51
|
Darlix A, Mandonnet E, Freyschlag CF, Pinggera D, Forster MT, Voss M, Steinbach J, Loughrey C, Goodden J, Banna G, Di Blasi C, Foroglou N, Hottinger AF, Baron MH, Pallud J, Duffau H, Rutten GJ, Almairac F, Fontaine D, Taillandier L, Pessanha Viegas C, Albuquerque L, von Campe G, Urbanic-Purkart T, Blonski M. Chemotherapy and diffuse low-grade gliomas: a survey within the European Low-Grade Glioma Network. Neurooncol Pract 2019; 6:264-273. [PMID: 31386080 PMCID: PMC6660823 DOI: 10.1093/nop/npy051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diffuse low-grade gliomas (DLGGs) are rare and incurable tumors. Whereas maximal safe, functional-based surgical resection is the first-line treatment, the timing and choice of further treatments (chemotherapy, radiation therapy, or combined treatments) remain controversial. METHODS An online survey on the management of DLGG patients was sent to 28 expert centers from the European Low-Grade Glioma Network (ELGGN) in May 2015. It contained 40 specific questions addressing the modalities of use of chemotherapy in these patients. RESULTS The survey demonstrated a significant heterogeneity in practice regarding the initial management of DLGG patients and the use of chemotherapy. Interestingly, radiation therapy combined with the procarbazine, CCNU (lomustine), and vincristine regimen has not imposed itself as the gold-standard treatment after surgery, despite the results of the Radiation Therapy Oncology Group 9802 study. Temozolomide is largely used as first-line treatment after surgical resection for high-risk DLGG patients, or at progression. CONCLUSIONS The heterogeneity in the management of patients with DLGG demonstrates that many questions regarding the postoperative strategy and the use of chemotherapy remain unanswered. Our survey reveals a high recruitment potential within the ELGGN for retrospective or prospective studies to generate new data regarding these issues.
Collapse
Affiliation(s)
- Amélie Darlix
- Department of Medical Oncology, Institut du Cancer de Montpellier, University of Montpellier, France
| | | | | | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Austria
| | | | - Martin Voss
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Joachim Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | | | - John Goodden
- Leeds General Infirmary and North East Paediatric Neuroscience Network, Leeds, United Kingdom
| | - Giuseppe Banna
- Department of Neurosurgery and Gammaknife, Cannizzaro General Hospital, Catania, Italy
| | - Concetta Di Blasi
- Department of Neurosurgery and Gammaknife, Cannizzaro General Hospital, Catania, Italy
| | - Nicolas Foroglou
- Aristotle University of Thessaloniki, Department of Neurosurgery, AHEPA University Hospital, Greece
| | - Andreas F Hottinger
- Departments of Clinical Neurosciences and Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University, Switzerland
| | | | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, Paris, France, and Paris Descartes University, Sorbonne Paris Cité, France
| | - Hugues Duffau
- Inserm, U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris, France
- Department of Neurosurgery, Montpellier University Hospital, France
| | - Geert-Jan Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Fabien Almairac
- Department of Neurosurgery, University Hospital of Nice, France
| | - Denys Fontaine
- Department of Neurosurgery, University Hospital of Nice, France
| | - Luc Taillandier
- Department of Neurooncology, Nancy Neurological Hospital, France
| | | | | | - Gord von Campe
- Department of Neurosurgery, Medical University of Graz, Austria
| | | | - Marie Blonski
- Department of Neurooncology, Nancy Neurological Hospital, France
| |
Collapse
|
52
|
Abstract
Glioblastoma is the most invasive form of brain tumor. Although temozolomide chemotherapy has been shown to significantly improve survival in patients with GBM, this increase is only trivial. The underlying cause is that many GBMs do not respond to temozolomide, and the rest produces resistance. In the past two decades, many attempts have been made to understand resistance mechanisms and to combine other treatments with temozolomide to maximize patient benefit. Unfortunately, it seems to be a red queen game, and the speed of disease development is as fast as the progress in the field. In order to win this game, a comprehensive approach is needed to decipher the details of the resistance mechanism and to transfer the basic research to the clinic. This article reviews the following: temozolomide discovery, chemistry, and mechanism of action, and mechanisms of resistance, as well as combination therapy with other strategies.
Collapse
Affiliation(s)
- Anjali Arora
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Kumaravel Somasundaram
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
53
|
Hall PE, Lewis R, Syed N, Shaffer R, Evanson J, Ellis S, Williams M, Feng X, Johnston A, Thomson JA, Harris FP, Jena R, Matys T, Jefferies S, Smith K, Wu BW, Bomalaski JS, Crook T, O'Neill K, Paraskevopoulos D, Khadeir RS, Sheaff M, Pacey S, Plowman PN, Szlosarek PW. A Phase I Study of Pegylated Arginine Deiminase (Pegargiminase), Cisplatin, and Pemetrexed in Argininosuccinate Synthetase 1-Deficient Recurrent High-grade Glioma. Clin Cancer Res 2019; 25:2708-2716. [PMID: 30796035 DOI: 10.1158/1078-0432.ccr-18-3729] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/30/2018] [Accepted: 02/12/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with recurrent high-grade gliomas (HGG) are usually managed with alkylating chemotherapy ± bevacizumab. However, prognosis remains very poor. Preclinically, we showed that HGGs are a target for arginine depletion with pegargiminase (ADI-PEG20) due to epimutations of argininosuccinate synthetase (ASS1) and/or argininosuccinate lyase (ASL). Moreover, ADI-PEG20 disrupts pyrimidine pools in ASS1-deficient HGGs, thereby impacting sensitivity to the antifolate, pemetrexed. PATIENTS AND METHODS We expanded a phase I trial of ADI-PEG20 with pemetrexed and cisplatin (ADIPEMCIS) to patients with ASS1-deficient recurrent HGGs (NCT02029690). Patients were enrolled (01/16-06/17) to receive weekly ADI-PEG20 36 mg/m2 intramuscularly plus pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 intravenously once every 3 weeks for up to 6 cycles. Patients with disease control were allowed ADI-PEG20 maintenance. The primary endpoints were safety, tolerability, and preliminary estimates of efficacy. RESULTS Ten ASS1-deficient heavily pretreated patients were treated with ADIPEMCIS therapy. Treatment was well tolerated with the majority of adverse events being Common Terminology Criteria for Adverse Events v4.03 grade 1-2. The best overall response was stable disease in 8 patients (80%). Plasma arginine was suppressed significantly below baseline with a reciprocal increase in citrulline during the sampling period. The anti-ADI-PEG20 antibody titer rose during the first 4 weeks of treatment before reaching a plateau. Median progression-free survival (PFS) was 5.2 months (95% confidence interval (CI), 2.5-20.8) and overall survival was 6.3 months (95% CI, 1.8-9.7). CONCLUSIONS In this recurrent HGG study, ADIPEMCIS was well tolerated and compares favorably to historical controls. Additional trials of ADI-PEG20 in HGG are planned.
Collapse
Affiliation(s)
- Peter E Hall
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Rachel Lewis
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Nelofer Syed
- Department of Medicine, Imperial College, London, United Kingdom
| | - Richard Shaffer
- St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Jane Evanson
- Department of Radiology, Barts Health NHS Trust, London, United Kingdom
| | - Stephen Ellis
- Department of Radiology, Barts Health NHS Trust, London, United Kingdom
| | - Matthew Williams
- Department of Oncology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | | | | | - Fiona P Harris
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Raj Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sarah Jefferies
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kate Smith
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Bor-Wen Wu
- Polaris Pharmaceuticals Inc., San Diego, California
| | | | - Timothy Crook
- St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Kevin O'Neill
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Ramsay S Khadeir
- Centre for Molecular Oncology, Queen Mary University of London, London, United Kingdom
| | - Michael Sheaff
- Department of Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Simon Pacey
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Piers N Plowman
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Peter W Szlosarek
- Department of Oncology, Barts Health NHS Trust, London, United Kingdom.
- Centre for Molecular Oncology, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
54
|
Mandel JJ, Yust-Katz S, Patel AJ, Cachia D, Liu D, Park M, Yuan Y, Kent TA, de Groot JF. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro Oncol 2019; 20:113-122. [PMID: 29016865 DOI: 10.1093/neuonc/nox144] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma is the most common primary malignant brain tumor in adults, but effective therapies are lacking. With the scarcity of positive phase III trials, which are increasing in cost, we examined the ability of positive phase II trials to predict statistically significant improvement in clinical outcomes of phase III trials. Methods A PubMed search was conducted to identify phase III clinical trials performed in the past 25 years for patients with newly diagnosed or recurrent glioblastoma. Trials were excluded if they did not examine an investigational chemotherapy or agent, if they were stopped early owing to toxicity, if they lacked prior phase II studies, or if a prior phase II study was negative. Results Seven phase III clinical trials in newly diagnosed glioblastoma and 4 phase III clinical trials in recurrent glioblastoma met the inclusion criteria. Only 1 (9%) phase III study documented an improvement in overall survival and changed the standard of care. Conclusion The high failure rate of phase III trials demonstrates the urgent need to increase the reliability of phase II trials of treatments for glioblastoma. Strategies such as the use of adaptive trial designs, Bayesian statistics, biomarkers, volumetric imaging, and mathematical modeling warrant testing. Additionally, it is critical to increase our expectations of phase II trials so that positive findings increase the probability that a phase III trial will be successful.
