51
|
|
52
|
Adverse Events Associated with Melatonin for the Treatment of Primary or Secondary Sleep Disorders: A Systematic Review. CNS Drugs 2019; 33:1167-1186. [PMID: 31722088 DOI: 10.1007/s40263-019-00680-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin is widely available either on prescription for the treatment of sleep disorders or as an over-the-counter dietary supplement. Melatonin has also recently been licensed in the UK for the short-term treatment of jetlag. Little is known about the potential for adverse events (AEs), in particular AEs resulting from long-term use. Concern has been raised over the possible risks of exposure in certain populations including pre-adolescent children and patients with epilepsy or asthma. OBJECTIVES The aim of this systematic review was to assess the evidence for AEs associated with short-term and longer-term melatonin treatment for sleep disorders. METHODS A literature search of the PubMed/Medline database and Google Scholar was conducted to identify randomised, placebo-controlled trials (RCTs) of exogenous melatonin administered for primary or secondary sleep disorders. Studies were included if they reported on both the types and frequencies of AEs. Studies of pre-term infants, studies of < 1 week in duration or involving single doses of melatonin and studies in languages other than English were excluded. Findings from open-label studies that raised concerns relating to AE reports in patients were also examined. Studies were assessed for quality of reporting against the Consolidated Standards of Reporting Trials (CONSORT) checklist and for risk of bias against the Cochrane Collaboration risk-of-bias criteria. RESULTS 37 RCTs met criteria for inclusion. Daily melatonin doses ranged from 0.15 mg to 12 mg. Subjects were monitored for up to 29 weeks, but most studies were of much shorter duration (4 weeks or less). The most frequently reported AEs were daytime sleepiness (1.66%), headache (0.74%), other sleep-related AEs (0.74%), dizziness (0.74%) and hypothermia (0.62%). Very few AEs considered to be serious or of clinical significance were reported. These included agitation, fatigue, mood swings, nightmares, skin irritation and palpitations. Most AEs either resolved spontaneously within a few days with no adjustment in melatonin, or immediately upon withdrawal of treatment. Melatonin was generally regarded as safe and well tolerated. Many studies predated publication of the CONSORT checklist and consequently did not conform closely to the guidelines. Similarly, only eight studies were judged 'good' overall with respect to the Cochrane risk-of-bias criteria. Of the remaining papers, 16 were considered 'fair' and 13 'poor' but publication of almost half of the papers preceded that of the earliest version of the guidelines. CONCLUSION Few, generally mild to moderate, AEs were associated with exogenous melatonin. No AEs that were life threatening or of major clinical significance were identified. The scarcity of evidence from long-term RCTs, however, limits the conclusions regarding the safety of continuous melatonin therapy over extended periods. There are insufficient robust data to allow a meaningful appraisal of concerns that melatonin may result in more clinically significant adverse effects in potentially at-risk populations. Future studies should be designed to comply with appropriate quality standards for RCTs, which most past studies have not.
Collapse
|
53
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
54
|
Zhu H, Chen Y, Bai LC, Cao XR, Xu R. Different Effects of Melatonin on X-Rays-Irradiated Cancer Cells in a Dose-Dependent Manner. Dose Response 2019; 17:1559325819877271. [PMID: 31579126 PMCID: PMC6759722 DOI: 10.1177/1559325819877271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/18/2018] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to investigate the effects of melatonin on the radiosensitivity of HeLa cells. Concentration from 10 to 1000 µM of melatonin was used on HeLa cells before X-rays irradiation (IR). The cellular inactivation effect was analyzed by clonogenic assay, and cell growth was measured by MTT assay at various concentrations. Ten micrometer melatonin promoted the cell-killing effects of IR, while 1000-µM melatonin prevented IR-induced cellular inactivation. Further analysis revealed that 1000-µM melatonin protected the cells from IR-induced reactive oxygen species damage, as the oxidative stress measured by fluorescent microscopy and fluorescence-activated cell sorting using 2,7-dichlorofluorescein diacetate staining. This is further confirmed by melatonin receptor agonist, which has no antioxidant capacity. A 10-µM melatonin, on the contrary, enhanced the cell-killing effects of IR by activating c-Jun NH2-terminal kinase (JNK) signaling. c-Jun NH2-terminal kinase signaling activation was indicated by Western blot of phosphorylated JNK. We used JNK inhibitor to further confirm the involvement of JNK signaling in the cell-killing enhancement of 10-µM melatonin administration. Our results suggest the importance of dose-dependent effects in melatonin application for radiotherapy.
Collapse
Affiliation(s)
- Hao Zhu
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Yong Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Liang-Cai Bai
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiang-Rong Cao
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Xu
- Radiology Department, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
55
|
Amin AH, El-Missiry MA, Othman AI, Ali DA, Gouida MS, Ismail AH. Ameliorative effects of melatonin against solid Ehrlich carcinoma progression in female mice. J Pineal Res 2019; 67:e12585. [PMID: 31066091 DOI: 10.1111/jpi.12585] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
The current work estimated the antitumour efficacy of melatonin (MLT) on the growth of Ehrlich ascites carcinoma cells inoculated intramuscularly into the hind limbs of female BALB/c mice and to compare its effects with those of adriamycin (ADR). After solid tumours developed, the animals were divided into the three following groups: the tumour-bearing control, MLT-treated (20 mg/kg body weight) and ADR-treated (10 mg/kg body weight) groups. The results showed a significant reduction in the tumour masses of the treated animals in comparison with those of the control group. There were a significant decrease in the malondialdehyde level and a significant elevation of the glutathione concentration and the superoxide dismutase and catalase activities in the MLT and ADR groups. The current study indicated the increased expression levels of P53, caspase-3 and caspase-9 and the decreased expression levels of the rRNA and Bcl2. The MLT and ADR treatments resulted in histological changes, such as a marked degenerative area, the necrosis of neoplastic cells, the appearance of different forms of apoptotic cells and giant cells with condensed chromatin, and a deeply eosinophilic cytoplasm. The MLT and ADR treatments also significantly decreased the Ki-67 protein and vascular endothelial growth factor (VEGF) expression levels in the tumour masses. In conclusion, similar to ADR-treated tumour-bearing mice, MLT suppressed the growth and proliferation of tumour by inducing apoptosis and by inhibiting tumour vascularization. The current data recommend MLT as a safe natural chemotherapeutic adjuvant to overcome cancer progression after a clinical trial validates these results.
Collapse
Affiliation(s)
- Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Doaa A Ali
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mona S Gouida
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed H Ismail
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
56
|
Wang X, Wang B, Zhan W, Kang L, Zhang S, Chen C, Hou D, You R, Huang H. Melatonin inhibits lung metastasis of gastric cancer in vivo. Biomed Pharmacother 2019; 117:109018. [DOI: 10.1016/j.biopha.2019.109018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/02/2023] Open
|
57
|
|
58
|
Martínez PN, Menéndez ST, Villaronga MDLÁ, Ubelaker DH, García-Pedrero JM, C Zapico S. "The big sleep: Elucidating the sequence of events in the first hours of death to determine the postmortem interval". Sci Justice 2019; 59:418-424. [PMID: 31256813 DOI: 10.1016/j.scijus.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
Recent developments on postmortem interval estimation (PMI) take an advantage of the autolysis process, pointing out to the analysis of the expression of apoptosis and autophagy genes towards this purpose. Oxidative stress plays a role in this signaling as a regulatory mechanism and/or as a consequence of cell death. Additionally, melatonin has been implicated on apoptosis and autophagy signaling, making melatonin a suitable target for PMI determination. The aim of this study was to investigate the early PMI through the analysis of the expression of autophagy genes as well as oxidative stress and melatonin receptor. Our results demonstrated a rapidly increased on the expression of autophagy genes according to the expected sequence of events, then a marked decrease in this expression, matched with the switch to the apoptosis signaling. These results revealed potential candidates to analyze the PMI in the first hours of death, helping to estimate the time-since-death.
