression. We describe how excessive amounts of soluble Wnt inhibitors secreted by malignant plasma cells in multiple myeloma could promote osteolytic lesions, tumor growth, suppress hematopoiesis, prevent proper engraftment, and expansion of transplanted stem cells. Finally, we detail current therapies shown to disrupt the interaction between the myeloma cell and the microenvironment, leading to activation of osteoblasts.
Collapse
Affiliation(s)
- James Peter Stewart
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
82
|
Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G, Aaronson SA. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. ACTA ACUST UNITED AC 2009; 185:67-75. [PMID: 19349579 PMCID: PMC2700509 DOI: 10.1083/jcb.200810137] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.
Collapse
Affiliation(s)
- Guizhong Liu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Olkku A, Mahonen A. Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signalling inhibition in human osteoblastic cells. Bone 2009; 44:555-65. [PMID: 19100874 DOI: 10.1016/j.bone.2008.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/15/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
Wnt signalling pathway is a multicomponent cascade involving interaction of several proteins and found to be important for development and function of various cells and tissues. There is increasing evidence that the Wnt/beta-catenin pathway constitutes also one of the essential molecular mechanisms controlling the metabolic aspects of osteoblastic cells. However, in bone, glucocorticoids (GCs) have been reported to weaken Wnt signalling. Therefore, the aim of this study was to characterize the mechanisms behind the cross-talk of these two signalling pathways in human osteoblastic cells. Based on our findings, liganded glucocorticoid receptor (GR) modulated Wnt signalling pathway by decreasing beta-catenin's nuclear accumulation and increasing its relocalization to cell membranes rather than affecting its degradation in human osteoblastic cells. The region of GR responsible for this inhibitory effect located into an area, which harbours the DNA binding as well as nuclear export domains. In further studies, a chaperone protein calreticulin (CRT), known to bind the DNA binding domain of GR and regulate receptor export, was found to be involved in the GR-mediated downregulation of Wnt signalling: GR mutants containing incomplete CRT binding sites were not able to translocate beta-catenin to cell surface. In addition, the inhibitory effect of GCs on endogenous Wnt target gene, cyclin D1, was abolished, when the expression of CRT was attenuated by the RNAi technique. Furthermore, GR and beta-catenin were shown to exist in the same immunocomplex, while interaction between CRT and beta-catenin was observed only in the presence of GR as a mediator molecule. In addition, the GR mutant lacking CRT binding ability impaired the complex formation between beta-catenin and CRT. Together with GR, beta-catenin could thus be co-transported from the nucleus in a CRT-dependent way. These observations represent a novel mechanism for GCs to downregulate Wnt signalling pathway in human osteoblastic cells. Knowledge of these molecular mechanisms is important for understanding the network of multiple signalling cascades in bone environment. Functional Wnt signalling pathway is a prerequisite for proper osteoblastogenesis, and this modulative cross-talk between the steroid pathway and Wnt cascade could therefore explain some of the two-edged effects of GCs on osteoblastic differentiation and function.
Collapse
Affiliation(s)
- Anu Olkku
- Institute of Biomedicine, Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|
84
|
Abstract
Fracture repair is a complex regenerative process initiated in response to injury, resulting in optimal restoration of skeletal function. Although histology characteristics at various phases of fracture repair are clear and well established, much remains to be understood about the process of bone healing, particularly at the molecular signaling level. During the past decade, secreted signaling molecules of the Wnt family have been widely investigated and found to play a central role in controlling embryonic development processes. Wnt signaling pathway also plays a pivotal role in the regulation of bone mass. Recent published data reveal that Wnt signaling pathway is activated during postnatal bone regenerative events, such as ectopic endochondral bone formation and fracture repair. Dysregulation of this pathway greatly inhibits bone formation and healing process. Interestingly, activation of Wnt pathway has potential to improve bone healing, but only utilized after mesenchymal cells have become committed to the osteoblast lineage. These advances suggest an essential role of Wnt pathway in bone regeneration.