Collapse
Affiliation(s)
- Jacob J Mandel
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - Shlomit Yust-Katz
- Rabin Medical Center, Department of Neurosurgery, Petah Tikva, Israel
| | - Akash J Patel
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - David Cachia
- Medical University of South Carolina, Department of Neurosurgery, Charleston, South Carolina, USA
| | - Diane Liu
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Minjeong Park
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Ying Yuan
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Thomas A Kent
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - John F de Groot
- The University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, Texas, USA
| |
Collapse
|
55
|
Chen X, Wen Q, Stucky A, Zeng Y, Gao S, Loudon WG, Ho HW, Kabeer MH, Li SC, Zhang X, Zhong JF. Relapse pathway of glioblastoma revealed by single-cell molecular analysis. Carcinogenesis 2019; 39:931-936. [PMID: 29718126 DOI: 10.1093/carcin/bgy052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains an incurable brain tumor. The highly malignant behavior of GBM may, in part, be attributed to its intraclonal genetic and phenotypic diversity (subclonal evolution). Identifying the molecular pathways driving GBM relapse may provide novel, actionable targets for personalized diagnosis, characterization of prognosis and improvement of precision therapy. We screened single-cell transcriptomes, namely RNA-seq data of primary and relapsed GBM tumors from a patient, to define the molecular profile of relapse. Characterization of hundreds of individual tumor cells identified three mutated genes within single cells, involved in the RAS/GEF GTP-dependent signaling pathway. The identified molecular pathway was further verified by meta-analysis of RNA-seq data from more than 3000 patients. This study showed that single-cell molecular analysis overcomes the inherent heterogeneity of bulk tumors with respect to defining tumor subclonal evolution relevant to GBM relapse.
Collapse
Affiliation(s)
- Xuelian Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Qin Wen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yunjing Zeng
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Shengjia Gao
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - William G Loudon
- Department of Neurosurgery, CHOC Children's Hospital, Neuroscience Institute, Gamma Knife Center of Southern California, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Hector W Ho
- Division of Neurological Surgery, Saint Jude Heritage Medical Group, Saint Joseph Hospital, Orange, CA, USA
| | - Mustafa H Kabeer
- Department of Surgery, CHOC Children's Hospital, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, CHOC Children's Research Institute, Children's Hospital of Orange County, Department of Neurology, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Xi Zhang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
56
|
Looking for A Place for Dose-Dense TMZ Regimens in GBM Patients: An Experience with MGMT Exploratory Evaluation. Bioengineering (Basel) 2019; 6:bioengineering6010011. [PMID: 30678211 PMCID: PMC6466220 DOI: 10.3390/bioengineering6010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Prolonged exposure to temozolomide (TMZ) could improve clinical outcomes in recurrent glioblastoma multiforme (GBM) patients. We previously developed a dose-dense regimen of TMZ in a phase II study (180 mg/m2 from days 1 to 5 every two weeks). A retrospective analysis of patients with macroscopic residual GBM treated with “post-induction” dose-dense TMZ was conducted, adding an explorative subgroup analyses among patients with different O6-methylguanine DNA methyltransferase (MGMT) expressions (negative vs positive, < vs ≥ of 50 % of cells stained, < vs ≥ 70% of cells stained). Thirty-six patients were evaluated; after a median follow-up of 36 weeks, median Progression Free Survival (PFS) and median Overall Survival (OS) were 19 and 34 weeks, respectively. MGMT expression (70% cut-off) and sex were confirmed as independent predictors for disease control rate (DCR) at multivariate analysis. At univariate analysis ECOG-PS, Sex (female), extensive tumor resection was shown to be related to a longer PFS, while MGMT expression (cut-off 70%) to a shorter PFS. Multivariate analysis with Cox hazard regression confirmed only ECOG-PS as an independent predictor for PFS. ECOG-PS showed to be significant related to a longer OS. Our analysis showed that dose-dense TMZ regimens are still an option for patients with recurrent GBM, but should be used for re-challenge treatments. MGMT immunohistochemistry high expression might be used as a “surrogate” negative predictor for DCR for dd-TMZ treatments.
Collapse
|
57
|
Stepanenko AA, Chekhonin VP. Recent Advances in Oncolytic Virotherapy and Immunotherapy for Glioblastoma: A Glimmer of Hope in the Search for an Effective Therapy? Cancers (Basel) 2018; 10:E492. [PMID: 30563098 PMCID: PMC6316815 DOI: 10.3390/cancers10120492] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
To date, no targeted drugs, antibodies or combinations of chemotherapeutics have been demonstrated to be more efficient than temozolomide, or to increase efficacy of standard therapy (surgery, radiotherapy, temozolomide, steroid dexamethasone). According to recent phase III trials, standard therapy may ensure a median overall survival of up to 18⁻20 months for adult patients with newly diagnosed glioblastoma. These data explain a failure of positive non-controlled phase II trials to predict positive phase III trials and should result in revision of the landmark Stupp trial as a historical control for median overall survival in non-controlled trials. A high rate of failures in clinical trials and a lack of effective chemotherapy on the horizon fostered the development of conceptually distinct therapeutic approaches: dendritic cell/peptide immunotherapy, chimeric antigen receptor (CAR) T-cell therapy and oncolytic virotherapy. Recent early phase trials with the recombinant adenovirus DNX-2401 (Ad5-delta24-RGD), polio-rhinovirus chimera (PVSRIPO), parvovirus H-1 (ParvOryx), Toca 511 retroviral vector with 5-fluorocytosine, heat shock protein-peptide complex-96 (HSPPC-96) and dendritic cell vaccines, including DCVax-L vaccine, demonstrated that subsets of patients with glioblastoma/glioma may benefit from oncolytic virotherapy/immunotherapy (>3 years of survival after treatment). However, large controlled trials are required to prove efficacy of next-generation immunotherapeutics and oncolytic vectors.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
58
|
Stupnikov A, O'Reilly PG, McInerney CE, Roddy AC, Dunne PD, Gilmore A, Ellis HP, Flannery T, Healy E, McIntosh SA, Savage K, Kurian KM, Emmert-Streib F, Prise KM, Salto-Tellez M, McArt DG. Impact of Variable RNA-Sequencing Depth on Gene Expression Signatures and Target Compound Robustness: Case Study Examining Brain Tumor (Glioma) Disease Progression. JCO Precis Oncol 2018; 2. [PMID: 30324181 PMCID: PMC6186166 DOI: 10.1200/po.18.00014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Gene expression profiling can uncover biologic mechanisms underlying disease and is important in drug development. RNA sequencing (RNA-seq) is routinely used to assess gene expression, but costs remain high. Sample multiplexing reduces RNA-seq costs; however, multiplexed samples have lower cDNA sequencing depth, which can hinder accurate differential gene expression detection. The impact of sequencing depth alteration on RNA-seq–based downstream analyses such as gene expression connectivity mapping is not known, where this method is used to identify potential therapeutic compounds for repurposing. Methods In this study, published RNA-seq profiles from patients with brain tumor (glioma) were assembled into two disease progression gene signature contrasts for astrocytoma. Available treatments for glioma have limited effectiveness, rendering this a disease of poor clinical outcome. Gene signatures were subsampled to simulate sequencing alterations and analyzed in connectivity mapping to investigate target compound robustness. Results Data loss to gene signatures led to the loss, gain, and consistent identification of significant connections. The most accurate gene signature contrast with consistent patient gene expression profiles was more resilient to data loss and identified robust target compounds. Target compounds lost included candidate compounds of potential clinical utility in glioma (eg, suramin, dasatinib). Lost connections may have been linked to low-abundance genes in the gene signature that closely characterized the disease phenotype. Consistently identified connections may have been related to highly expressed abundant genes that were ever-present in gene signatures, despite data reductions. Potential noise surrounding findings included false-positive connections that were gained as a result of gene signature modification with data loss. Conclusion Findings highlight the necessity for gene signature accuracy for connectivity mapping, which should improve the clinical utility of future target compound discoveries.
Collapse
Affiliation(s)
- Alexey Stupnikov
- Queen's University Belfast; Johns Hopkins University, Baltimore, MD
| | | | | | | | | | | | - Hayley P Ellis
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | - Tom Flannery
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Estelle Healy
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | | | | | - Kathreena M Kurian
- Brain Tumour Research Centre, University of Bristol, Bristol, United Kingdom
| | | | | | - Manuel Salto-Tellez
- Queen's University Belfast; Belfast Health and Social Care Trust, Belfast, United Kingdom
| | | |
Collapse
|
59
|
Dose-dense temozolomide for recurrent high-grade gliomas: a single-center retrospective study. Med Oncol 2018; 35:136. [PMID: 30155806 DOI: 10.1007/s12032-018-1198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023]
Abstract
There are limited treatment modalities after high-grade gliomas recurrence. MGMT depletion modulated by dose-dense temozolomide (ddTMZ) remains a debated therapy for initial TMZ responders. Patients were selected retrospectively from our practice with diagnosis of high-grade gliomas (WHO grade III or IV), and were followed since the start of ddTMZ until death or change of therapy. Twenty-one patients were reviewed, with a median age of 47 (25-61) years and a median of 5.8 (1.5-38.8) cycles of ddTMZ. The majority were males (71.4%). Sixty-six percent received 21 on/28 off ddTMZ schedule, 28.6% daily, and 1 patient received a 7 days on/7 days off schedule. IDH mutation status was available for 18 (85.7%) patients, with 7 (33.3%) IDH mutant and 11 (52.5%) IDH wild type. MGMT methylation was assessed in 6 (28.6%) of the patients, being MGMT methylated in 3 (14.3%) patients, and non-methylated in 3 (14.3%) patients. The majority of patients (57.1%) were receiving ddTMZ in addition to other forms of therapy, including either bevacizumab (38.1%) or tumor-treating fields (TTFields) (19.1%). Overall ddTMZ was well tolerated, with few adverse events reported. The estimated median overall survival after ddTMZ start was 11 months. Median progression-free survival (PFS) was 6 months. Outcomes did not vary between patients receiving ddTMZ alone or those using TTFields or bevacizumab as concomitant therapy, but there was a trend to longer survival with the use of concomitant TTFields. Our results demonstrate benefit of ddTMZ after previous treatment with standard TMZ dosing with no apparent increase in treatment-related toxicities. In summary, ddTMZ should be considered in TMZ responsive patients and warrants further investigation.