Collapse
Affiliation(s)
- Paula Núñez Martínez
- Departamento de Biología Funcional (Área de Fisiología), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain
| | - Sofía T Menéndez
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - María de Los Ángeles Villaronga
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Douglas H Ubelaker
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA
| | - Juana M García-Pedrero
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Sara C Zapico
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA; Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
59
|
Shafabakhsh R, Reiter RJ, Mirzaei H, Teymoordash SN, Asemi Z. Melatonin: A new inhibitor agent for cervical cancer treatment. J Cell Physiol 2019; 234:21670-21682. [PMID: 31131897 DOI: 10.1002/jcp.28865] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Cervical cancer is one of the most common cancers between women and is known as the third leading cause of female cancer related deaths annually. Its detection in early stages allows it to be a preventable and generally treatable disease. Increasing evidence revealed, a variety of internal and external factors are associated with initiation and progression of cervical cancer pathogenesis. Human papilloma virus infection is found as a major cause of cervical cancer. Other molecular and biochemical alterations as well as genetic and epigenetic changes are related cervical cancer progression. Current treatment options often have severe side effects and toxicities thus, new adjuvant agents having synergistic effects and ability to decrease different side effects and toxicities are needed. Melatonin is an indolamine compound secreted from the pineal gland which shows wide range anticancer activities. A large amount of studies indicated inhibitory effects of melatonin against various types of cancers. In addition, experimental evidence reports inhibitory effects of melatonin as an adjuvant therapy on cervical cancer by targeting a sequence of different molecular mechanisms. Herein, for first time, we summarized anticervical cancer effects of melatonin and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, Texas
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayyeh Noei Teymoordash
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
60
|
Pourhanifeh MH, Sharifi M, Reiter RJ, Davoodabadi A, Asemi Z. Melatonin and non-small cell lung cancer: new insights into signaling pathways. Cancer Cell Int 2019; 19:131. [PMID: 31123430 PMCID: PMC6521447 DOI: 10.1186/s12935-019-0853-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/10/2019] [Indexed: 01/16/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a type of malignancy with progressive metastasis having poor prognosis and lowered survival resulting from late diagnosis. The therapeutic approaches for the treatment of this incurable cancer are chemo- and radiotherapy. Since current treatments are insufficient and because of drug-induced undesirable side effects and toxicities, alternate treatments are necessary and critical. The role of melatonin, produced in and released from the pineal gland, has been documented as a potential therapy for NSCLC. Melatonin prevents tumor metastasis via inducing apoptosis processes and restraining the autonomous cell proliferation. Moreover, melatonin inhibits the progression of tumors due to its oncostatic, pro-oxidant and anti-inflammatory effects. As a result, the combined treatment with melatonin and chemotherapy may have a synergistic effect, as with some other tumors, leading to a prolonged survival and improved quality of life in patients with NSCLC. This review summarizes the available data, based on the molecular mechanisms and related signaling pathways, to show how melatonin and its supplementation function in NSCLC.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- 2Department of Hematology and Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Russel J Reiter
- 3Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Abdoulhossein Davoodabadi
- 4Departments of General Surgery Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
61
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
62
|
Chao YH, Wu KH, Yeh CM, Su SC, Reiter RJ, Yang SF. The potential utility of melatonin in the treatment of childhood cancer. J Cell Physiol 2019; 234:19158-19166. [PMID: 30945299 DOI: 10.1002/jcp.28566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Childhood cancer management has improved considerably, with the overall objective of preventing early-life cancers completely. However, cancer remains a major cause of death in children, with the survivors developing anticancer treatment-specific health problems. Therefore, the anticancer treatment needs further improvement. Melatonin is a effective antioxidant and circadian pacemaker. Through multiple mechanisms, melatonin has significant positive effects on multitude adult cancers by increasing survival and treatment response rates, and slowing disease progression. In addition, melatonin appears to be safe for children. As an appealing therapeutic agent, we herein address several key concerns regarding melatonin's potential for treating children with cancer.
Collapse
Affiliation(s)
- Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology-Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
63
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|
64
|
Bang CS, Yang YJ, Baik GH. Melatonin for the treatment of gastroesophageal reflux disease; protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e14241. [PMID: 30681611 PMCID: PMC6358381 DOI: 10.1097/md.0000000000014241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melatonin generated in the gastrointestinal tract has mucosal protective effect with inhibiting gastric acid secretion, while increasing gastrin release, which in turn stimulates the contractility of lower esophageal sphincter. Gastroesophageal reflux disease (GERD) is also known to have association with sleep disturbance. However, melatonin or melatonin receptor agonist has not been included in the treatment of GERD. This study aimed to evaluate the efficacy of melatonin for the treatment of GERD. METHODS We will search the core databases [MEDLINE (through PubMed), the Cochrane Library, and Embase] from their inception to December 2018 by 2 independent evaluators. The P.I.C.O. is as follows; Patients: who have GERD, Intervention: melatonin or melatonin receptor agonist treatment, Comparison: patients without melatonin or melatonin receptor agonist treatment, Outcome: clinical indices (or crude number or proportion of improvement) for the evaluation of symptomatic improvement which enable comparison of efficacy between patients with melatonin or melatonin receptor agonist and the control group. All types of study design will be sought with full-text will be included. The risk of bias will be assessed using the ROBINS-I tool. Descriptive data synthesis is planned and quantitative synthesis will be used if the included studies are sufficiently homogenous. Publication bias will be assessed with quantitative analyses if more than 10 articles are enrolled. RESULTS The results will provide evidence for the efficacy of melatonin or melatonin receptor agonist for the treatment of GERD. CONCLUSION This study will provide evidence of melatonin or melatonin receptor agonist treatment for GERD.
Collapse
|
65
|
McNeil J, Barberio AM, Friedenreich CM, Brenner DR. Sleep and cancer incidence in Alberta’s Tomorrow Project cohort. Sleep 2018; 42:5253578. [DOI: 10.1093/sleep/zsy252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/27/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jessica McNeil
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Canada
| | - Amanda M Barberio
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
66
|
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY, Li MQ. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med 2018; 43:945-955. [PMID: 30569127 PMCID: PMC6317691 DOI: 10.3892/ijmm.2018.4021] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is an essential process involved in various physiological, including placentation, and pathological, including cancer and endometriosis, processes. Melatonin (MLT), a well-known natural hormone secreted primarily in the pineal gland, is involved in regulating neoangiogenesis and inhibiting the development of a variety of cancer types, including lung and breast cancer. However, the specific mechanism of its anti-angiogenesis activity has not been systematically elucidated. In the present study, the effect of MLT on viability and angiogenesis of human umbilical vein endothelial cells (HUVECs), and the production of vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS), under normoxia or hypoxia was analyzed using Cell Counting kit 8, tube formation, flow cytometry, ELISA and western blot assays. It was determined that the secretion of VEGF by HUVECs was significantly increased under hypoxia, while MLT selectively obstructed VEGF release as well as the production of ROS under hypoxia. Furthermore, MLT inhibited the viability of HUVECs in a dose-dependent manner and reversed the increase in cell viability and tube formation that was induced by hypoxia/VEGF/H2O2. Additionally, treatment with an inhibitor of hypoxia inducible factor (HIF)-1α (KC7F2) and MLT synergistically reduced the release of ROS and VEGF, and inhibited cell viability and tube formation of HUVECs. These observations demonstrate that MLT may serve dual roles in the inhibition of angiogenesis, as an antioxidant and a free radical scavenging agent. MLT suppresses the viability and angiogenesis of HUVECs through the downregulation of HIF-1α/ROS/VEGF. In summary, the present data indicate that MLT may be a potential anticancer agent in solid tumors with abundant blood vessels, particularly combined with KC7F2.
