51
|
El-Ansary AK, Bacha AB, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 2012; 9:74. [PMID: 22531301 PMCID: PMC3425128 DOI: 10.1186/1742-2094-9-74] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism. Propionic acid (PA) is a short chain fatty acid and an important intermediate of cellular metabolism. Although PA has several beneficial biological effects, its accumulation is neurotoxic. METHODS Two groups of young Western albino male rats weighing about 45 to 60 grams (approximately 21 days old) were used in the present study. The first group consisted of oral buffered PA-treated rats that were given a neurotoxic dose of 250 mg/kg body weight/day for three days, n = eight; the second group of rats were given only phosphate buffered saline and used as a control. Biochemical parameters representing oxidative stress, energy metabolism, neuroinflammation, neurotransmission, and apoptosis were investigated in brain homogenates of both groups. RESULTS Biochemical analyses of brain homogenates from PA-treated rats showed an increase in oxidative stress markers (for example, lipid peroxidation), coupled with a decrease in glutathione (GSH) and glutathione peroxidase (GPX) and catalase activities. Impaired energy metabolism was ascertained through the decrease of lactate dehydrogenase and activation of creatine kinase (CK). Elevated IL-6, TNFα, IFNγ and heat shock protein 70 (HSP70) confirmed the neuroinflammatory effect of PA. Moreover, elevation of caspase3 and DNA fragmentation proved the pro-apoptotic and neurotoxic effect of PA to rat pups CONCLUSION By comparing the results obtained with those from animal models of autism or with clinical data on the biochemical profile of autistic patients, this study showed that the neurotoxicity of PA as an environmental factor could play a central role in the etiology of autistic biochemical features.
Collapse
Affiliation(s)
- Afaf K El-Ansary
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Malak Kotb
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
52
|
Matsuzaki H, Iwata K, Manabe T, Mori N. Triggers for autism: genetic and environmental factors. J Cent Nerv Syst Dis 2012; 4:27-36. [PMID: 23650465 PMCID: PMC3619552 DOI: 10.4137/jcnsd.s9058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This report reviews the research on the factors that cause autism. In several studies, these factors have been verified by reproducing them in autistic animal models. Clinical research has demonstrated that genetic and environmental factors play a major role in the development of autism. However, most cases are idiopathic, and no single factor can explain the trends in the pathology and prevalence of autism. At the time of this writing, autism is viewed more as a multi-factorial disorder. However, the existence of an unknown factor that may be common in all autistic cases cannot be ruled out. It is hoped that future biological studies of autism will help construct a new theory that can interpret the pathology of autism in a coherent manner. To achieve this, large-scale epidemiological research is essential.
Collapse
Affiliation(s)
- Hideo Matsuzaki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | |
Collapse
|
53
|
Sandhya T, Sowjanya J, Veeresh B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem Res 2012; 37:1121-31. [PMID: 22322665 DOI: 10.1007/s11064-012-0717-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/19/2012] [Accepted: 01/28/2012] [Indexed: 10/14/2022]
Abstract
Early prenatal or post natal exposure to environmental insults such as valproic acid (VPA), thalidomide and ethanol could induce behavioral alterations similar to autistic symptoms. Bacopa monniera, a renowned plant in ayurvedic medicine is useful in several neurological disorders. The purpose of the present study was to evaluate the effect of B. monniera on VPA induced autism. On 12.5 day of gestation the female pregnant rats were divided into control and VPA treated groups. They were administered saline/VPA (600 mg/kg, i.p.) respectively and allowed to raise their own litters. Group I-male pups of saline treated mothers. On postnatal day (PND) 21 VPA induced autistic male pups were divided into two groups (n = 6); Group II-received saline and Group III-received B. monniera (300 mg/kg/p.o.) from PND 21-35. Behavioral tests (nociception, locomotor activity, exploratory activity, anxiety and social behavior) were performed in both adolescence (PND 30-40) and adulthood (PND 90-110) period. At the end of behavioral testing animals were sacrificed, brain was isolated for biochemical estimations (serotonin, glutathione, catalase and nitric oxide) and histopathological examination. Induction of autism significantly affected normal behavior, increased oxidative stress and serotonin level, altered histoarchitecture of cerebellum (decreased number of purkinje cells, neuronal degeneration and chromatolysis) when compared with normal control group. Treatment with B. monniera significantly (p < 0.05) improved behavioral alterations, decreased oxidative stress markers and restored histoarchitecture of cerebellum. In conclusion, the present study suggests that B. monniera ameliorates the autistic symptoms possibly due to its anti-anxiety, antioxidant and neuro-protective activity.