Collapse
Affiliation(s)
- Yan Chen
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
85
|
Shen L, Zhou S, Glowacki J. Effects of age and gender on WNT gene expression in human bone marrow stromal cells. J Cell Biochem 2009; 106:337-43. [PMID: 19115259 DOI: 10.1002/jcb.22010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
WNT signaling pathways play important roles in the behavior of human bone marrow stromal cells. Although WNT expression has been examined in human bone marrow stromal cells (hMSCs) with limited numbers of subjects or from commercial sources, there are conflicting results on WNT gene expression in hMSCs. Furthermore, the effects of age and gender on WNT expression in hMSCs are largely unknown. In this study, we evaluated RNA expression of all the WNT genes in hMSCs from 19 subjects, 12 women and 7 men, aged from 36 to 85 years. Analysis of WNT gene expression in young and old groups indicated that WNT7B and 14 were expressed significantly higher in the young group. WNT2 and WNT13 showed a trend of higher expression in young group. WNT7B, 13, and 14 were inversely correlated with age. Further analysis for gender-specific difference indicated that WNT16 was expressed significantly higher in men than in women. WNT11 showed a trend of higher expression in hMSCs from women. For the hMSCs from women, WNT13 was inversely correlated with age and WNT4 was positively correlated with age. For the hMSCs from men, WNT7B and WNT14 were inversely correlated with age. These data indicated that most of the age-related WNT genes belong to the canonical WNT signaling pathway. Further, there are gender-specific differences in the expression of WNT4, 7B, 13, 14, and 16 in hMSCs. Age and gender account for many of the sample-to-sample variations in WNT gene expression in human marrow stromal cells.
Collapse
Affiliation(s)
- Longxiang Shen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
86
|
Tipping the balance: modulating the Wnt pathway for tissue repair. Trends Biotechnol 2009; 27:131-6. [PMID: 19187992 DOI: 10.1016/j.tibtech.2008.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/19/2008] [Accepted: 11/28/2008] [Indexed: 12/27/2022]
Abstract
The Wnt signaling pathway has a crucial role in regulating cell growth and differentiation and is required for tissue homeostasis and repair. Although constitutive activation of the Wnt pathway can lead to abnormal cell growth and cancer, modulation of Wnt signaling might have a therapeutic benefit for tissue regeneration in numerous diseases. Recently, preclinical studies have demonstrated that treatments with antibodies against the Wnt inhibitor Dickkopf1 (DKK1) and with the positive Wnt modulator R-Spondin1 (RSpo1) were sufficient to repair the bone lesions in multiple myeloma and rheumatoid arthritis and to restore the damaged mucosa in experimental colitis, respectively. A remarkable balance is set for Wnt signaling by secreted proteins such as RSpo1 and DKK1, which help to regulate tissue homeostasis. As physiological Wnt response is essential for the regeneration of damaged tissues, modulation of the Wnt pathway might be beneficial for the treatment of multiple human diseases.
Collapse
|
87
|
Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 2009; 14:1615-27. [PMID: 18759661 DOI: 10.1089/ten.tea.2006.0415] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A mesenchymal stem cell (MSC)-seeded collagen gel under static or dynamic tension is a well-established model to study the potential of MSCs in regenerating a tendon- or ligament-like tissue. Using this model, upregulation of fibrillar collagen mRNA expression and protein production has been demonstrated in response to cyclic tensile mechanical stimulation. However, the mechanisms driving MSC tenogenesis (differentiation into tendon or ligament fibroblasts) have not been elucidated. This study investigated the mechanisms of tenogenesis of human bone marrow-derived MSCs in a dynamic, three-dimensional (3D) tissue-engineering model by investigating the effects of cyclic stretching on matrix production and gene expression of candidate tendon and ligament markers. The 3D MSC tenogenesis culture system upregulated scleraxis, but cyclic stretching was required to maintain expression of this putative tendon marker over time. Enhanced tendinous neo-tissue development demonstrated with extracellular matrix staining was largely due to changes in matrix deposition and remodeling activity under dynamic loading conditions, as evidenced by differential regulation of matrix metalloproteinases at a transcriptional level with minimal changes in collagen mRNA levels. Regulation of Wnt gene expression with cyclic stimulation suggested a similar role for Wnt4 versus Wnt5a in tenogenesis as in cartilage development. This first report of the potential involvement of matrix remodeling and Wnt signaling during tenogenesis of human MSCs in a dynamic, 3D tissue-engineering model provides insights into the mechanisms of tenogenesis in a mechanoactive environment and supports the therapeutic potential of adult stem cells.