Collapse
Affiliation(s)
- Jiao Cheng
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
67
|
Bojková B, Kubatka P, Qaradakhi T, Zulli A, Kajo K. Melatonin May Increase Anticancer Potential of Pleiotropic Drugs. Int J Mol Sci 2018; 19:E3910. [PMID: 30563247 PMCID: PMC6320927 DOI: 10.3390/ijms19123910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has become one of the most aspiring goals in cancer prevention/therapy. A link between cancer and inflammation and/or metabolic disorders has been well established and the therapy of these conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs, statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may improve the oncostatic potential of these drugs. Results from preclinical studies are limited though support this hypothesis, which, however, remains to be verified by further research.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54 Košice, Slovak Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic.
| | - Tawar Qaradakhi
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08 Bratislava, Slovak Republic.
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| |
Collapse
|
68
|
Melatonin Can Strengthen the Effect of Retinoic Acid in HL-60 Cells. Int J Mol Sci 2018; 19:ijms19102873. [PMID: 30248940 PMCID: PMC6213950 DOI: 10.3390/ijms19102873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Melatonin is produced by the pineal gland. It can be regarded as an anticancer agent and used for combined therapy, owing to its oncostatic, antioxidant, and immunoregulatory activities. Retinoic acid is widely used for the treatment of acute promyelocytic leukemia; however, it has adverse effects on the human organism. We investigated the effect of melatonin and reduced concentrations of retinoic acid on the activation of proliferation in acute promyelocytic leukemiaon a cell model HL-60. The combined effect of these compounds leads to a reduction in the number of cells by 70% and the index of mitotic activity by 64%. Combined treatment with melatonin and retinoic acid decreased the expression of the Bcl-2. The mitochondrial isoform VDAC1 can be a target in the treatment of different tumors. The combined effect of and retinoic acid at a low concentration (10 nM) decreased VDAC1 expression. Melatonin in combination with retinoic acid produced a similar effect on the expression of the translocator protein. The coprecipitation of VDAC with 2′,3′-cyclonucleotide-3′-phosphodiesterase implies a possible role of its in cancer development. The combined effect of retinoic acid and melatonin decreased the activity of the electron transport chain complexes. The changes in the activation of proliferation in HL-60 cells, the mitotic index, and Bcl-2 expression under combined effect of retinoic acid (10 nM) with melatonin (1 mM) are similar to changes that are induced by 1 μM retinoic acid. Our results suggest that MEL is able to improve the action the other chemotherapeutic agent.
Collapse
|
69
|
Najafi M, Salehi E, Farhood B, Nashtaei MS, Hashemi Goradel N, Khanlarkhani N, Namjoo Z, Mortezaee K. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J Cell Physiol 2018; 234:2356-2372. [PMID: 30192001 DOI: 10.1002/jcp.27259] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Melatonin is a multifunctional hormone that has long been known for its antitumoral effects. An advantage of the application of melatonin in cancer therapy is its ability to differentially influence tumors from normal cells. In this review, the roles of melatonin adjuvant therapy in human cancer are discussed. Combination of melatonin with chemotherapy could provide synergistic antitumoral outcomes and resolve drug resistance in affected patients. This combination reduces the dosage for chemotherapeutic agents with the subsequent attenuation of side effects related to these drugs on normal cells around tumor and on healthy organs. The combination therapy increases the rate of survival and improves the quality of life in affected patients. Cancer cell viability is reduced after application of the combinational melatonin therapy. Melatonin does all these functions by adjusting the signals involved in cancer progression, re-establishing the dark/light circadian rhythm, and disrupting the redox system for cancer cells. To achieve effective therapeutic outcomes, melatonin concentration along with the time of incubation for this indoleamine needs to be adjusted. Importantly, a special focus is required to be made on choosing an appropriate chemotherapy agent for using in combination with melatonin. Because of different sensitivities of cancer cells for melatonin combination therapy, cancer-specific targeted therapy is also needed to be considered. For this review, the PubMed database was searched for relevant articles based on the quality of journals, the novelty of articles published by the journals, and the number of citations per year focusing only on human cancers.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomy and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
70
|
Chen HL, Yuan CY, Cheng HH, Chang TC, Huang SK, Kuo CC, Wu KK. Restoration of hydroxyindole O-methyltransferase levels in human cancer cells induces a tryptophan-metabolic switch and attenuates cancer progression. J Biol Chem 2018; 293:11131-11142. [PMID: 29794137 DOI: 10.1074/jbc.ra117.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/10/2018] [Indexed: 11/06/2022] Open
Abstract
5-Methoxytryptophan (5-MTP) is a tryptophan metabolite with recently discovered anti-inflammatory and tumor-suppressing activities. Its synthesis is catalyzed by a hydroxyindole O-methyltransferase (HIOMT)-like enzyme. However, the exact identity of this HIOMT in human cells remains unclear. Human HIOMT exists in several alternatively spliced isoforms, and we hypothesized that 5-MTP-producing HIOMT is a distinct isoform. Here, we show that human fibroblasts and cancer cells express the HIOMT298 isoform as contrasted with the expression of the HIOMT345 isoform in pineal cells. Sequencing analysis of the cloned isoforms revealed that HIOMT298 is identical to the sequence of a previously reported truncated HIOMT isoform. Of note, HIOMT298 expression was reduced in cancer cells and tissues. Stable transfection of A549 cancer cells with HIOMT298 restored HIOMT expression to normal levels, accompanied by 5-MTP production. Furthermore, HIOMT298 transfection caused a tryptophan-metabolic switch from serotonin to 5-MTP production. To determine the in vivo relevance of this alteration, we compared growth and lung metastasis of HIOMT298-transfected A549 cells with those of vector- or untransfected A549 cells as controls in a murine xenograft model. Of note, the HIOMT298-transfected A549 cells exhibited slower growth and lower metastasis than the controls. Our findings provide insight into the crucial role of HIOMT298 in 5-MTP production in cells and in inhibiting cancer progression and highlight the potential therapeutic value of 5-MTP for managing cancer.