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW This article reviews the standard treatment for high-grade gliomas, with a focus on promising new strategies and response assessment. RECENT FINDINGS The new World Health Organization (WHO) classification of central nervous system tumors classifies high-grade gliomas based on molecular markers that are of prognostic and therapeutic significance. The addition of chemotherapy, specifically procarbazine, CCNU (lomustine), and vincristine, to radiation in newly diagnosed 1p/19q codeleted anaplastic oligodendrogliomas doubled overall survival. The US Food and Drug Administration (FDA) recently approved the addition of tumor treating fields to adjuvant temozolomide after radiation with concurrent temozolomide in newly diagnosed glioblastoma. A phase3 trial for recurrent glioblastoma did not show an overall survival benefit for the addition of bevacizumab to lomustine compared to lomustine alone. Current efforts are focused on the development of novel treatment approaches, including molecular targeted agents and immunotherapies. SUMMARY Surgery, radiation, and chemotherapy remain the standard treatment options for patients with high-grade gliomas. Despite aggressive treatment, these tumors progress, and overall outcomes have not changed much in the past decade. However, our understanding of the disease is improving, and newer therapies appear promising.
Collapse
|
61
|
Wick W, Osswald M, Wick A, Winkler F. Treatment of glioblastoma in adults. Ther Adv Neurol Disord 2018; 11:1756286418790452. [PMID: 30083233 PMCID: PMC6071154 DOI: 10.1177/1756286418790452] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023] Open
Abstract
The diagnosis of a glioblastoma is mainly made on the basis of their microscopic appearance with the additional determination of epigenetic as well as mutational analyses as deemed appropriate and taken into account in different centers. How far the recent discovery of tumor networks will stimulate novel treatments is a subject of intensive research. A tissue diagnosis is the mainstay. Regardless of age, patients should undergo a maximal safe resection. Magnetic resonance imaging is the surrogate parameter of choice for follow up. Patients should receive chemoradiotherapy with temozolomide with the radiation schedule adapted to performance status, age and tumor location. The use of temozolomide may be reconsidered according to methylguanine DNA methyltransferase (MGMT) promoter methylation status; patients with an active promoter may be subjected to a trial or further molecular work-up in order to potentially replace temozolomide; patients with an inactive (hypermethylated) MGMT promoter may be counseled for the co-treatment with the methylating and alkylating compound lomustine in addition to temozolomide. Tumor-treating fields are an additive option independent of the MGMT status. Determination of recurrence is still challenging. Patients with clinical or radiographic confirmed progression should be counseled for a second surgical intervention, that is, to reach another macroscopic removal of the tumor bulk or to obtain tissue for an updated molecular analysis. Immune therapeutic approaches may be dependent on tumor types and molecular signatures. In newly diagnosed and recurrent glioblastoma, bevacizumab prolongs progression-free survival without affecting overall survival in an unselected population of glioblastoma patients. Whether or not selection can be made on the basis of molecular or imaging parameters remains to be determined. Some patients may benefit from a second radiotherapy. In our view, the near future will provide support for translating the amazing progress in understanding the molecular background of glioblastoma in to more complex, but promising therapy concepts.
Collapse
Affiliation(s)
- Wolfgang Wick
- Neurology Clinic & National Center for Tumor
Disease, University of Heidelberg, Im Neuenheimer Feld 400, D-69120
Heidelberg, Germany
| | - Matthias Osswald
- Neurology Clinic, University of Heidelberg,
Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje Wick
- Neurology Clinic, University of Heidelberg,
German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ),
Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic, University of Heidelberg,
Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
62
|
Mandel JJ, Youssef M, Ludmir E, Yust-Katz S, Patel AJ, De Groot JF. Highlighting the need for reliable clinical trials in glioblastoma. Expert Rev Anticancer Ther 2018; 18:1031-1040. [PMID: 29973092 DOI: 10.1080/14737140.2018.1496824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Several recent phase III studies have attempted to improve the dismal survival seen in glioblastoma patients, with disappointing results despite prior promising phase II data. Areas covered: A literature review of prior phase II and phase III studied in glioblastoma was performed to help identify possible areas of concern. Numerous issues in previous phase II trials for glioblastoma were found that may have contributed to these discouraging outcomes and discordant results. Expert commentary: These concerns include the improper selection of therapeutics warranting investigation in a phase III trial, suboptimal design of phase II studies (often lacking a control arm), absence of molecular data, the use of imaging criteria as a surrogate endpoint, and a lack of pharmacodynamic testing. Hopefully, by recognizing prior phase II trial limitations that contributed to failed phase III trials, we can adapt quickly to improve our ability to accurately discover survival-prolonging treatments for glioblastoma patients.
Collapse
Affiliation(s)
- Jacob J Mandel
- a Department of Neurology , Baylor College of Medicine , Houston , Texas , USA
| | - Michael Youssef
- a Department of Neurology , Baylor College of Medicine , Houston , Texas , USA
| | - Ethan Ludmir
- b Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Shlomit Yust-Katz
- c Department of Neurosurgery , Rabin Medical Center , Petah Tikva , Israel
| | - Akash J Patel
- a Department of Neurology , Baylor College of Medicine , Houston , Texas , USA
| | - John F De Groot
- d Department of Neuro-Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| |
Collapse
|
63
|
Shanker M, Chua B, Bettington C, Foote MC, Pinkham MB. Re-irradiation for recurrent high-grade gliomas: a systematic review and analysis of treatment technique with respect to survival and risk of radionecrosis. Neurooncol Pract 2018; 6:144-155. [PMID: 31386038 DOI: 10.1093/nop/npy019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Re-irradiation may be considered for select patients with recurrent high-grade glioma. Treatment techniques include conformal radiotherapy employing conventional fractionation, hypofractionated stereotactic radiotherapy (FSRT), and single-fraction stereotactic radiosurgery (SRS). Methods A pooled, population-weighted, multiple linear regression analysis of publications from 1992 to 2016 was performed to evaluate the relationships between re-irradiation technique and median overall survival (OS) and radionecrosis outcomes. Results Seventy published articles were analyzed, yielding a total of 3302 patients. Across all studies, initial treatment was external beam radiotherapy to a median dose of 60 Gy in 30 fractions, with or without concurrent chemotherapy. On multivariate analysis, there was a significant correlation between OS and radiotherapy technique after adjusting for age, re-irradiation biologically equivalent dose (EQD2), interval between initial and repeat radiotherapy, and treatment volume (P < .0001). Adjusted mean OS was 12.2 months (95% CI, 11.8-12.5) after SRS, 10.1 months (95% CI, 9.7-10.5) after FSRT, and 8.9 months (95% CI, 8.4-9.4) after conventional fractionation. There was also a significant association between radionecrosis and treatment technique after adjusting for age, re-irradiation EQD2, interval, and volume (P < .0001). Radionecrosis rate was 7.1% (95% CI, 6.6-7.7) after FSRT, 6.1% (95% CI, 5.6-6.6) after SRS, and 1.1% (95% CI, 0.5-1.7) after conventional fractionation. Conclusions The published literature suggests that OS is highest after re-irradiation using SRS, followed by FSRT and conventionally fractionated radiotherapy. Whether this represents superiority of the treatment technique or an uncontrolled selection bias is uncertain. The risk of radionecrosis was low for all modalities overall. Re-irradiation is a feasible option in appropriately selected patients.
Collapse
Affiliation(s)
- Mihir Shanker
- The University of Queensland, Faculty of Medicine, Australia.,Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Benjamin Chua
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Catherine Bettington
- The University of Queensland, Faculty of Medicine, Australia.,Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Matthew C Foote
- The University of Queensland, Faculty of Medicine, Australia.,Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Mark B Pinkham
- The University of Queensland, Faculty of Medicine, Australia.,Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Australia
| |
Collapse
|
64
|
Kim SH, Yoo H, Chang JH, Kim CY, Chung DS, Kim SH, Park SH, Lee YS, Yang SH. Procarbazine and CCNU Chemotherapy for Recurrent Glioblastoma with MGMT Promoter Methylation. J Korean Med Sci 2018; 33:e167. [PMID: 29892208 PMCID: PMC5990446 DOI: 10.3346/jkms.2018.33.e167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND While procarbazine, CCNU (lomustine), and vincristine (PCV) has been an alternative chemotherapy option for malignant gliomas, it is worth investigating whether the combination of only procarbazine and CCNU is comparable because vincristine adds toxicity with uncertain benefit. The purpose of this study was to evaluate the feasibility of procarbazine and CCNU chemotherapy for recurrent glioblastoma multiforme (GBM) with O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation. METHODS Eight patients with recurrent GBM following concurrent chemoradiotherapy and temozolomide (TMZ) adjuvant therapy were enrolled in this trial; they received no other chemotherapeutic agents or target therapy. They received CCNU (75 mg/m2) on day 1 and procarbazine (60 mg/m2) through days 11 and 24 every 4 weeks. The median cycle of CCNU and procarbazine was 3.5 (range: 2-6). RESULTS One patient achieved stable disease. The median progression-free survival (PFS) with procarbazine and CCNU chemotherapy was eight weeks (range: 5-73), and the PFS rates were 25% and 12.5% at 16 and 30 weeks, respectively. The median overall survival (OS) from the initial diagnosis to death was 40 months, and the median OS from the administration of procarbazine and CCNU chemotherapy to death was 9.7 months (95% confidence interval: 6.7-12.7). Serious adverse events were found at six visits, and two cases were considered to be grade 3 toxicities. CONCLUSION The efficacy of procarbazine and CCNU chemotherapy is not satisfactory. This study suggests the need to develop other treatment strategies for recurrent and TMZ-refractory GBM. Trial registry at ClinicalTrials.gov, NCT017337346.