Collapse
Affiliation(s)
- Catherine K Kuo
- Cartilage Biology and Orthopedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
88
|
Molchanova EA, Payushina OV, Starostin VI. Effects of growth factors on multipotent bone marrow mesenchymal stromal cells. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008060010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
89
|
Guo J, Jin J, Cooper LF. Dissection of sets of genes that control the character of wnt5a-deficient mouse calvarial cells. Bone 2008; 43:961-71. [PMID: 18656562 DOI: 10.1016/j.bone.2008.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 03/18/2008] [Accepted: 06/24/2008] [Indexed: 12/14/2022]
Abstract
Wnts (wingless and int-related proteins) are a family of secreted cysteine-rich glycoproteins, expressed in a variety of tissues in developing embryos, thought to be involved in cell fate specification and stem cell commitment. To identify the specific Wnts involved in osteoblastic differentiation of human mesenchymal stem cells (hMSCs), we performed degenerative RT-PCR cloning method to amplify Wnt-encoding cDNAs expressed during osteoblastic differentiation of hMSCs in vitro and during hMSC-directed ectopic osteogenesis in the severe combined immunodeficient (SCID) mouse host. WNT5A was found to be the dominant Wnt expressed during osteoblastic differentiation of hMSCs both in vitro and in vivo. RT-PCR further revealed that hWNT5A and its receptor Frizzled family member 5 (hFZD5) was up-regulated during osteoblastic differentiation compared to uncommitted hMSCs. To evaluate the function of Wnt5a, calvarial cells were obtained from Wnt5a(-/-), Wnt5a(+/-), and wild type mice. Wnt5a(-/-) cells showed significantly slower growth when compared to Wnt5a(+/-) and wild type cells. Gene expression profiles of the Wnt5a(-/-) calvarial cells as compared to wild type cells were evaluated using microarray analysis. 255 genes exhibited at least 2-fold changes in expression. Clusters of genes regulating cell cycle, cell proliferation and cell growth, and gene transcription were altered with absence of Wnt5a expression. In addition, genes regulating osteoblastic differentiation including Runx2, osterix, and alkaline phosphatase (ALP) were shown to be down-regulated in Wnt5a(-/-) cells. In conclusion, Wnt5a is highly expressed during osteoblastic differentiation. Its function during mesenchymal stem cell differentiation as well as cell growth was suggested by comparing the gene expression profile of calvarial cells from the Wnt5a(-/-) and wild type mice.
Collapse
Affiliation(s)
- Juanli Guo
- Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | | | | |
Collapse
|
90
|
Benayahu D, Shefer G, Shur I. Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues. Ann Anat 2008; 191:2-12. [PMID: 18926677 DOI: 10.1016/j.aanat.2008.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/18/2022]
Abstract
Utilizing adult stem cells for regenerative medicine of skeletal tissues requires the development of molecular and biochemical tools that will allow isolation of these cells and direction of their differentiation towards a desired lineage and tissue formation. Stem cell commitment and fate decision into specialized functional cells involve coordinated activation and silencing of lineage-specific genes. Transcription factors and chromatin-remodeling proteins are key players in the control process of lineage commitment and differentiation during embryogenesis and adulthood. Transcription factors act in cooperation with co-regulator proteins to generate tissue-specific responses that elicits the tissue specific gene expression. Consequently, one of the main challenges of today's research is to characterize molecular pathways that coordinate the lineage-specific differentiation. Epigenetic regulation includes chromatin remodeling that control structural changes of DNA required for the binding of transcription factors to promoter regions. Revealing the mechanisms of action of such factors will provide understanding of how transcription and chromatin regulatory factors function together to regulate stem cell lineage fate decision.