Collapse
Affiliation(s)
- Hua-Ling Chen
- From the Institute of Cellular and System Medicine and.,National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chao-Yun Yuan
- From the Institute of Cellular and System Medicine and.,Metabolomic Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Huei-Hsuan Cheng
- Metabolomic Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan, and
| | - Tzu-Ching Chang
- Metabolomic Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan, and
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | - Kenneth K Wu
- From the Institute of Cellular and System Medicine and .,Metabolomic Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan, and.,Department of Medical Science and Institute of Biotechnology, National Tsing-Hua University College of Life Science, Hsin-Chu 30013, Taiwan
| |
Collapse
|
71
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
72
|
Melatonin: A New-Generation Therapy for Reducing Chronic Pain and Improving Sleep Disorder-Related Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:229-251. [DOI: 10.1007/978-981-13-1756-9_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
73
|
Lu C, Sun H, Huang J, Yin S, Hou W, Zhang J, Wang Y, Xu Y, Xu H. Long-Term Sleep Duration as a Risk Factor for Breast Cancer: Evidence from a Systematic Review and Dose-Response Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4845059. [PMID: 29130041 PMCID: PMC5654282 DOI: 10.1155/2017/4845059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 11/18/2022]
Abstract
Sleep patterns have been associated with the development of cancers, although the association between sleep duration and breast cancer remains controversial. The purpose of our study was to explore the relationship between sleep duration and breast cancer risk. The PubMed and Web of Science databases were searched, and restricted cubic splines were used to explore the dose-response relationship. Data from 415,865 participants were derived from 10 studies. A J-shaped nonlinear trend was found between sleep duration and breast cancer incidence (Pnon-linear = 0.012); compared with the reference hours (6 h or 7 h), with increasing sleep hours, the risk of breast cancer increased (Ptrend = 0.028). Moreover, a nonlinear relationship was found between sleep duration and estrogen receptor-positive breast cancer (Pnon-linear = 0.013); the risk of estrogen receptor-positive breast cancer increased with increasing sleep hours compared to the reference hours (Ptrend = 0.024). However, no nonlinear relationship was found between sleep duration and estrogen receptor-negative breast cancer; the risk of estrogen receptor-negative breast cancer was 1.035 for every additional sleep hour. Compared to women with the reference number of sleep hours, women with a longer sleep duration might have a significantly increased risk of breast cancer, especially estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Chunyang Lu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Hao Sun
- Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Jinyu Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Songcheng Yin
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Wenbin Hou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Junyan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Yanshi Wang
- Department of Gynaecology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Yingying Xu
- Department of Breast Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China
| |
Collapse
|
74
|
Abdel Moneim AE, Guerra-Librero A, Florido J, Shen YQ, Fernández-Gil B, Acuña-Castroviejo D, Escames G. Oral Mucositis: Melatonin Gel an Effective New Treatment. Int J Mol Sci 2017; 18:1003. [PMID: 28481279 PMCID: PMC5454916 DOI: 10.3390/ijms18051003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The current treatment for cervico-facial cancer involves radio and/or chemotherapy. Unfortunately, cancer therapies can lead to local and systemic complications such as mucositis, which is the most common dose-dependent complication in the oral cavity and gastrointestinal tract. Mucositis can cause a considerably reduced quality of life in cancer patients already suffering from physical and psychological exhaustion. However, the role of melatonin in the treatment of mucositis has recently been investigated, and offers an effective alternative therapy in the prevention and/or management of radio and/or chemotherapy-induced mucositis. This review focuses on the pathobiology and management of mucositis in order to improve the quality of cancer patients' lives.
Collapse
Affiliation(s)
- Ahmed Esmat Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain.
| | - Javier Florido
- Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain.
| | - Ying-Qiang Shen
- Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain.
| | | | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain.
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, 18014 Granada, Spain.
| | - Germaine Escames
- Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain.
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, 18014 Granada, Spain.
| |
Collapse
|
75
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
76
|
Martínez-Campa C, Menéndez-Menéndez J, Alonso-González C, González A, Álvarez-García V, Cos S. What is known about melatonin, chemotherapy and altered gene expression in breast cancer. Oncol Lett 2017; 13:2003-2014. [PMID: 28454355 PMCID: PMC5403278 DOI: 10.3892/ol.2017.5712] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Melatonin, synthesized in and released from the pineal gland, has been demonstrated by multiple in vivo and in vitro studies to have an oncostatic role in hormone-dependent tumors. Furthermore, several clinical trials point to melatonin as a promising adjuvant molecule to be considered for cancer treatment. In the past few years, evidence of a broader spectrum of action of melatonin as an antitumor agent has arisen; thus, melatonin appears to also have therapeutic effects in several types of hormone-independent cancer, including ovarian, leukemic, pancreatic, gastric and non-small cell lung carcinoma. In the present study, the latest findings regarding melatonin molecular actions when concomitantly administered with either radiotherapy or chemotherapy in cancer were reviewed, with a particular focus on hormone-dependent breast cancer. Finally, the present study discusses which direction should be followed in the next years to definitely clarify whether or not melatonin administration could protect against non-desirable effects (such as altered gene expression and post-translational protein modifications) caused by chemotherapy or radiotherapy treatments. As treatments move towards personalized medicine, comparative gene expression profiling with and without melatonin may be a powerful tool to better understand the antitumor effects of melatonin, the pineal gland hormone.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| | - Virginia Álvarez-García
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, EH14 4AS Edinburgh, UK
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Research Institute Valdecilla, 39011 Santander, Spain
| |
Collapse
|
77
|
Sleep duration and breast cancer prognosis: perspectives from the Women's Healthy Eating and Living Study. Breast Cancer Res Treat 2017; 162:581-589. [PMID: 28190251 DOI: 10.1007/s10549-017-4140-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To examine whether baseline sleep duration or changes in sleep duration are associated with breast cancer prognosis among early-stage breast cancer survivors in the multi-center Women's Healthy Eating and Living Study. METHODS Data were collected from 1995 to 2010. Analysis included 3047 women. Sleep duration was self-reported at baseline and follow-up intervals. Cox proportional hazard models were used to investigate whether baseline sleep duration was associated with breast cancer recurrence, breast cancer-specific mortality, and all-cause mortality. Time-varying models investigated whether changes in sleep duration were associated with breast cancer prognosis. RESULTS Compared to women who slept 7-8 h/night at baseline, sleeping ≥9 h/night was associated with a 48% increased risk of breast cancer recurrence (Hazard ratio [HR] 1.48, 95% Confidence interval [CI] 1.01, 2.00), a 52% increased risk of breast cancer-specific mortality (HR 1.52, 95% CI 1.09, 2.13), and a 43% greater risk of all-cause mortality (HR 1.43, 95% CI 1.07, 1.92). Time-varying models showed analogous increased risk in those who inconsistently slept ≥9 h/night (all P < 0.05), but not in those who consistently slept ≥9 h/night. CONCLUSIONS Consistent long or short sleep, which may reflect inter-individual variability in the need for sleep, does not appear to influence prognosis among early-stage breast cancer survivors.
Collapse
|
78
|
Khan S, Adhikari JS, Rizvi MA, Chaudhury NK. Melatonin attenuates 60 Co γ-ray-induced hematopoietic, immunological and gastrointestinal injuries in C57BL/6 male mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:501-518. [PMID: 26948951 DOI: 10.1002/tox.22254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Protection of hematopoietic, immunological, and gastrointestinal injuries from deleterious effects of ionizing radiation is prime rational for developing radioprotector. The objective of this study, therefore, was to evaluate the radioprotective potential of melatonin against damaging effects of radiation-induced hematopoietic, immunological, and gastrointestinal injuries in mice. C57BL/6 male mice were intraperitoneally administered with melatonin (50-150 mg/kg) 30 min prior to whole-body radiation exposure of 5 and 7.5 Gy using 60 Co-teletherapy unit. Thirty-day survival against 7.5 Gy was monitored. Melatonin (100 mg/kg) pretreatment showed 100% survival against 7.5 Gy radiation dose. Melatonin pretreatment expanded femoral HPSCs, and inhibited spleenocyte DNA strands breaks and apoptosis in irradiated mice. At this time, it also protected radiation-induced loss of T cell sub-populations in spleen. In addition, melatonin pretreatment enhanced crypts regeneration and increased villi number and length in irradiated mice. Translocation of gut bacteria to spleen, liver and kidney were controlled in irradiated mice pretreated with melatonin. Radiation-induced gastrointestinal DNA strand breaks, lipid peroxidation, and expression of proapoptotic-p53, Bax, and antiapoptotic-Bcl-xL proteins were reversed in melatonin pretreated mice. This increase of Bcl-xL was associated with the decrease of Bax/Bcl-xL ratio. ABTS and DPPH radical assays revealed that melatonin treatment alleviated total antioxidant capacity in hematopoietic and gastrointestinal tissues. Present study demonstrated that melatonin pretreatment was able to prevent hematopoietic, immunological, and gastrointestinal radiation-induced injury, therefore, overcoming lethality in mice. These results suggest potential of melatonin in developing radioprotector for protection of bone marrow, spleen, and gastrointestine in planned radiation exposure scenarios including radiotherapy. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 501-518, 2017.