Collapse
Affiliation(s)
- Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Sup Chung
- Department of Neurosurgery, The Catholic University of Korea, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hae Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, The Catholic University of Korea, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, The Catholic University of Korea, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
65
|
Sharpe MA, Raghavan S, Baskin DS. PAM-OBG: A monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma. Oncotarget 2018; 9:23923-23943. [PMID: 29844863 PMCID: PMC5963626 DOI: 10.18632/oncotarget.25246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022] Open
Abstract
Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O6-methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo, a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O6-benzylguanine (O6BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O6BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, TX 77030, Houston, USA
| | - Sudhir Raghavan
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, TX 77030, Houston, USA
| | - David S Baskin
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, TX 77030, Houston, USA
| |
Collapse
|
66
|
Third-line therapy in recurrent glioblastoma: is it another chance for bevacizumab? J Neurooncol 2018; 139:383-388. [DOI: 10.1007/s11060-018-2873-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/15/2018] [Indexed: 11/25/2022]
|
67
|
Youland RS, Lee JY, Kreofsky CR, Brown PD, Uhm JH, Laack NN. Modern reirradiation for recurrent gliomas can safely delay tumor progression. Neurooncol Pract 2018; 5:46-55. [PMID: 31385961 PMCID: PMC6655388 DOI: 10.1093/nop/npx014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Despite advances in modern therapy, high-grade gliomas continue to portend a dismal prognosis and nearly all patients will experience relapse. Unfortunately, salvage options remain limited. In this study, we assessed outcomes for patients with recurrent gliomas treated with reirradiation. METHODS We retrospectively identified 48 glioma patients treated with reirradiation between 2013 and 2016. All had radiographic or pathologic evidence of recurrence. Prognostic factors were abstracted from the electronic medical record. RESULTS Initial surgery included biopsy in 15, subtotal resection in 21, and gross total resection in 12. Initial chemotherapy included temozolomide (TMZ) in 31, TMZ+dasatinib in 7, TMZ+vorinostat in 3, and procarbazine, lomustine, and vincristine in 2. The median dose of primary radiotherapy was 60 Gy delivered in 30 fractions. Median overall survival (OS) and progression-free survival (PFS) from initial diagnosis were 3.2 and 1.7 years, respectively. A total of 36 patients failed salvage bevacizumab before reirradiation. Salvage surgery was performed before reirradiation in 21 patients. Median time to reirradiation was 1.7 years. Median follow-up was 13.7 months from reirradiation. Concurrent systemic therapy was given in 33 patients (bevacizumab in 27, TMZ in 8, and lomustine in 2). Median PFS and OS after reirradiation were 3.2 and 6.3 months, respectively. Radionecrosis occurred in 4 patients and no radionecrosis was seen in patients receiving concurrent bevacizumab with reirradiation (0% vs 19%, P = .03). CONCLUSIONS Reirradiation may result in delayed tumor progression with acceptable toxicity. Prospective trials are needed to determine the impact of reirradiation on tumor progression and quality of life.
Collapse
Affiliation(s)
- Ryan S Youland
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - John Y Lee
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Cole R Kreofsky
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Joon H Uhm
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
68
|
Combination Therapy with Sulfasalazine and Valproic Acid Promotes Human Glioblastoma Cell Death Through Imbalance of the Intracellular Oxidative Response. Mol Neurobiol 2018; 55:6816-6833. [PMID: 29349577 DOI: 10.1007/s12035-018-0895-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor and still lacks effective therapeutic strategies. It has already been shown that old drugs like sulfasalazine (SAS) and valproic acid (VPA) present antitumoral activities in glioma cell lines. SAS has also been associated with a decrease of intracellular glutathione (GSH) levels through a potent inhibition of xc- glutamate/cystine exchanger leading to an antioxidant deprotection. In the same way, VPA was recently identified as a histone deacetylase (HDAT) inhibitor capable of activating tumor suppression genes. As both drugs are widely used in clinical practice and their profile of adverse effects is well known, the aim of our study was to investigate the effects of the combined treatment with SAS and VPA in GBM cell lines. We observed that both drugs were able to reduce cell viability in a dose-dependent manner and the combined treatment potentiated these effects. Combined treatment also increased cell death and inhibited proliferation of GBM cells, while having no effect on human and rat cultured astrocytes. Also, we observed high protein expression of the catalytic subunit of xc- in all the examined GBM cell lines, and treatment with SAS blocked its activity and decreased intracellular GSH levels. Noteworthy, SAS but not VPA was also able to reduce the [14C]-ascorbate uptake. Together, these data indicate that SAS and VPA exhibit a substantial effect on GBM cell's death related to an intracellular oxidative response imbalance, making this combination of drugs a promising therapeutic strategy.
Collapse
|
69
|
Martínez-Garcia M, Álvarez-Linera J, Carrato C, Ley L, Luque R, Maldonado X, Martínez-Aguillo M, Navarro LM, Vaz-Salgado MA, Gil-Gil M. SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clin Transl Oncol 2018; 20:22-28. [PMID: 29086250 PMCID: PMC5785619 DOI: 10.1007/s12094-017-1763-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GB) is the most common brain malignancy and accounts for over 50% of all high-grade gliomas. Radiotherapy (RT) with concomitant and adjuvant temozolomide (TMZ) chemotherapy is the current standard of care for patients with newly diagnosed GB up to age 70. Recently, a new standard of care has been adopted for elderly patients (≥ 65 years) based on short course of RT and TMZ. Several clinically relevant molecular markers that assist in diagnosis and prognosis have recently been identified. The treatment for recurrent GB is not well defined, and decision-making is usually based on prior strategies as well as several clinical and radiological factors. The presence of neurologic deficits and seizures can significantly impact quality of life.
Collapse
Affiliation(s)
| | | | - C. Carrato
- Anatomía Patológica, Hospital Universitari Germans Trias i Pujol de Badalona, Barcelona, Spain
| | - L. Ley
- Neurocirugía, Hospital Ramón y Cajal, Madrid, Spain
| | - R. Luque
- Oncología Médica, Complejo Hospitalario Universitario de Granada Virgen de las Nieves, Granada, Spain
| | - X. Maldonado
- Oncología Radioterápica, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | | | - L. M. Navarro
- Oncología Médica, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | | | - M. Gil-Gil
- Unidad de Neuro-oncologia. Oncología Médica Institut Català d’Oncologia (ICO)-Hospital Universitari de Bellvitge IDIBELL L’Hospitalet, C/de la Feixa Llarga, s/n, Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
70
|
Jhaveri J, Liu Y, Chowdhary M, Buchwald ZS, Gillespie TW, Olson JJ, Voloschin AD, Eaton BR, Shu HKG, Crocker IR, Curran WJ, Patel KR. Is less more? Comparing chemotherapy alone with chemotherapy and radiation for high-risk grade 2 glioma: An analysis of the National Cancer Data Base. Cancer 2017; 124:1169-1178. [PMID: 29205287 DOI: 10.1002/cncr.31158] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND The addition of chemotherapy to adjuvant radiotherapy (chemotherapy and radiation therapy [CRT]) improves overall survival (OS) for patients with high-risk grade 2 gliomas; however, the impact of chemotherapy alone (CA) is unknown. This study compares the OS of patients with high-risk grade 2 gliomas treated with CA versus CRT. METHODS Patients with high-risk grade 2 gliomas (subtotal resection or age ≥ 40 years) with oligodendrogliomas, astrocytomas, or mixed tumors were identified with the National Cancer Data Base. Patients were grouped into CA and CRT cohorts. Univariate analyses and multivariate analyses (MVAs) were performed. Propensity score (PS) matching was also implemented. The Kaplan-Meier method was used to analyze OS. RESULTS A total of 1054 patients with high-risk grade 2 gliomas were identified: 496 (47.1%) received CA, and 558 (52.9%) received CRT. Patients treated with CA were more likely (all P values < .05) to have oligodendroglioma histology (65.5% vs 34.2%), exhibit a 1p/19q codeletion (22.8% vs 7.5%), be younger (median age, 47.0 vs 48.0 years), and receive treatment at an academic facility (65.2% vs 50.3%). The treatment type was not a significant predictor for OS (P = .125) according to the MVA; a tumor size > 6 cm, astrocytoma histology, and older age were predictors for worse OS (all P values < .05). After 1:1 PS matching (n = 331 for each cohort), no OS difference was seen (P = .696) between the CA and CRT cohorts at 5 (69.3% vs 67.4%) and 8 years (52.8% vs 56.7%). CONCLUSIONS No long-term OS difference was seen in patients with high-risk grade 2 gliomas treated with CA versus CRT. These findings are hypothesis-generating, and prospective clinical trials comparing these treatment paradigms are warranted. Cancer 2018;124:1169-78. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Jaymin Jhaveri
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Yuan Liu
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Mudit Chowdhary
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois
| | - Zachary S Buchwald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Theresa W Gillespie
- Department of Surgery and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jeffrey J Olson
- Department of Neurosurgery and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Alfredo D Voloschin
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Bree R Eaton
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Hui-Kuo G Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Ian R Crocker
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Kirtesh R Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,Department of Therapeutic Radiology and Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
71
|
Roussakow SV. Clinical and economic evaluation of modulated electrohyperthermia concurrent to dose-dense temozolomide 21/28 days regimen in the treatment of recurrent glioblastoma: a retrospective analysis of a two-centre German cohort trial with systematic comparison and effect-to-treatment analysis. BMJ Open 2017; 7:e017387. [PMID: 29102988 PMCID: PMC5722101 DOI: 10.1136/bmjopen-2017-017387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To assess the efficacy and cost-effectiveness of modulated electrohyperthermia (mEHT) concurrent to dose-dense temozolomide (ddTMZ) 21/28 days regimen versus ddTMZ 21/28 days alone in patients with recurrent glioblastoma (GBM). DESIGN A cohort of 54 patients with recurrent GBM treated with ddTMZ+mEHT in 2000-2005 was systematically retrospectively compared with five pooled ddTMZ 21/28 days cohorts (114 patients) enrolled in 2008-2013. RESULTS The ddTMZ+mEHT cohort had a not significantly improved mean survival time (mST) versus the comparator (p=0.531) after a significantly less mean number of cycles (1.56 vs 3.98, p<0.001). Effect-to-treatment analysis (ETA) suggests that mEHT significantly enhances the efficacy of the ddTMZ 21/28 days regimen (p=0.011), with significantly less toxicity (no grade III-IV toxicity vs 45%-92%, p<0.0001). An estimated maximal attainable median survival time is 10.10 months (9.10-11.10). Cost-effectiveness analysis suggests that, unlike ddTMZ 21/28 days alone, ddTMZ+mEHT is cost-effective versus the applicable cost-effectiveness thresholds €US$25 000-50 000/quality-adjusted life year (QALY). Budget impact analysis suggests a significant saving of €8 577 947/$11 201 761 with 29.1-38.5 QALY gained per 1000 patients per year. Cost-benefit analysis suggests that mEHT is profitable and will generate revenues between €3 124 574 and $6 458 400, with a total economic effect (saving+revenues) of €5 700 034 to $8 237 432 per mEHT device over an 8-year period. CONCLUSIONS Our ETA suggests that mEHT significantly improves survival of patients receiving the ddTMZ 21/28 days regimen. Economic evaluation suggests that ddTMZ+mEHT is cost-effective, budget-saving and profitable. After confirmation of the results, mEHT could be recommended for the treatment of recurrent GBM as a cost-effective enhancer of ddTMZ regimens, and, probably, of the regular 5/28 days regimen. mEHT is applicable also as a single treatment if chemotherapy is impossible, and as a salvage treatment after the failure of chemotherapy.