Collapse
Affiliation(s)
- Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|
91
|
Granchi D, Baglìo SR, Amato I, Giunti A, Baldini N. Paracrine inhibition of osteoblast differentiation induced by neuroblastoma cells. Int J Cancer 2008; 123:1526-35. [PMID: 18623132 DOI: 10.1002/ijc.23654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of our study was to investigate whether the defective function of osteogenic cells induced by neuroblastoma might play a role in the development of skeletal metastases. This mechanism has been extensively demonstrated for multiple myeloma, in which the blockage of osteoblast differentiation has been ascribed to the inhibitors of canonical Wingless pathway (Wnt), namely Dickkopf 1 (Dkk1). Our purpose was to verify if neuroblastoma cells derived from bone marrow metastases (SH-SY5Y, LAN1) or primaries (NB100, CHP212) hamper the differentiation of mesenchymal stem cells (hMSCs) into osteoblasts in a paracrine manner, and to test whether this ability depends on Dkk1 activity. We found that all neuroblastoma cells increased the proliferation of hMSCs collected from pediatric-aged donors, with a corresponding decrease in osteoblast differentiation markers, including alkaline phosphatase (ALP), analyzed as gene expression, enzymatic activity and number of ALP-positive colony forming units, osteoprotegerin (OPG) release, OPG and osteocalcin gene-expression. Dkk1 mRNA and protein were detectable in all cell lines, and the use of neutralizing anti-Dkk1 antibody reversed the effects induced by SH-SY5Y cells. Taken together, our results confirm that neuroblastoma hinders osteoblastogenesis, and that Dkk1 release seems to play a crucial role in blocking the differentiation of osteoprogenitor cells, though the ability to promote osteoclast activation remains an essential requirement for the development of skeletal metastases. Finally, our findings suggest that strategies regulating Wnt signaling and Dkk1 activity could be considered for adjuvant therapies in neuroblastoma metastasizing to the skeleton.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory of Pathophysiology, Istituto Ortopedico Rizzoli, Bologna, Italy. donatella.granchi.@ior.it
| | | | | | | | | |
Collapse
|
92
|
Olkku A, Mahonen A. Wnt and steroid pathways control glutamate signalling by regulating glutamine synthetase activity in osteoblastic cells. Bone 2008; 43:483-93. [PMID: 18555765 DOI: 10.1016/j.bone.2008.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/06/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
Glutamate signalling has recently been found functional also outside the central nervous system, especially in bone. Glutamate is converted to glutamine by glutamine synthetase (GS), which is therefore able to regulate intracellular concentrations of glutamate. We previously characterized the induction of GS expression by glucocorticoids (GCs) in human osteoblast-like cells. Besides this observation, the mechanisms controlling GS in bone are unknown. Therefore, the aim of our present study was to investigate further the regulation of GS in osteoblastic cells. We observed that vitamin D inhibited basal and, even more efficiently, GC-stimulated GS activity by affecting both the mRNA and protein levels of the enzyme in human MG-63 osteoblast-like cells. In osteoblasts derived from rat bone marrow stem cells (rMSCs), GS activity was induced accordingly by the osteogenic culture conditions including GCs. Also in these primary cells, vitamin D clearly inhibited GS activity. In addition, the canonical Wnt signalling pathway was characterized as a negative regulator of GS activity. All these changes in GS activity were reflected on the intracellular glutamate concentration. Our results provide novel evidence that GS activity and expression are regulated by several different signalling pathways in osteoblastic cells. Therefore, GS is a strategic enzyme in controlling glutamate concentration in bone environment: GCs decreased the amount of this signalling molecule while vitamin D and Wnt signalling pathway increased it. Interestingly, GS activity and expression declined rapidly when the rMSC derived osteoblasts began to mineralize. Due to its downregulation during osteoblast mineralization, GS could be held as a marker for osteoblast development. Further supporting this, GS activity was stimulated and intracellular glutamate concentration maintained by the N-methyl-d-aspartate (NMDA) type glutamate receptor antagonist MK801, which inhibited osteogenic differentiation of the rMSCs. GS, a novel target for both steroidal and Wnt pathways in bone, might be a central player in the regulation of osteoblastogenesis and/or intercellular signal transmission. Therefore, the proper understanding of the interplay of these three signalling cascades, i.e., steroidal, Wnt, and glutamate signalling, gives vital information on how bone cells communicate together aiming to keep bone healthy.