Collapse
Affiliation(s)
- Shahanshah Khan
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia-a Central University, Moulana Mohammad Ali Jauhar Marg, New Delhi, 110025, India
| | - Jawahar Singh Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Moshahid Alam Rizvi
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia-a Central University, Moulana Mohammad Ali Jauhar Marg, New Delhi, 110025, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| |
Collapse
|
79
|
Effects of Caffeic Acid and Quercetin on In Vitro Permeability, Metabolism and In Vivo Pharmacokinetics of Melatonin in Rats: Potential for Herb-Drug Interaction. Eur J Drug Metab Pharmacokinet 2017; 42:781-791. [DOI: 10.1007/s13318-016-0393-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
80
|
Lu YX, Chen DL, Wang DS, Chen LZ, Mo HY, Sheng H, Bai L, Wu QN, Yu HE, Xie D, Yun JP, Zeng ZL, Wang F, Ju HQ, Xu RH. Melatonin enhances sensitivity to fluorouracil in oesophageal squamous cell carcinoma through inhibition of Erk and Akt pathway. Cell Death Dis 2016; 7:e2432. [PMID: 27787516 PMCID: PMC5133993 DOI: 10.1038/cddis.2016.330] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/22/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-associated death in the world and novel therapeutic alternatives are urgently warranted. In this study, we investigated the anti-tumour activity and underlying mechanisms of melatonin, an indoleamine compound secreted by the pineal gland as well as naturally occurring plant products, in ESCC cells and revealed that melatonin inhibited proliferation, migration, invasion and induced mitochondria-dependent apoptosis of ESCC cells in vitro and suppressed tumour growth in the subcutaneous mice model in vivo. Furthermore, after treatment with melatonin, the expressions of pMEK, pErk, pGSK3β and pAkt were significantly suppressed. In contrast, treatment of the conventional chemotherapeutic drug fluorouracil (5-Fu) resulted in activation of Erk and Akt, which could be reversed by co-treatment with melatonin. Importantly, melatonin effectively enhanced cytotoxicity of 5-Fu to ESCC in vitro and in vivo. Together, these results suggested that inhibition of Erk and Akt pathway by melatonin have an important role in sensitization of ESCC cells to 5-Fu. Combined 5-Fu and melatonin treatment may be appreciated as a useful approach for ESCC therapy that warrants further investigation.
Collapse
Affiliation(s)
- Yun-Xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong-Liang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - De-Shen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Le-Zong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai-Yu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hui Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Long Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qi-Nian Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hong-En Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhao-Lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
81
|
Lu YX, Chen DL, Wang DS, Chen LZ, Mo HY, Sheng H, Bai L, Wu QN, Yu HE, Xie D, Yun JP, Zeng ZL, Wang F, Ju HQ, Xu RH. Melatonin enhances sensitivity to fluorouracil in oesophageal squamous cell carcinoma through inhibition of Erk and Akt pathway. Cell Death Dis 2016. [PMID: 27787516 DOI: 10.1038/cddis.2016.330.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-associated death in the world and novel therapeutic alternatives are urgently warranted. In this study, we investigated the anti-tumour activity and underlying mechanisms of melatonin, an indoleamine compound secreted by the pineal gland as well as naturally occurring plant products, in ESCC cells and revealed that melatonin inhibited proliferation, migration, invasion and induced mitochondria-dependent apoptosis of ESCC cells in vitro and suppressed tumour growth in the subcutaneous mice model in vivo. Furthermore, after treatment with melatonin, the expressions of pMEK, pErk, pGSK3β and pAkt were significantly suppressed. In contrast, treatment of the conventional chemotherapeutic drug fluorouracil (5-Fu) resulted in activation of Erk and Akt, which could be reversed by co-treatment with melatonin. Importantly, melatonin effectively enhanced cytotoxicity of 5-Fu to ESCC in vitro and in vivo. Together, these results suggested that inhibition of Erk and Akt pathway by melatonin have an important role in sensitization of ESCC cells to 5-Fu. Combined 5-Fu and melatonin treatment may be appreciated as a useful approach for ESCC therapy that warrants further investigation.
Collapse
Affiliation(s)
- Yun-Xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong-Liang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - De-Shen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Le-Zong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai-Yu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hui Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Long Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qi-Nian Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hong-En Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhao-Lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
82
|
Role of high-fat diet on the effect of pioglitazone and melatonin in a rat model of breast cancer. Eur J Cancer Prev 2016; 25:395-403. [DOI: 10.1097/cej.0000000000000195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
83
|
Agorastos A, Linthorst ACE. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 2016; 61:3-26. [PMID: 27061919 DOI: 10.1111/jpi.12330] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune, and autonomic system, similar to chronic stress and may play a central role in the development of stress-related disorders. Recent articles have focused on the role of sleep and circadian disruption in the pathophysiology of posttraumatic stress disorder (PTSD), suggesting that chronodisruption plays a causal role in PTSD development. Direct and indirect human and animal PTSD research suggests circadian system-linked neuroendocrine, immune, metabolic and autonomic dysregulation, linking circadian misalignment to PTSD pathophysiology. Recent experimental findings also support a specific role of the fundamental synchronizing pineal hormone melatonin in mechanisms of sleep, cognition and memory, metabolism, pain, neuroimmunomodulation, stress endocrinology and physiology, circadian gene expression, oxidative stress and epigenetics, all processes affected in PTSD. In the current paper, we review available literature underpinning a potentially beneficiary role of an add-on melatonergic treatment in PTSD pathophysiology and PTSD-related symptoms. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. We conclude that adjuvant melatonergic treatment could provide a potentially promising treatment strategy in the management of PTSD and especially PTSD-related syndromes and comorbidities. Rigorous preclinical and clinical studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid C E Linthorst
- Faculty of Health Sciences, Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
84
|
Mohammed KA, Adjei Boakye E, Ismail HA, Geneus CJ, Tobo BB, Buchanan PM, Zelicoff AP. Pineal Gland Calcification in Kurdistan: A Cross-Sectional Study of 480 Roentgenograms. PLoS One 2016; 11:e0159239. [PMID: 27415622 PMCID: PMC4945046 DOI: 10.1371/journal.pone.0159239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Objective The goal of this study was to compare the incidence of Pineal Gland Calcification (PGC) by age group and gender among the populations living in the Kurdistan Region-Iraq. Methods This prospective study examined skull X-rays of 480 patients between the ages of 3 and 89 years who sought care at a large teaching public hospital in Duhok, Iraq from June 2014 to November 2014. Descriptive statistics and a binary logistic regression were used for analysis. Results The overall incidence rate of PGC among the study population was 26.9% with the 51–60 age group and males having the highest incidence. PGC incidence increased after the first decade and remained steady until the age of 60. Thereafter the incidence began to decrease. Logistic regression analysis revealed that both age and gender significantly affected the risk of PGC. After adjusting for age, males were 1.94 (95% CI, 1.26–2.99) times more likely to have PGC compared to females. In addition, a one year increase in age increases the odds of developing PGC by 1.02 (95% CI, 1.01–1.03) units after controlling for the effects of gender. Conclusion Our analysis demonstrated a close relationship between PGC and age and gender, supporting a link between the development of PGC and these factors. This study provides a basis for future researchers to further investigate the nature and mechanisms underlying pineal gland calcification.