Collapse
|
72
|
Balañá C, Alonso M, Hernandez-Lain A, Hernandez A, Perez-Segura P, Pineda E, Ramos A, Sanchez AR, Teixidor P, Verger E, Benavides M. SEOM clinical guidelines for anaplastic gliomas (2017). Clin Transl Oncol 2017; 20:16-21. [PMID: 29058264 PMCID: PMC5785606 DOI: 10.1007/s12094-017-1762-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/29/2022]
Abstract
The SEOM/GEINO clinical guidelines provide recommendations for radiological, and molecular diagnosis, treatment and follow-up of adult patients with anaplastic gliomas (AG). We followed the 2016 WHO classification which specifies the major diagnostic/prognostic and predictive value of IDH1/IDH2 missense mutations and 1p/19q codeletions in AG. The diagnosis of anaplastic oligoastrocytoma is discouraged. Surgery, radiotherapy and chemotherapy with PCV or TMZ are the first-line standard of care for AG with slight modifications according to molecular variables. A multidisciplinary team is highly recommended in the management of these tumors.
Collapse
Affiliation(s)
- C Balañá
- Institut Català Oncologia Badalona, Ct. Canyet, s/n, 08916, Barcelona, Spain.
| | - M Alonso
- Complejo Hospitalario Virgen del Rocío, Seville, Spain
| | | | | | - P Perez-Segura
- Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - E Pineda
- Hospital Clínic i Provincial, Barcelona, Spain
| | - A Ramos
- Hospital 12 de Octubre, Madrid, Spain
| | - A R Sanchez
- Complejo Asistencial Universitario de León, León, Spain
| | - P Teixidor
- Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
| | - E Verger
- Hospital Clínic i Provincial, Barcelona, Spain
| | - M Benavides
- Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
73
|
da Fonseca ACC, Amaral R, Garcia C, Geraldo LH, Matias D, Lima FRS. Microglia in Cancer: For Good or for Bad? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:245-261. [PMID: 27714693 DOI: 10.1007/978-3-319-40764-7_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma is a malignant tumor of astrocytic origin that is highly invasive, proliferative and angiogenic. Despite current advances in multimodal therapies, such as surgery, radio- and chemotherapy, the outcome for patients with glioblastoma is nearly always fatal. The glioblastoma microenvironment has a tremendous influence over the tumor growth and spread. Microglia and macrophages are abundant cells in the tumor mass. Increasing evidence indicates that glioblastoma recruits these cell populations and signals in a way that microglia and macrophages are subverted to promote tumor progression. In this chapter, we discuss some aspects of the interaction between microglia and glioblastoma, consequences of this interaction for tumor progression and the possibility of microglial cells being used as therapeutic vectors, which opens up new alternatives for the development of GBM therapies targeting microglia.
Collapse
Affiliation(s)
- Anna Carolina Carvalho da Fonseca
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Rackele Amaral
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Celina Garcia
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Luiz Henrique Geraldo
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Diana Matias
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21949-590, Brazil.
| |
Collapse
|
74
|
Wu X, Xu B, Yang C, Wang W, Zhong D, Zhao Z, He L, Hu Y, Jiang L, Li J, Song L, Zhang W. Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:127. [PMID: 28899410 PMCID: PMC5596921 DOI: 10.1186/s13046-017-0597-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND The prognosis of human astrocytoma is poor, and the molecular alterations underlying its pathogenesis still needed to be elucidated. Nucleolar and spindle associated protein 1 (NUSAP1) was observed in several types of cancers, but its role in astrocytoma remained unknown. METHODS The expression of NUSAP1 in astrocytoma cell lines and tissues were measured with western blotting and Real-Time PCR. Two hundred and twenty-one astrocytoma tissue samples were analyzed by immunochemistry to demonstrate the correlation between the NUSAP1 expression and clinicopathological characteristics. 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell matrix penetration assay, wound healing assay and anchorage-independent growth assay were used to investigate the biological effect of NUSAP1 in astrocytoma. An intracranial brain xenograft tumor model was used to confirm the oncogenic role of NUSAP1 in human astrocytoma. Luciferase reporter assay was used to investigate the effect of NUSAP1 on Hedgehog signaling pathway. RESULTS NUSAP1 was markedly overexpressed in astrocytoma cell lines and tissues compared with normal astrocytes and brain tissues. NUSAP1 was found to be overexpressed in 152 of 221 (68.78%) astrocytoma tissues, and was significantly correlated to poor survival. Further, ectopic expression or knockdown of NUSAP1 significantly promoted or inhibited, respectively, the invasive ability of astrocytoma cells. Moreover, intracranial xenografts of astrocytoma cells engineered to express NUSAP1 were highly invasive compared with the parental cells. With regard to its molecular mechanism, upregulation of NUSAP1 in astrocytoma cells promoted the nuclear translocation of GLI family zinc finger 1 (GLI1) and upregulated the downstream genes of the Hedgehog pathway. CONCLUSION These findings indicate that NUSAP1 contributes to the progression of astrocytoma by enhancing tumor cell invasiveness via activation of the Hedgehog signaling pathway, and that NUSAP1 might be a potential prognostic biomarker as well as a target in astrocytoma.
Collapse
Affiliation(s)
- Xianqiu Wu
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Benke Xu
- Department of Anatomy, Medical School of Yangtzeu University, Guangzhou, China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wentao Wang
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Dequan Zhong
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Zhan Zhao
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Longshuang He
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Yuanjun Hu
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Lili Jiang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Wei Zhang
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China.
| |
Collapse
|
75
|
Vinblastine and antihelmintic mebendazole potentiate temozolomide in resistant gliomas. Invest New Drugs 2017; 36:323-331. [DOI: 10.1007/s10637-017-0503-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022]
|
76
|
Abstract
Glioblastoma is the most frequent malignant brain tumor and is characterized by poor prognosis, increased invasiveness, and high recurrence rates. Standard treatment for glioblastoma includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. Despite treatment advances, only 15-20% of glioblastoma patients survive to 5 years, and no therapies have demonstrated a durable survival benefit in recurrent disease. In the last 10 years, significant advances in knowledge of the biology and molecular pathology of the malignancy have opened the way to new treatment options. Clinical management of patients (pseudo-progressions, side effects of therapies, best supportive care, centralization in expertise care centers) has improved. In brain tumors, such as in other solid tumors, we have entered an era of immune-oncology. Immunotherapy seems to have an acceptable safety and tolerability profile in the recurrent setting and is under investigation in clinical trials in newly diagnosed glioblastoma patients. This review focuses on novel targeted therapies recently developed for the management of newly diagnosed and recurrent glioblastomas.