Collapse
Affiliation(s)
- Anu Olkku
- Institute of Biomedicine, Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|
93
|
Li B, Shi M, Li J, Zhang H, Chen B, Chen L, Gao W, Giuliani N, Zhao RC. Elevated tumor necrosis factor-alpha suppresses TAZ expression and impairs osteogenic potential of Flk-1+ mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev 2008; 16:921-30. [PMID: 17927494 DOI: 10.1089/scd.2007.0074] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One of the clinical features of multiple myeloma (MM) is the occurrence of skeletal events, which are characterized by increased bone resorption and decreased bone formation. In contrast to enhanced osteoclastogenesis, little is known about the mechanism of impaired bone formation in MM. Because TAZ, a Runx2/Cbfa1 transcriptional co-activator, has recently been shown to modulate mesenchymal stem cell (MSC) differentiation in favor of osteoblast differentiation, we investigated whether the regulation of TAZ expression played a role in the decreased bone formation of MM. We isolated and purified Flk-1(+)CD31(-)CD34(-) cells with MSC characters from bone marrow (BM) of myeloma patients and healthy donors. We found the osteogenic potential of the MSCs from myeloma patients decreased significantly, and TAZ expression of these cells was lower than that of healthy donors. Human myeloma cell lines (HMCLs) and CD138(+) myeloma cells (MCs) from myeloma patients inhibited osteogenesis of the MSCs from healthy volunteers, which were accompanied by a reduced TAZ expression and elevated TNF-alpha concentration in the supernatant of co-culture systems. The repressed osteogenesis and TAZ expression were both partially restored by neutralization of TNF-alpha. Thus, the decreased osteogenic potential of MSCs of myeloma patients was in part due to TNF-alpha suppressed TAZ expression.
Collapse
Affiliation(s)
- Bingzong Li
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Issack PS, Helfet DL, Lane JM. Role of Wnt signaling in bone remodeling and repair. HSS J 2008; 4:66-70. [PMID: 18751865 PMCID: PMC2504275 DOI: 10.1007/s11420-007-9072-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 02/07/2023]
Abstract
The Wnt genes encode a highly conserved class of signaling factors required for the development of several types of tissues including musculoskeletal and neural structures. There is increasing evidence that Wnt signaling is critical for bone mass accrual, bone remodeling, and fracture repair. Wnt proteins bind to cell-surface receptors and activate signaling pathways which control nuclear gene expression; this Wnt-regulated gene expression controls cell growth and differentiation. Many of the components of the Wnt pathway have recently been characterized, and specific loss-of-function or gain-of-function mutations in this pathway in mice and in humans have resulted in disorders of deficient or excess bone formation, respectively. Pharmacologically targeting components of the Wnt signaling pathway will allow for the manipulation of bone formation and remodeling and will have several orthopedic applications including enhancing bone formation in nonunion and osteoporosis and restricting pathologic bone formation in osteogenic tumors and heterotopic ossification.