Collapse
Affiliation(s)
- Kahee A. Mohammed
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, United States of America
- Department of Radiology, School of Medicine, University of Duhok, Duhok, Kurdistan–Iraq
| | - Eric Adjei Boakye
- Center for Outcomes Research (SLUCOR), Saint Louis University, Saint Louis, Missouri, United States of America
- * E-mail:
| | - Honer A. Ismail
- Department of Radiology, School of Medicine, University of Duhok, Duhok, Kurdistan–Iraq
| | - Christian J. Geneus
- Department of Environmental and Occupational Health, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Betelihem B. Tobo
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Paula M. Buchanan
- Center for Outcomes Research (SLUCOR), Saint Louis University, Saint Louis, Missouri, United States of America
| | - Alan P. Zelicoff
- Department of Environmental and Occupational Health, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
85
|
Lopes J, Arnosti D, Trosko JE, Tai MH, Zuccari D. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer 2016; 7:209-17. [PMID: 27551335 PMCID: PMC4979593 DOI: 10.18632/genesandcancer.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 μM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer.
Collapse
Affiliation(s)
- Juliana Lopes
- Department of Biology, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brazil
| | - David Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - James E. Trosko
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - Mei-Hui Tai
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - Debora Zuccari
- Department of Biology, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brazil
- Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| |
Collapse
|
86
|
Khawaja O, Petrone AB, Aleem S, Manzoor K, Gaziano JM, Djousse L. Sleep duration and risk of lung cancer in the physicians' health study. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 17:649-55. [PMID: 25248705 PMCID: PMC4412147 DOI: 10.3779/j.issn.1009-3419.2014.09.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background and Objectives Lung cancer is the most common cancer and cancer related cause of death worldwide. However, the association between sleep duration and incident lung cancer has not been investigated in a prospective cohort study. Methods We prospectively examined the association between sleep duration and incident lung cancer in a cohort of 21, 026 United States (US) male physicians. Self-reported sleep duration was ascertained during 2002 annual follow-up questionnaire. Incident lung cancer was ascertained through yearly follow-up questionnaires. Cox regression was used to estimate relative risk of incident lung cancer. Results The average age at baseline was 68.3±8.8 yr. During a mean follow up of 7.5 (±2.2) yr, 150 cases of lung cancer occurred. Using 7 h of sleep as the reference group, multivariable adjusted hazard ratios (95%CI) for lung cancer were 1.18 (0.77-1.82), 1.0 (ref), and 0.97 (0.67-1.41) from lowest to the highest category of sleep duration (P for quadratic trend 0.697), respectively. In a secondary analysis, smoking status did not modify the sleep duration-lung cancer association (P=0.78). Tere was no evidence for an interaction between sleep duration and sleep apnea on the risk of lung cancer either (P=0.65). Conclusions Our data failed to show a higher risk of lung cancer in association with altered sleep duration among US male physicians.
Collapse
Affiliation(s)
- Owais Khawaja
- Section of Pulmonary and Critical Care Medicine, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Andrew B Petrone
- Divisions of Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sohaib Aleem
- Section of General Internal Medicine, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Kamran Manzoor
- Section of Pulmonary and Critical Care Medicine, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - John M Gaziano
- Divisions of Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, USA;Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs Healthcare System, Boston, USA;Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA;Geriatric Research, Education, and Clinical Center (GRECC), Boston Veterans Affairs Healthcare System, Boston, USA
| | - Luc Djousse
- Divisions of Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, USA;Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs Healthcare System, Boston, USA;Geriatric Research, Education, and Clinical Center (GRECC), Boston Veterans Affairs Healthcare System, Boston, USA
| |
Collapse
|
87
|
Donmez Z, Yigit Ö, Bilici S, Dursun N, Gul M, Dastan SD, Uzun H. Evaluation of the antioxidant effects of melatonin on the larynx mucosa of rats exposed to environmental tobacco smoke. Clin Otolaryngol 2016; 41:211-21. [PMID: 26147283 DOI: 10.1111/coa.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study's aim was to investigate the effect of melatonin in terms of mitigating the effects of smoking on the laryngeal mucosa of rats exposed to environmental tobacco smoke. DESIGN Rats were divided into four groups: Melatonin + Smoking group exposed to smoke with melatonin; Smoking group exposed to smoke without melatonin; Saline group not exposed to smoke without melatonin; Melatonin group not exposed to smoke with melatonin. CuZn-superoxide dismutase (CuZn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were evaluated in plasma and tissues. Tissues were also examined the changes of squamous hyperplasia, keratosis, parakeratosis and epithelial hyperplasia by light microscope and the ultrastructural changes by electron microscope. RESULTS Tissue SOD, CAT and GSH-Px activities were significantly higher in Saline and Melatonin groups than Melatonin + Smoking and Smoking groups. Plasma CuZn-SOD and CAT activities were significantly higher in Saline and Melatonin groups than Smoking group. Plasma GSH-Px showed no significant difference. The rate of epithelial hyperplasia was significantly higher in Smoking group than the other groups. The rate of parakeratosis was significantly higher in Smoking group than the other groups. The epithelial cells in Melatonin + Smoking group displayed, normal cell structure similar to those in Saline group under electron microscope. CONCLUSIONS The study shows that smoking induces substantial pathological changes in the laryngeal mucosa and melatonin may have some beneficial effects in partially reversing smoking-induced laryngeal injury by inducing the expression of antioxidants; biochemical and histological outcomes also support these findings due to preventing tissue damage in laryngeal mucosa exposed to smoke.
Collapse
Affiliation(s)
- Z Donmez
- Department of Otorhinolaryngology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Ö Yigit
- Department of Otorhinolaryngology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - S Bilici
- Department of Otorhinolaryngology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - N Dursun
- Department of Pathology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - M Gul
- Department of Histology-Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - S D Dastan
- Division of Genetics, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey
| | - H Uzun
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
88
|
Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6719534. [PMID: 26682013 PMCID: PMC4670692 DOI: 10.1155/2016/6719534] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency.
Collapse
Affiliation(s)
- Nuria Mut-Salud
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | - Pablo Juan Álvarez
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Manuel Garrido
- Department of Cardiovascular Surgery, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | - Esther Carrasco
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | - Antonia Aránega
- Institute of Biopathology and Regenerative Medicine, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
89
|
Lee YS, Hsu CC, Weng SF, Lin HJ, Wang JJ, Su SB, Huang CC, Guo HR. Cancer Incidence in Physicians: A Taiwan National Population-based Cohort Study. Medicine (Baltimore) 2015; 94:e2079. [PMID: 26632715 PMCID: PMC5058984 DOI: 10.1097/md.0000000000002079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cancer has been the leading cause of death in Taiwan since 1982. Physicians have many health-related risk factors which may contribute to cancer, such as rotating night shift, radiation, poor lifestyle, and higher exposure risk to infection and potential carcinogenic drugs. However, the cancer risk in physicians is not clear. In Taiwan's National Health Insurance Research Database, we identified 14,889 physicians as the study cohort and randomly selected 29,778 nonmedical staff patients as the comparison cohort for this national population-based cohort study. Cox proportional-hazard regression was used to compare the cancer risk between physicians and comparisons. Physician subgroups were also analyzed. Physicians had a lower all-cancer risk than did the comparisons (hazard ratio [HR] 0.86, 95% confidence interval [CI] 0.76-0.97). In the sex-based analysis, male physicians had a lower all-cancer risk than did male comparisons (HR 0.82, 95% CI 0.73-0.94); and female physicians did not (HR 1.29, 95% CI 0.88-1.91). In the cancer-type analysis, male physicians had a higher risk of prostate cancer (HR 1.72, 95% CI 1.12-2.65) and female physicians had twice the risk of breast cancer (HR 2.00, 95% CI 1.11-3.62) than did comparisons. Cancer risk was not significantly associated with physician specialties. Physicians in Taiwan had a lower all-cancer risk but higher risks for prostate and breast cancer than did the general population. These new epidemiological findings require additional study to clarify possible mechanisms.