Collapse
|
77
|
Li B, McCrudden CM, Yuen HF, Xi X, Lyu P, Chan KW, Zhang SD, Kwok HF. CD133 in brain tumor: the prognostic factor. Oncotarget 2017; 8:11144-11159. [PMID: 28055976 PMCID: PMC5355253 DOI: 10.18632/oncotarget.14406] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
CD133 has been shown to be an important stem cell factor that promotes glioma progression. However, the mechanism for CD133-mediated glioma progression has yet to be fully elucidated. In this study, we found that CD133 mRNA expression was a prognostic marker in three independent glioma patient cohorts, corroborating a putative role for CD133 in glioma progression. Importantly, we found that CD133 expression in glioma was highly correlated with the expression of HOX gene stem cell factors (HOXA5, HOXA7, HOXA10, HOXC4 and HOXC6). The expression of these HOX genes individually was significantly associated with survival. Interestingly, the prognostic significance of CD133 was dependent on the expression level of HOX genes, and vice versa. CD133 (p = 0.021) and HOXA7 (p = 0.001) were independent prognostic markers when the three glioma patient cohorts were combined (n = 231). Our results suggest that HOX genes may play a more important role in progression of glioma when CD133 expression is low. Furthermore, we showed that low-level expression of LIM2 in CD133-high glioma was associated with poorer survival, suggesting that LIM2 could be a therapeutic target for glioma expressing a high level of CD133. Connectivity mapping identified vinblastine and vincristine as agents that could reverse the CD133/HOX genes/LIM2-signature, and we confirmed this by in vitro analysis in glioma cell lines, demonstrating that CD133 and HOX genes were co-expressed and could be downregulated by vincristine. In conclusion, our data show that CD133 and HOX genes are important prognostic markers in glioma and shed light on possible treatment strategies for glioma expressing a high level of CD133.
Collapse
Affiliation(s)
- Bin Li
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Xinping Xi
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Peng Lyu
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Kwok Wah Chan
- Department of Pathology, University of Hong Kong, Hong Kong
| | - Shu Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, Londonderry, United Kingdom
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
78
|
Parasramka S, Talari G, Rosenfeld M, Guo J, Villano JL. Procarbazine, lomustine and vincristine for recurrent high-grade glioma. Cochrane Database Syst Rev 2017; 7:CD011773. [PMID: 28744879 PMCID: PMC6483418 DOI: 10.1002/14651858.cd011773.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recurrent high-grade glioma (HGG) carries an extremely poor prognosis. There is no current standard of care or guideline-based recommendations. Nitrosourea-based multidrug chemotherapy or PCV - procarbazine, lomustine (CCNU) and vincristine - is one of the treatment options at recurrence. There has been no meta-analysis which looks at the benefits and harms of PCV chemotherapy in adults with recurrent HGG. OBJECTIVES To assess the effectiveness and safety of procarbazine, lomustine, and vincristine (PCV) chemotherapy with other interventions in adults with recurrent high-grade glioma. To investigate whether predefined subgroups of people benefit more or less from chemotherapy. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL Issue 4, 2017), MEDLINE (1946 to 22 May 2017), and Embase (1980 to 22 May 2017). We searched trial registries including the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP; apps.who.int/trialsearch) and the National Institutes of Health (NIH; ClinicalTrials.gov). We searched the reference lists of all identified studies; the electronic table of contents of the Journal of Neuro-Oncology (1983 to 2016) and Neuro-Oncology (1999 to 2016); and conference abstracts from the Society for Neuro-Oncology (SNO) and the American Society of Clinical Oncology (ASCO 2004 to 2016). We also searched unpublished grey literature and other regional databases. There were no language restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs), quasi-randomised trials (QRCTs), or controlled clinical trials (CCTs) where PCV was used to treat adults with recurrent HGG. Comparison arm included no chemotherapy, other second line chemotherapy or best supportive care. DATA COLLECTION AND ANALYSIS Two review authors extracted the data and undertook a 'Risk of bias' assessment and critical appraisal of the studies. MAIN RESULTS We identified two RCTs meeting our inclusion criteria. The two trials tested different comparisons.One RCT included 35 participants and compared PCV with 'eight drugs in one day' multidrug chemotherapy, which is a combination of drugs with different mechanisms of action. Median survival was 6 months for the PCV group and 6.5 months for the 'eight drugs in one day' group. Adverse event outcomes were not graded or quantified. Progression-free survival (PFS) and quality of life (QoL) were not described in the methods and were not an outcome of interest. The sample size in this study was small, which lead to insufficient statistical power to detect clinical differences. According to the GRADE approach we judged the quality of evidence to be low for survival outcome and very low for chemotherapy toxicityThe second multi-institutional RCT included 447 participants and compared PCV with Temozolomide (TMZ). Participants were randomised into three arms to receive PCV, and two different regimens of TMZ in a 2:1:1 ratio at first recurrence. The trial reported a median overall survival of 6.7 months and 7.2 months for the PCV and TMZ group respectively. It reported a PFS of 3.6 months for the PCV group and 4.7 months for the TMZ group. There was no observed difference of effect on overall survival (hazard ratio (HR) 0.91, 95% CI 0.74 to 1.11; P = 0.35) or PFS (HR 0.89, 95% CI 0.73 to 1.08; P = 0.23) in participants receiving PCV or TMZ chemotherapy. The proportion of people with at least one grade 3 or 4 adverse event was not clinically important at 9.2% versus 12.2% in PCV and TMZ arms respectively. Mean QoL scores calculated at baseline, 12 weeks and 24 weeks was 51.9 versus 59.8 favouring TMZ (P = 0.04) which is statistically but not clinically significant and was less than the pre-defined 10 point change for moderate improvement. We judged the GRADE quality of evidence to be moderate for overall survival, PFS, and chemotherapy toxicity and low for QoL. AUTHORS' CONCLUSIONS Evidence is based on a single large trial analysis as the other trial was small, with inadequate power to detect survival difference. Chemotherapy-naive patients with HGG at first recurrence when treated with PCV or TMZ have similar survival and time-to-progression outcomes. Adverse events are similar and QoL scores are statistically but not clinically significant between TMZ and PCV. Further RCTs should be conducted with adequate power following CONSORT guidelines with emphasis on QoL outcomes.
Collapse
Affiliation(s)
- Saurabh Parasramka
- University of Kentucky College of MedicineDepartment of Internal Medicine800 Rose Street, CC447LexingtonKentuckyUSA40536
| | - Goutham Talari
- University of Kentucky College of MedicineDepartment of Internal Medicine800 Rose Street, CC447LexingtonKentuckyUSA40536
| | - Myrna Rosenfeld
- Hospital Clinic /IDIBAPSDepartment of NeurologyVillarroel, 170BarcelonaCatalunyaSpain08036
| | - Jing Guo
- Kentucky ClinicCenter for Health Services Research740 South LimestoneLexingtonUSA40536‐0284
| | - John L Villano
- University of Kentucky College of MedicineDepartment of Internal Medicine800 Rose Street, CC447LexingtonKentuckyUSA40536
| | | |
Collapse
|
79
|
Bianco J, Bastiancich C, Jankovski A, des Rieux A, Préat V, Danhier F. On glioblastoma and the search for a cure: where do we stand? Cell Mol Life Sci 2017; 74:2451-2466. [PMID: 28210785 PMCID: PMC11107640 DOI: 10.1007/s00018-017-2483-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 01/25/2023]
Abstract
Although brain tumours have been documented and recorded since the nineteenth century, 2016 marked 90 years since Percival Bailey and Harvey Cushing coined the term "glioblastoma multiforme". Since that time, although extensive developments in diagnosis and treatment have been made, relatively little improvement on prognosis has been achieved. The resilience of GBM thus makes treating this tumour one of the biggest challenges currently faced by neuro-oncology. Aggressive and robust development, coupled with difficulties of complete resection, drug delivery and therapeutic resistance to treatment are some of the main issues that this nemesis presents today. Current treatments are far from satisfactory with poor prognosis, and focus on palliative management rather than curative intervention. However, therapeutic research leading to developments in novel treatment stratagems show promise in combating this disease. Here we present a review on GBM, looking at the history and advances which have shaped neurosurgery over the last century that cumulate to the present day management of GBM, while also exploring future perspectives in treatment options that could lead to new treatments on the road to a cure.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium.
| | - Chiara Bastiancich
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
| | - Aleksander Jankovski
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
- Department of Neurosurgery, CHU UCL Namur, Avenue G. Thérasse 1, 5530, Yvoir, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium.
| | - Fabienne Danhier
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
| |
Collapse
|
80
|
Anjum K, Shagufta BI, Abbas SQ, Patel S, Khan I, Shah SAA, Akhter N, Hassan SSU. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed Pharmacother 2017; 92:681-689. [PMID: 28582760 DOI: 10.1016/j.biopha.2017.05.125] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of heterogeneous brain cancer. It affects an enormous number of patients every year and the survival is approximately 8 to 15 months. GBM has driven by complex signaling pathways and considered as a most challenging to treat. Standard treatment of GBM includes surgery, radiation therapy, chemotherapy and also the combined treatment. This review article described inter and intra- tumor heterogeneity of GMB. In addition, recent chemotherapeutic agents, with their mechanism of action have been defined. FDA-approved drugs also been focused over here and most importantly highlighting some natural and synthetic and novel anti- glioma agents, that are the main focus of researchers nowadays.