Collapse
Affiliation(s)
- Paul S. Issack
- Orthopaedic Trauma, Adult Reconstructive Surgery, and Metabolic Bone Diseases, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - David L. Helfet
- Orthopaedic Trauma Service, Hospital for Special Surgery and Weill-Cornell Medical Center, New York, NY USA
| | - Joseph M. Lane
- Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY USA
| |
Collapse
|
95
|
The Influence of Cultivation Conditions on the Proliferation and Differentiation of Rat Bone Marrow Multipotent Mesenchymal Stromal Cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-69367-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
96
|
Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA. Bone regeneration is regulated by wnt signaling. J Bone Miner Res 2007; 22:1913-23. [PMID: 17696762 DOI: 10.1359/jbmr.070802] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Tissue regeneration is increasingly viewed as reactivation of a developmental process that, when misappropriated, can lead to malignant growth. Therefore, understanding the molecular and cellular pathways that govern tissue regeneration provides a glimpse into normal development as well as insights into pathological conditions such as cancer. Herein, we studied the role of Wnt signaling in skeletal tissue regeneration. INTRODUCTION Some adult tissues have the ability to regenerate, and among these, bone is one of the most remarkable. Bone exhibits a persistent, lifelong capacity to reform after injury, and continual bone regeneration is a prerequisite to maintaining bone mass and density. Even slight perturbations in bone regeneration can have profound consequences, as exemplified by conditions such as osteoporosis and delayed skeletal repair. Here, our goal was to determine the role of Wnts in adult bone regeneration. MATERIALS AND METHODS Using TOPgal reporter mice, we found that damage to the skeleton instigated Wnt reporter activity, specifically at the site of injury. We used a skeletal injury model to show that Wnt inhibition, achieved through adenoviral expression of Dkk1 in the adult skeleton, prevented the differentiation of osteoprogenitor cells. RESULTS As a result, injury-induced bone regeneration was reduced by 84% compared with controls. Constitutive activation of the Wnt pathway resulting from a mutation in the Lrp5 Wnt co-receptor results in high bone mass, but our experiments showed that this same point mutation caused a delay in bone regeneration. In these transgenic mice, osteoprogenitor cells in the injury site were maintained in a proliferative state and differentiation into osteoblasts was delayed. CONCLUSIONS When considered together, these data provide a framework for understanding the roles of Wnt signaling in adult bone regeneration and suggest a feasible approach to treating clinical conditions where enhanced bone formation is desired.
Collapse
Affiliation(s)
- Jae-Beom Kim
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305-5148, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Takahashi-Yanaga F, Sasaguri T. The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 2007; 104:293-302. [PMID: 17721040 DOI: 10.1254/jphs.cr0070024] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The cell signaling cascades provoked by Wnt proteins (the Wnt signaling pathways), which are well conserved through evolution, play crucial roles to maintain homeostasis of a variety of tissues such as skin, blood, intestine, and brain, as well as to regulate proliferation, morphology, motility, and fate of cells during embryonic development. Among these pathways, the signal transduction through beta-catenin (the Wnt/beta-catenin signaling pathway) has been most intensively studied because this signal regulates the expression of a number of genes essential for cell proliferation and differentiation and also this pathway is perturbed in a number of diseases such as cancers, bone diseases, and cardiovascular diseases. However, there is no therapeutic agents that can selectively modulate the Wnt/beta-catenin signaling pathway, although some existing drugs (e.g., non-steroidal anti-inflammatory drugs, vitamins, and imatinib mesylate) have been suggested to inhibit this pathway. Here we provide an overview of the Wnt/beta-catenin signaling pathway: its roles in physiology and pathology and the possibility as a target in development of new drugs.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
98
|