Collapse
Affiliation(s)
- Yu-Sung Lee
- From the Department of Emergency Medicine, Chi-Mei Medical Center (Y-SL, C-CH, H-JL, C-CH); Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan (C-CH, H-JL); Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung (S-FW); Department of Emergency Medicine, Taipei Medical University, Taipei (H-JL); Department of Medical Research, Chi-Mei Medical Center (J-JW); Department of Leisure, Recreation and Tourism Management, Southern Taiwan University of Science and Technology (S-BS); Department of Occupational Medicine, Chi-Mei Medical Center (S-BS, C-CH); Department of Medical Research, Chi-Mei Medical Center, Liouying (S-BS); Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University (C-CH, H-RG); Department of Child Care and Education, Southern Taiwan University of Science and Technology (C-CH); Department of Geriatrics and Gerontology, Chi-Mei Medical Center (C-CH); and Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan (H-RG)
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Khan S, Adhikari JS, Rizvi MA, Chaudhury NK. Radioprotective potential of melatonin against ⁶⁰Co γ-ray-induced testicular injury in male C57BL/6 mice. J Biomed Sci 2015. [PMID: 26205951 PMCID: PMC4514449 DOI: 10.1186/s12929-015-0156-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Melatonin, the chief secretary product of pineal gland, is a strong free radical scavenger and antioxidant molecule. The radioprotective efficacy and underlying mechanisms refer to its antioxidant role in somatic cells. The purpose of this study, therefore, was to investigate the prophylactic implications of melatonin against γ-ray-induced injury in germinal cells (testes). C57BL/6 male mice were administered melatonin (100 mg/kg) intra-peritoneally 30 min prior to a single dose of whole-body γ-irradiation (5 Gy, 1 Gy/minute) using 60Co teletherapy unit. Animals were sacrificed at 2h, 4h and 8h post-irradiation and their testes along with its spermatozoa taken out and used for total antioxidant capacity (TAC), lipid peroxidation, comet assay, western blotting and sperm motility and viability. In another set of experiment, animals were similarly treated were sacrificed on 1st, 3rd, 7th, 15th and 30th day post-irradiation and evaluated for sperm abnormalities and histopathological analysis. Results Whole-body γ-radiation exposure (5 Gy) drastically depleted the populations of spermatogenic cells in seminiferous tubules on day three, which were significantly protected by melatonin. In addition, radiation-induced sperm abnormalities, motility and viability in cauda-epididymes were significantly reduced by melatonin. Melatonin pre-treatment significantly inhibited radiation-induced DNA strands breaks and lipid peroxidation. At this time, radiation-induces activation of ATM-dependent p53 apoptotic proteins-ATM, p53, p21, Bax, cytochrome C, active caspase-3 and caspases-9 expression, which were significantly reversed in melatonin pre-treated mice. This reduced apoptotic proteins by melatonin pre-treatment was associated with the increase of anti-apoptotic-Bcl-x and DNA repair-PCNA proteins in irradiated mice. Further, radiation-induced decline in the TAC was significantly reversed in melatonin pre-treated mice. Conclusions The present results indicated that melatonin as prophylactic agent protected male reproductive system against radiation-induced injury in mice. The detailed study will benefit in understanding the role of melatonin in modulation of radiation-induced ATM-dependent p53-mediated pro-vs.-anti apoptotic proteins in testicular injury. These results can be further exploited for use of melatonin for protection of male reproductive system in radiotherapy applications involving hemibody abdominal exposures. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0156-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shahanshah Khan
- Chemical Radioprotector and Radiation Dosimetry Research Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Road, New Delhi, Delhi, 110054, India. .,Genome Biology Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Jawahar Singh Adhikari
- Chemical Radioprotector and Radiation Dosimetry Research Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Road, New Delhi, Delhi, 110054, India.
| | - Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Nabo Kumar Chaudhury
- Chemical Radioprotector and Radiation Dosimetry Research Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig. S. K. Mazumdar Road, New Delhi, Delhi, 110054, India.
| |
Collapse
|
91
|
Codenotti S, Battistelli M, Burattini S, Salucci S, Falcieri E, Rezzani R, Faggi F, Colombi M, Monti E, Fanzani A. Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol Rep 2015; 34:279-87. [PMID: 25998836 DOI: 10.3892/or.2015.3987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
Melatonin is a small indole produced by the pineal gland and other tissues, and has numerous functions that aid in the maintenance of the whole body homeostasis, ranging from the regulation of circadian rhythms and sleep to protection from oxidative stress. Melatonin has also been reported to counteract cell growth and chemoresistance in different types of cancer. In the present study, we investigated the effects of exogenous melatonin administration on different human cell lines and primary mouse tumor cultures of rhabdomyosarcoma (RMS), the most frequent soft tissue sarcoma affecting childhood. The results showed that melatonin significantly affected the behavior of RMS cells, leading to inhibition of cell proliferation and impairment of myogenic differentiation followed by increased apoptotic cell death, as observed by immunoblotting analysis of apoptosis-related markers including Bax, Bcl-2 and caspase-3. Similar findings were observed using a combination of microscopy techniques, including scanning/transmission electron and confocal microscopy. Furthermore, melatonin in combination with doxorubicin or cisplatin, two compounds commonly used for the treatment of solid tumors, increased the sensitivity of RMS cells to apoptosis. These data indicated that melatonin may be effective in counteracting RMS tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Michela Battistelli
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Sara Salucci
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Elisabetta Falcieri
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| |
Collapse
|
92
|
Squecco R, Tani A, Zecchi-Orlandini S, Formigli L, Francini F. Melatonin affects voltage-dependent calcium and potassium currents in MCF-7 cell line cultured either in growth or differentiation medium. Eur J Pharmacol 2015; 758:40-52. [PMID: 25843408 DOI: 10.1016/j.ejphar.2015.03.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
Big efforts have been dedicated up to now to identify novel targets for cancer treatment. The peculiar biophysical profile and the atypical ionic channels activity shown by diverse types of human cancers suggest that ion channels may be possible targets in cancer therapy. Earlier studies have shown that melatonin exerts an oncostatic action on different tumors. In particular, it was shown that melatonin was able to inhibit growth/viability and proliferation, to reduce the invasiveness and metastatic properties of human estrogen-sensitive breast adenocarcinoma MCF-7 cell line cultured in growth medium, with substantial impairments of epidermal growth factor (EGF) and Notch-1-mediated signaling. The purpose of this work was to evaluate on MCF-7 cells the possible effects of melatonin on the biophysical features known to have a role in proliferation and differentiation, by using the patch-clamp technique. Our results show that in cells cultured in growth as well as in differentiation medium melatonin caused a hyperpolarization of resting membrane potential paralleled by significant changes of the inward Ca(2+) currents (T- and L-type), outward delayed rectifier K(+) currents and cell capacitance. All these effects are involved in MCF-7 growth and differentiation. These findings strongly suggest that melatonin, acting as a modulator of different voltage-dependent ion channels, might be considered a new promising tool for specifically disrupting cell viability and differentiation pathways in tumour cells with possible beneficial effects on cancer therapy.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
93
|
Lin FY, Lin CW, Yang SF, Lee WJ, Lin YW, Lee LM, Chang JL, Weng WC, Lin CH, Chien MH. Interactions between environmental factors and melatonin receptor type 1A polymorphism in relation to oral cancer susceptibility and clinicopathologic development. PLoS One 2015; 10:e0121677. [PMID: 25806809 PMCID: PMC4373723 DOI: 10.1371/journal.pone.0121677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/03/2015] [Indexed: 01/15/2023] Open
Abstract
Background The purpose of this study was to explore the combined effect of melatonin receptor type 1A (MTNR1A) gene polymorphisms and exposure to environmental carcinogens on the susceptibility and clinicopathological characteristics of oral cancer. Methodology and Principal Findings Three polymorphisms of the MTNR1A gene from 618 patients with oral cancer and 560 non-cancer controls were analyzed by real-time polymerase chain reaction (PCR). The CTA haplotype of the studied MTNR1A polymorphisms (rs2119882, rs13140012, rs6553010) was related to a higher risk of oral cancer. Moreover, MTNR1A gene polymorphisms exhibited synergistic effects of environmental factors (betel quid and tobacco use) on the susceptibility of oral cancer. Finally, oral-cancer patients with betel quid-chewing habit who had T/T allele of MTNR1A rs13140012 were at higher risk for developing an advanced clinical stage and lymph node metastasis. Conclusion These results support gene-environment interactions of MTNR1A polymorphisms with smoking and betel quid-chewing habits possibly altering oral-cancer susceptibility and metastasis.