Collapse
Affiliation(s)
- Komal Anjum
- Ocean College, Zhejiang University, Hangzhou, 310058, China
| | - Bibi Ibtesam Shagufta
- Department of Zoology, Kohat University of Science and Technology (KUST), K.P.K 26000, Pakistan
| | - Syed Qamar Abbas
- Faculty of Pharmacy, Gomal University D.I.Khan, K.P.K 29050, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego-92182, USA
| | - Ishrat Khan
- Ocean College, Zhejiang University, Hangzhou, 310058, China
| | | | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou, 310058, China
| | - Syed Shams Ul Hassan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
81
|
Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Le Rhun E, Balana C, Chinot O, Bendszus M, Reijneveld JC, Dhermain F, French P, Marosi C, Watts C, Oberg I, Pilkington G, Baumert BG, Taphoorn MJB, Hegi M, Westphal M, Reifenberger G, Soffietti R, Wick W. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 2017; 18:e315-e329. [PMID: 28483413 DOI: 10.1016/s1470-2045(17)30194-8] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/29/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
The European Association for Neuro-Oncology guideline provides recommendations for the clinical care of adult patients with astrocytic and oligodendroglial gliomas, including glioblastomas. The guideline is based on the 2016 WHO classification of tumours of the central nervous system and on scientific developments since the 2014 guideline. The recommendations focus on pathological and radiological diagnostics, and the main treatment modalities of surgery, radiotherapy, and pharmacotherapy. In this guideline we have also integrated the results from contemporary clinical trials that have changed clinical practice. The guideline aims to provide guidance for diagnostic and management decisions, while limiting unnecessary treatments and costs. The recommendations are a resource for professionals involved in the management of patients with glioma, for patients and caregivers, and for health-care providers in Europe. The implementation of this guideline requires multidisciplinary structures of care, and defined processes of diagnosis and treatment.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, Brain Tumour Centre, University Hospital and University of Zurich, Zurich, Switzerland.
| | | | - Jörg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roger Stupp
- Department of Oncology, Brain Tumour Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Cohen-Jonathan-Moyal
- Département de Radiotherapie, Institut Claudius Regaud, L'Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Roger Henriksson
- Regional Cancer Centre Stockholm-Gotland and Department of Radiation Sciences and Oncology, Umeå University Hospital, Umeå, Sweden
| | - Emilie Le Rhun
- Neuro-Oncology, Department of Neurosurgery, University Hospital, Lille, France
| | - Carmen Balana
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Olivier Chinot
- Department of Neuro-Oncology, Aix-Marseille Université, Assistance Publique-Hopitaux de Marseille, Centre Hospitalo-Universitaire Timone, Marseilles, France
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jaap C Reijneveld
- Department of Neurology and Brain Tumour Centre Amsterdam, Vrije Universiteit Medical Centre, Amsterdam, Netherlands
| | - Frederick Dhermain
- Department of Radiotherapy, Gustave Roussy University Hospital, Villejuif, France
| | - Pim French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Christine Marosi
- Department of Medicine, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Colin Watts
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Ingela Oberg
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospitals Foundation Trust, Cambridge, UK
| | | | - Brigitta G Baumert
- Department of Radiation Oncology, MediClin Robert Janker Clinic and Clinical Cooperation Unit Neurooncology, University of Bonn Medical Centre, Bonn, Germany
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Centre and Medical Centre Haaglanden, The Hague, Netherlands
| | - Monika Hegi
- Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg, Hamburg, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf and German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany
| | | | - Wolfgang Wick
- Neurology Clinic and National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
82
|
Central nervous system gliomas. Crit Rev Oncol Hematol 2017; 113:213-234. [DOI: 10.1016/j.critrevonc.2017.03.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022] Open
|
83
|
Patterns of care and outcomes of multi-agent versus single-agent chemotherapy as part of multimodal management of low grade glioma. J Neurooncol 2017; 133:369-375. [DOI: 10.1007/s11060-017-2443-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/14/2017] [Indexed: 11/25/2022]
|
84
|
Feng E, Sui C, Wang T, Sun G. Temozolomide with or without Radiotherapy in Patients with Newly Diagnosed Glioblastoma Multiforme: A Meta-Analysis. Eur Neurol 2017; 77:201-210. [PMID: 28192785 DOI: 10.1159/000455842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIM The current meta-analysis evaluated the survival outcomes of newly diagnosed glioblastoma patients treated with radiotherapy (RT) alone and with RT + temozolomide (TMZ). METHODS Relevant studies were identified by an extensive literature search in Medline, Current Contents and Cochrane databases by 2 independent reviewers using the terms "glioblastoma multiforme/glioblastoma, TMZ, radiation therapy/RT and survival." RESULTS Results revealed a median survival of 13.41-19 months in the combined treatment group, as opposed to 7.7-17.1 months in the RT-alone group. Progression-free survival (PFS) was also significantly different between the 2 groups (RT + TMZ, 6.3-13 months; RT-alone, 5-7.6 months). While there was no significant difference in the 6-month survival and 6-month PFS rates between the RT + TMZ and RT groups (pooled OR 0.690; p = 0.057 and OR 0.429, p = 0.052, respectively), the 1-year survival and 1-year PFS rates showed significant difference (OR 0.469; p = 0.030 and OR 0.245, p < 0.001, respectively). CONCLUSIONS Concomitant RT + TMZ is more effective and improves the overall survival and PFS in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
85
|
Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. J Neurooncol 2017; 132:181-188. [PMID: 28116649 DOI: 10.1007/s11060-016-2357-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor, depleting circulating levels of these growth factors. The Adult Brain Tumor Consortium conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed HGG with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4 mg/kg every 2 weeks. Dose limiting toxicities at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients) (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4 mg/kg every 2 weeks.
Collapse
|
86
|
Patil VM, Tonse R, Kothari R, Chandrasekaran A, Pande N, Epari S, Gupta T, Jalali R. Rechallenge temozolomide in glioma: A case series from India. Indian J Cancer 2017; 54:368-371. [DOI: 10.4103/ijc.ijc_173_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
87
|
Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 2016; 243:29-42. [DOI: 10.1016/j.jconrel.2016.09.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
|
88
|
|
89
|
Abstract
PURPOSE OF REVIEW Genetic, epigenetic, and expression analyses have refined the traditional, histopathology-based classification of diffusely infiltrating gliomas. This review summarizes these trends and implications for elderly patients. RECENT FINDINGS The vast majority of diffusely infiltrating gliomas in elderly patients share an unfavorable molecular phenotype, that is, telomerase reverse transcriptase promoter mutation in the absence of isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion. Histopathologically, these are mostly astrocytic tumors and treatment is guided by the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter. 1p/19q codeletion indicates oligodendroglial histology and benefit from the addition of procarbazine, chlorethyl-cyclohexyl-nitroso-urea/lomustine, and vincristine polychemotherapy to radiotherapy. These tumors are almost exclusively associated with IDH mutations, but their molecular profile is rare in elderly patients. Two large phase III trials, RTOG 0825 and AVAglio, failed to demonstrate an overall survival benefit from antiangiogenic therapy with bevacizumab added to combined chemoradiotherapy (TMZ) in patients with newly diagnosed glioblastoma, but a trend toward improved survival with increasing age can be noted. Ongoing clinical trials in elderly patients with diffusely infiltrating glioma will clarify the role of combined chemoradiotherapy, and of bevacizumab or other antiangiogenic agents as an adjunct to radiotherapy. SUMMARY The choice of first-line therapy in elderly patients with diffusely infiltrating glioma is between postoperative hypofractionated radiotherapy and chemotherapy, guided by MGMT methylation in most patients.
Collapse
|
90
|
Abstract
Nitrosoureas represent one of the most active classes of agents in the treatment of high-grade gliomas and glioblastoma. In clinical practice, the most commonly used compounds are lomustine (either alone or in combination with procarbazine and vincristine), carmustine, and fotemustine. Given their toxicity profile and subsequent to the introduction of temozolomide in clinical practice, most of these agents were moved to the recurrent setting. This review focuses on the role of the nitrosoureas currently used in clinical practice for the treatment of malignant gliomas.
Collapse
|
91
|
Yagiz K, Huang TT, Lopez Espinoza F, Mendoza D, Ibañez CE, Gruber HE, Jolly DJ, Robbins JM. Toca 511 plus 5-fluorocytosine in combination with lomustine shows chemotoxic and immunotherapeutic activity with no additive toxicity in rodent glioblastoma models. Neuro Oncol 2016; 18:1390-401. [PMID: 27166379 DOI: 10.1093/neuonc/now089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/31/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Toca 511, a gamma retroviral replicating vector encoding cytosine deaminase, used in combination with 5-fluorocytosine (5-FC) kills tumor by local production of 5-fluorouracil (5-FU), inducing local and systemic immunotherapeutic response resulting in long-term survival after cessation of 5-FC. Toca 511 and Toca FC (oral extended-release 5-FC) are under investigation in patients with recurrent high-grade glioma. Lomustine is a treatment option for patients with high-grade glioma. METHODS We investigated the effects of lomustine combined with Toca 511 + 5-FC in syngeneic orthotopic glioma models. Safety and survival were evaluated in immune-competent rat F98 and mouse Tu-2449 models comparing Toca 511 + 5-FC to lomustine + 5-FC or the combination of Toca 511 + 5-FC + lomustine. After intracranial implantation of tumor, Toca 511 was delivered transcranially followed by cycles of intraperitoneal 5-FC with or without lomustine at the first or fourth cycle. RESULTS Coadministration of 5-FC with lomustine was well tolerated. In F98, combination Toca 511 + 5-FC and lomustine increased median survival, but "cures" were not achieved. In Tu-2449, combination Toca 511 + 5-FC and lomustine increased median survival and resulted in high numbers of cure. Rejection of tumor rechallenge occurred after treatment with Toca 511 + 5-FC or combined with lomustine, but not with lomustine + 5-FC. Mixed lymphocyte-tumor cell reactions using splenocytes from cured animals showed robust killing of target cells in an effector:target ratio-dependent manner with Toca 511 + 5-FC and Toca 511 + 5-FC + lomustine day 10. CONCLUSION The combination of Toca 511 + 5-FC and lomustine shows promising efficacy with no additive toxicity in murine glioma models. Immunotherapeutic responses resulting in long-term survival were preserved despite lomustine-related myelosuppression.