Lee N, Smolarz AJ, Olson S, David O, Reiser J, Kutner R, Daw NC, Prockop DJ, Horwitz EM, Gregory CA. A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br J Cancer 2007; 97:1552-9. [PMID: 17987039 PMCID: PMC2360262 DOI: 10.1038/sj.bjc.6604069] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Canonical Wnt signalling is an osteoinductive signal that promotes bone repair through acceleration of osteogenic differentiation by progenitors. Dkk-1 is a secreted inhibitor of canonical Wnt signalling and thus inhibits osteogenesis. To examine a potential osteoinhibitory role of Dkk-1 in osteosarcoma (OS), we measured serum Dkk-1 in paediatric patients with OS (median age, 13.4 years) and found it to be significantly elevated. We also found that Dkk-1 was maximally expressed by the OS cells at the tumour periphery and in vitro, Dkk-1 and RANKL are coexpressed by rapidly proliferating OS cells. Both Dkk-1 and conditioned media from OS cells reduce osteogenesis by human mesenchymal cells and by immunodepletion of Dkk-1, or by adding a GSK3β inhibitor, the effects of Dkk-1 were attenuated. In mice, we found that the expression of Dkk-1 from implanted tumours was similar to the human tumour biopsies in that human Dkk-1 was present in the serum of recipient animals. These data demonstrate that systemic levels of Dkk-1 are elevated in OS. Furthermore, the expression of Dkk-1 by the OS cells at the periphery of the tumour probably contributes to its expansion by inhibiting repair of the surrounding bone. These data demonstrate that Dkk-1 may serve as a prognostic or diagnostic marker for evaluation of OS and furthermore, immunodepletion of Dkk-1 or administration of GSK3β inhibitors could represent an adjunct therapy for this disease.
Collapse
Affiliation(s)
- N Lee
- Department of Medicine, Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, Giannobile W, Shi S, Wang CY. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007; 282:30938-48. [PMID: 17720811 DOI: 10.1074/jbc.m702391200] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can be differentiated into osteoblasts and provide an excellent cell source for bone regeneration and repair. Recently, the canonical Wnt/beta-catenin signaling pathway has been found to play a critical role in skeletal development and osteogenesis, implying that Wnts can be utilized to improve de novo bone formation mediated by MSCs. However, it is unknown whether noncanonical Wnt signaling regulates osteogenic differentiation. Here, we find that Wnt-4 enhanced in vitro osteogenic differentiation of MSCs isolated from human adult craniofacial tissues and promoted bone formation in vivo. Whereas Wnt-4 did not stabilize beta-catenin, it activated p38 MAPK in a novel noncanonical signaling pathway. The activation of p38 was dependent on Axin and was required for the enhancement of MSC differentiation by Wnt-4. Moreover, using two different models of craniofacial bone injury, we found that MSCs genetically engineered to express Wnt-4 enhanced osteogenesis and improved the repair of craniofacial defects in vivo. Taken together, our results reveal that noncanonical Wnt signaling could also play a role in osteogenic differentiation. Wnt-4 may have a potential use in improving bone regeneration and repair of craniofacial defects.
Collapse
Affiliation(s)
- Jia Chang
- Department of Biologic and Materials Sciences, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Cezar GG. Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol 2007; 11:405-9. [PMID: 17662644 DOI: 10.1016/j.cbpa.2007.05.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/28/2007] [Indexed: 11/24/2022]
Abstract
Few scientific achievements have received such irresistible attention from scientists, clinicians, and the general public as the ability of human embryonic stem (hES) cells to differentiate into functional cell types for regenerative medicine. The most immediate benefit of neurons, cardiomyocytes, and insulin-secreting cells derived from hES cells, however, may reside in their application in drug discovery and toxicology. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. The development of cell-based assays using human cells that are physiological targets of drug activity will increase the robustness of target validation and efficacy, high-throughput screening (HTS), structure-activity relationship (SAR), and should introduce safer drugs into clinical trials and the marketplace. The pluripotency of embryonic stem cells, that is, the capacity to generate multiple cell types, is a novel path for the discovery of 'regenerative drugs', the pursuit of small molecules that promote tissue repair (neurogenesis, cardiogenesis) or proliferation of resident stem cells in different organs, thus creating drugs that work by a novel mechanism.
Collapse
Affiliation(s)
- Gabriela Gebrin Cezar
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, United States.
| |
Collapse
|