Collapse
Affiliation(s)
- Feng-Yan Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Junn-Liang Chang
- Department of Medical Management, Taoyuan Armed Forces General Hospital, Taoyuan County, Taiwan
- School of Medicine, Pathology Department, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Weng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
94
|
Dragojevic Dikic S, Jovanovic AM, Dikic S, Jovanovic T, Jurisic A, Dobrosavljevic A. Melatonin: a "Higgs boson" in human reproduction. Gynecol Endocrinol 2015; 31:92-101. [PMID: 25377724 DOI: 10.3109/09513590.2014.978851] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As the Higgs boson could be a key to unlocking mysteries regarding our Universe, melatonin, a somewhat mysterious substance secreted by the pineal gland primarily at night, might be a crucial factor in regulating numerous processes in human reproduction. Melatonin is a powerful antioxidant which has an essential role in controlling several physiological reactions, as well as biological rhythms throughout human reproductive life. Melatonin, which is referred to as a hormone, but also as an autocoid, a chronobiotic, a hypnotic, an immunomodulator and a biological modifier, plays a crucial part in establishing homeostatic, neurohumoral balance and circadian rhythm in the body through synergic actions with other hormones and neuropeptides. This paper aims to analyze the effects of melatonin on the reproductive function, as well as to shed light on immunological and oncostatic properties of one of the most powerful hormones.
Collapse
|
95
|
Brown SB, Hankinson SE, Eliassen AH, Reeves KW, Qian J, Arcaro KF, Wegrzyn LR, Willett WC, Schernhammer ES. Urinary melatonin concentration and the risk of breast cancer in Nurses' Health Study II. Am J Epidemiol 2015; 181:155-62. [PMID: 25587174 DOI: 10.1093/aje/kwu261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experimental and epidemiologic data support a protective role for melatonin in breast cancer etiology, yet studies in premenopausal women are scarce. In a case-control study nested within the Nurses' Health Study II cohort, we measured the concentration of melatonin's major urinary metabolite, 6-sulfatoxymelatonin (aMT6s), in urine samples collected between 1996 and 1999 among 600 breast cancer cases and 786 matched controls. Cases were predominantly premenopausal women who were diagnosed with incident breast cancer after urine collection and before June 1, 2007. Using multivariable conditional logistic regression, we computed odds ratios and 95% confidence intervals. Melatonin levels were not significantly associated with total breast cancer risk (for the fourth (top) quartile (Q4) of aMT6s vs. the first (bottom) quartile (Q1), odds ratio (OR) = 0.91, 95% confidence interval (CI): 0.64, 1.28; Ptrend = 0.38) or risk of invasive or in situ breast cancer. Findings did not vary by body mass index, smoking status, menopausal status, or time between urine collection and diagnosis (all Pinteraction values ≥ 0.12). For example, the odds ratio for total breast cancer among women with ≤5 years between urine collection and diagnosis was 0.74 (Q4 vs. Q1; 95% CI: 0.45, 1.20; Ptrend = 0.09), and it was 1.20 (Q4 vs. Q1; 95% CI: 0.72, 1.98; Ptrend = 0.70) for women with >5 years. Our data do not support an overall association between urinary melatonin levels and breast cancer risk.
Collapse
|
96
|
Abstract
Melatonin, a hormone secreted mainly by pineal gland has been found to have antioxidant and anti-inflammatory properties in the oral cavity where it reaches through saliva. These properties have been found to be beneficial in certain oral pathologies including periodontal diseases, herpes viral infections and Candida, local inflammatory processes, xerostomia, oral ulcers and oral cancer. The objective of this review is to discuss the mechanism of action and potential role of melatonin as a preventive and curative agent for oral cancer. an extensive review of databases like pubmed, medline, science direct and Cochrane reviews was conducted to find articles related to beneficial actions of melatonin in human body with focus on cancers. Numerous studies both in-vitro and in-vivo had shown promising results regarding role of melatonin as anti-carcinogenic agent. Melatonin may play a role in protecting the oral cavity from tissue damage caused by oxidative stress. The experimental evidence suggests that melatonin may have utility in the treatment of several common cancers of the body. However, more specific studies are necessary to extend the therapeutic possibilities to oral carcinoma.
Collapse
Affiliation(s)
- Abhishek Mehta
- Department of Public Health Dentistry, Faculty of Dentistry, Jamia Milia Islamia, New Delhi, India
| | - Gurkiran Kaur
- Department of Oral Pathology, Gian Sagar Dental College and Hospital, Rajpura, Punjab, India
| |
Collapse
|
97
|
New antioxidant drugs for neonatal brain injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:108251. [PMID: 25685254 PMCID: PMC4313724 DOI: 10.1155/2015/108251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs) generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.
Collapse
|
98
|
Elis Yildiz S, Deprem T, Karadag Sari E, Bingol SA, Koral Tasci S, Aslan S, Nur G, Sozmen M. Immunohistochemical distribution of leptin in kidney tissues of melatonin treated diabetic rats. Biotech Histochem 2014; 90:270-7. [PMID: 25539049 DOI: 10.3109/10520295.2014.983548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We examined using immunohistochemistry the distribution of leptin in kidney tissues of melatonin treated, streptozotocin (STZ) diabetic rats. The animals were divided into five groups: control, sham, melatonin-treated, diabetic and melatonin-treated diabetic. Kidney sections were prepared and stained with hematoxylin and eosin, and Crossman's triple staining for histological examination. The immunohistochemical localization of leptin in the kidney tissue was determined using the streptavidin-biotin-peroxidase method. We determined that on days 7 and 14, the leptin immunoreactivity of the diabetic and melatonin-treated diabetic groups was weaker than for the other groups. Weak immunoreactivity was found in the proximal and distal tubules of the kidney in the diabetic and melatonin-treated diabetic groups on days 7 and 14, and strong immunoreactivity was found in the control, sham and melatonin groups. Melatonin application had no significant effect on leptin production in the kidney tissues of diabetic rats.
Collapse
|
99
|
Mehta A, Kaur G. Potential role of melatonin in prevention and treatment of oral carcinoma. Indian J Dent 2014. [DOI: 10.1016/j.ijd.2013.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
100
|
Cheuquemán C, Arias ME, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Supplementation of IVF medium with melatonin: effect on sperm functionality andin vitroproduced bovine embryos. Andrologia 2014; 47:604-15. [DOI: 10.1111/and.12308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- C. Cheuquemán
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
| | - M. E. Arias
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
| | - J. Risopatrón
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Básicas; Universidad de La Frontera; Temuco Chile
| | - R. Felmer
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Básicas; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Agronómicas y Recursos Naturales; Facultad de Ciencias Agropecuarias y Forestales; Universidad de La Frontera; Temuco Chile
| | | | - T. Mogas
- Departamento de Medicina i Cirurgia Animals; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - R. Sánchez
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Preclínicas; Facultad de Medicina; Universidad de La Frontera; Temuco Chile
| |
Collapse
|