Collapse
Affiliation(s)
- Kader Yagiz
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Tiffany T Huang
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Fernando Lopez Espinoza
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Daniel Mendoza
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Carlos E Ibañez
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Harry E Gruber
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Douglas J Jolly
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| | - Joan M Robbins
- Tocagen Inc., San Diego, California (K.Y., T.T.H., F.L.E., D.M., C.E.I., H.E.G., D.J.J., J.M.R.)
| |
Collapse
|
92
|
YANG JINGHUI, YANG QIWEI, YU JING, LI XIMENG, YU SHAN, ZHANG XUEWEN. SPOCK1 promotes the proliferation, migration and invasion of glioma cells through PI3K/AKT and Wnt/β-catenin signaling pathways. Oncol Rep 2016; 35:3566-76. [DOI: 10.3892/or.2016.4757] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022] Open
|
93
|
Zadeh G, Khan OH, Vogelbaum M, Schiff D. Much debated controversies of diffuse low-grade gliomas. Neuro Oncol 2016; 17:323-6. [PMID: 26114668 PMCID: PMC4483107 DOI: 10.1093/neuonc/nou368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gelareh Zadeh
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z., O.H.K.); Division of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.V.); Division of Neuro-Oncology, University of Virginia Medical Center, Charlottesville, Virginia (D.S.)
| | - Osaama H Khan
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z., O.H.K.); Division of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.V.); Division of Neuro-Oncology, University of Virginia Medical Center, Charlottesville, Virginia (D.S.)
| | - Michael Vogelbaum
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z., O.H.K.); Division of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.V.); Division of Neuro-Oncology, University of Virginia Medical Center, Charlottesville, Virginia (D.S.)
| | - David Schiff
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z., O.H.K.); Division of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.V.); Division of Neuro-Oncology, University of Virginia Medical Center, Charlottesville, Virginia (D.S.)
| |
Collapse
|
94
|
Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, Jiang C, Kang C, Li X, Chen L, Qiu X, Wang W, Li W, Yao Y, Li S, Li S, Wu A, Sai K, Bai H, Li G, Chen B, Yao K, Wei X, Liu X, Zhang Z, Dai Y, Lv S, Wang L, Lin Z, Dong J, Xu G, Ma X, Cai J, Zhang W, Wang H, Chen L, Zhang C, Yang P, Yan W, Liu Z, Hu H, Chen J, Liu Y, Yang Y, Wang Z, Wang Z, Wang Y, You G, Han L, Bao Z, Liu Y, Wang Y, Fan X, Liu S, Liu X, Wang Y, Wang Q. CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 2016; 375:263-273. [PMID: 26966000 DOI: 10.1016/j.canlet.2016.01.024] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 02/05/2023]
Abstract
The Chinese Glioma Cooperative Group (CGCG) Guideline Panel for adult diffuse gliomas provided recommendations for diagnostic and therapeutic procedures. The Panel covered all fields of expertise in neuro-oncology, i.e. neurosurgeons, neurologists, neuropathologists, neuroradiologists, radiation and medical oncologists and clinical trial experts. The task made clearer and more transparent choices about outcomes considered most relevant through searching the references considered most relevant and evaluating their value. The scientific evidence of papers collected from the literature was evaluated and graded based on the Oxford Centre for Evidence-based Medicine Levels of Evidence and recommendations were given accordingly. The recommendations will provide a framework and assurance for the strategy of diagnostic and therapeutic measures to reduce complications from unnecessary treatment and cost. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China.
Collapse
Affiliation(s)
- Tao Jiang
- Beijing Neurosurgical Institute, Beijing 100050, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing 100069, China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xuejun Yang
- Department of Neurosurgery, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chunsheng Kang
- Department of Neurosurgery, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weimin Wang
- Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, China
| | - Wenbin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaowu Li
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Shouwei Li
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Anhua Wu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ke Sai
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Hongmin Bai
- Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, China
| | - Guilin Li
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Baoshi Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Kun Yao
- Department of Pathology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xinting Wei
- Department of Neurosurgery, The 1st Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xianzhi Liu
- Department of Neurosurgery, The 1st Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiwen Zhang
- Department of Neurosurgery, The First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Yiwu Dai
- Department of Neurosurgery, Beijing Military Region General Hospital, Beijing 100700, China
| | - Shengqing Lv
- Department of Neurosurgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Zhixiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Dong
- Department of Neurosurgery, Medical College of Soochow University, Suzhou 215123, China
| | - Guozheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Guangzhou, Wuhan 430070, China
| | - Xiaodong Ma
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | - Pei Yang
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huimin Hu
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Jing Chen
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Yuqing Liu
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yongzhi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Lei Han
- Department of Neurosurgery, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xing Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Shuai Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qixue Wang
- Department of Neurosurgery, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | |
Collapse
|
95
|
Therapeutic options in recurrent glioblastoma--An update. Crit Rev Oncol Hematol 2016; 99:389-408. [PMID: 26830009 DOI: 10.1016/j.critrevonc.2016.01.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Standards of care are not yet defined in recurrent glioblastoma. METHODS We reviewed the literature on clinical trials for recurrent glioblastoma available in PubMed and American Society of Clinical Oncology (ASCO) abstracts until June 2015. RESULTS Evidence is limited due to the paucity of randomized controlled studies. Second surgery or re-irradiation are options for selected patients. Alkylating chemotherapy such as nitrosoureas or temozolomide and the vascular endothelial growth factor (VEGF) antibody, bevacizumab, exhibit comparable single agent activity. Phase III data exploring the benefit of combining bevacizumab and lomustine are emerging. Novel approaches in the fields of targeted therapy, immunotherapy, and tumor metabolism are coming forward. Several biomarkers are being explored, but, except for O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation, none has assumed a role in clinical practice. CONCLUSION Proper patient selection, development of predictive biomarkers and randomized controlled studies are required to develop evidence-based concepts for recurrent glioblastoma.
Collapse
|
96
|
Field K, Rosenthal M, Khasraw M, Sawkins K, Nowak A. Evolving management of low grade glioma: No consensus amongst treating clinicians. J Clin Neurosci 2016; 23:81-87. [PMID: 26601811 DOI: 10.1016/j.jocn.2015.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/02/2015] [Indexed: 02/08/2023]
|
97
|
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy.
Collapse
|
98
|
Van Den Bent MJ, Bromberg JEC, Buckner J. Low-grade and anaplastic oligodendroglioma. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:361-80. [PMID: 26948366 DOI: 10.1016/b978-0-12-802997-8.00022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anaplastic oligodendrogliomas have long attracted interest because of their sensitivity to chemotherapy, in particular in the subset of 1p/19q co-deleted tumors. Recent molecular studies have shown that all 1p/19q co-deleted tumors have IDH mutations and most of them also have TERT mutations. Because of the presence of similar typical genetic alterations in astrocytoma and glioblastoma, the current trend is to diagnose these tumors on the basis of their molecular profile. Further long-term follow-up analysis of both EORTC and RTOG randomized studies on (neo)adjuvant procarbazine, lomustine, vincristine (PCV) chemotherapy have shown that adjuvant chemotherapy indeed improves outcome, and this is now standard of care. It is also equally clear that benefit to PCV chemotherapy is not limited to the 1p/19q co-deleted cases; potential other predictive factors are IDH mutations and MGMT promoter methylation. Moreover, a recent RTOG study on low-grade glioma also noted an improved outcome after adjuvant PCV chemotherapy, thus making (PCV) chemotherapy now standard of care for all 1p/19q co-deleted tumors regardless of grade. It remains unclear whether temozolomide provides the same survival benefit, as no data from well-designed clinical trials on adjuvant temozolomide in this tumor type are available. Another question that remains is whether one can safely leave out radiotherapy as part of initial treatment to avoid cognitive side-effects of radiotherapy. The current data suggest that delaying radiotherapy and treatment with chemotherapy only may be detrimental for overall survival.
Collapse
Affiliation(s)
- Martin J Van Den Bent
- Neuro-Oncology Unit, The Brain Tumor Center at Erasmus MC Cancer Center, Rotterdam, The Netherlands.
| | - Jacolien E C Bromberg
- Neuro-Oncology Unit, The Brain Tumor Center at Erasmus MC Cancer Center, Rotterdam, The Netherlands
| | - Jan Buckner
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
99
|
Abstract
Glioblastoma, the most aggressive of the gliomas, has a high recurrence and mortality rate. The nature of this poor prognosis resides in the molecular heterogeneity and phenotypic features of this tumor. Despite research advances in understanding the molecular biology, it has been difficult to translate this knowledge into effective treatment. Nearly all will have tumor recurrence, yet to date very few therapies have established efficacy as salvage regimens. This challenge is further complicated by imaging confounders and to an even greater degree by the ever increasing molecular heterogeneity that is thought to be both sporadic and treatment-induced. The development of novel clinical trial designs to support the development and testing of novel treatment regimens and drug delivery strategies underscore the need for more precise techniques in imaging and better surrogate markers to help determine treatment response. This review summarizes recent approaches to treat patients with recurrent glioblastoma and considers future perspectives.
Collapse
Affiliation(s)
- Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
100
|
Abstract
Radiotherapy has been a longstanding treatment option for low-grade glioma. Improvements in tumor control and radiation-related toxicity may be attributed to advances in neuroimaging as well as radiotherapy planning and delivery. The discovery of various molecular prognostic factors have aided in patient selection for radiotherapy. These prognostic and predictive factors may also play a key role in determining which patients are likely to benefit most from combined systemic therapy and radiation.
Collapse
Affiliation(s)
- Caroline Chung
- Department of Radiation Oncology, Princess Margaret Cancer Centre - University Health Network, 610 University Ave, Toronto, ON M5G 2M9, Canada.,Department of Radiation Oncology, University of Toronto, 27 King's College Cir, Toronto, ON M5S, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, Princess Margaret Cancer Centre - University Health Network, 610 University Ave, Toronto, ON M5G 2M9, Canada.,Department of Radiation Oncology, University of Toronto, 27 King's College Cir, Toronto, ON M5S, Canada
| |
Collapse
|