Collapse
Affiliation(s)
- T Sandhya
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad, 500027 Andhra Pradesh, India
| | | | | |
Collapse
|
54
|
Flores-Cruz GM, Escobar A. Reduction of serotonergic neurons in the dorsal raphe due to chronic prenatal administration of a tryptophan-free diet. Int J Dev Neurosci 2012; 30:63-7. [PMID: 22244887 DOI: 10.1016/j.ijdevneu.2012.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/01/2012] [Indexed: 01/24/2023] Open
Abstract
Serotonin (5-HT) is a widely studied neurotransmitter which plays an important role in the development and proper functioning of the organism throughout life. The appearance of 5-HT system early in ontogeny suggests the hypothesis that 5-HT plays a regulatory role in neurodevelopment. This study investigated the effect of administration of a tryptophan deficient diet during prenatal development on the morphology and cell population of the dorsal raphe. The experimental diet, containing balanced amounts of carbohydrates, lipids and proteins, was provided to a time-mated group of rats from gestational day 5 until delivery. Control groups were fed with (i) the experimental diet formulation with 0.2% tryptophan added to the mixture, or (ii) a regular chow diet. At delivery, five pups per dam were euthanized. Body and brain weight was measured and brain sections were processed for immunohistochemistry for tryptophan hydroxylase (TrpH) and whole brain 5-HT analysis. Sections containing dorsal raphe were photographed with a light microscope and TrpH positive neurons quantified. Brain weights in the tryptophan deprived group showed no difference as compared with controls while body weights were reduced by 25%. Total numbers of serotonergic neurons at the dorsal raphe in the prenatal tryptophan deficient pups were reduced by 35%. A regional analysis of the dorsal raphe indicated a marked cellular reduction in the medial and caudal sections of the nucleus, which contains the majority of serotonergic neurons, in the tryptophan deprived condition. Quantitative 5-HT analysis showed that the brain concentration was similar among conditions. In conclusion, gestational tryptophan deprivation exerts adverse effects on the development of the 5-HT system, particularly in the dorsal raphe, manifested by decreased numbers of serotonergic neurons as well as altered topography in this important nucleus.
Collapse
Affiliation(s)
- Guadalupe M Flores-Cruz
- Cellular Biology & Physiology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| | | |
Collapse
|
55
|
A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 2011; 8:71. [PMID: 21696608 PMCID: PMC3142225 DOI: 10.1186/1742-2094-8-71] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most consistent biological findings in autism is the elevated blood serotonin levels. Immune abnormalities, including autoimmunity with production of brain specific auto-antibodies, are also commonly observed in this disorder. Hyperserotonemia may be one of the contributing factors to autoimmunity in some patients with autism through the reduction of T-helper (Th) 1-type cytokines. We are the first to investigate the possible role of hyperserotonemia in the induction of autoimmunity, as indicated by serum anti-myelin-basic protein (anti-MBP) auto-antibodies, in autism. METHODS Serum levels of serotonin and anti-MBP auto-antibodies were measured, by ELISA, in 50 autistic patients, aged between 5 and 12 years, and 30 healthy-matched children. RESULTS Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies than healthy children (P < 0.001 and P < 0.001, respectively). Increased serum levels of serotonin and anti-MBP auto-antibodies were found in 92% and 80%, respectively of autistic patients. Patients with severe autism had significantly higher serum serotonin levels than children with mild to moderate autism (P < 0.001). Serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients (P = 0.39). CONCLUSIONS Hyperserotonemia may not be one of the contributing factors to the increased frequency of serum anti-MBP auto-antibodies in some autistic children. These data should be treated with caution until further investigations are performed. However, inclusion of serum serotonin levels as a correlate may be useful in other future immune studies in autism to help unravel the long-standing mystery of hyperserotonemia and its possible role in the pathophysiology of this disorder.
Collapse
|
56
|
Tashiro Y, Oyabu A, Imura Y, Uchida A, Narita N, Narita M. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies. Int J Dev Neurosci 2011; 29:359-64. [DOI: 10.1016/j.ijdevneu.2011.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yasura Tashiro
- Department of Anatomy IIGraduate School of MedicineMie University2‐174 EdobashiTsu‐cityMieJapan
| | - Akiko Oyabu
- Department of Anatomy IIGraduate School of MedicineMie University2‐174 EdobashiTsu‐cityMieJapan
| | - Yoshio Imura
- Department of Anatomy IIGraduate School of MedicineMie University2‐174 EdobashiTsu‐cityMieJapan
| | - Atsuko Uchida
- Department of Anatomy IIGraduate School of MedicineMie University2‐174 EdobashiTsu‐cityMieJapan
| | - Naoko Narita
- Department of EducationBunkyo UniversityMieJapan
| | - Masaaki Narita
- Department of Anatomy IIGraduate School of MedicineMie University2‐174 EdobashiTsu‐cityMieJapan
| |
Collapse
|
57
|
Roullet FI, Crawley JN. Mouse models of autism: testing hypotheses about molecular mechanisms. Curr Top Behav Neurosci 2011; 7:187-212. [PMID: 21225409 PMCID: PMC3396120 DOI: 10.1007/7854_2010_113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autism is a neurodevelopmental disorder that is currently diagnosed by the presence of three behavioral criteria (1) qualitative impairments in reciprocal social interactions, (2) deficits in communication, including delayed language and noninteractive conversation, and (3) motor stereotypies, repetitive behaviors, insistence on sameness, and restricted interests. This chapter describes analogous behavioral assays that have been developed for mice, including tests for social approach, reciprocal social interactions, olfactory communication, ultrasonic vocalizations, repetitive and perseverative behaviors, and motor stereotypies. Examples of assay applications to genetic mouse models of autism are provided. Robust endophenotypes that are highly relevant to the core symptoms of autism are enabling the search for the genetic and environmental causes of autism, and the discovery of effective treatments.
Collapse
Affiliation(s)
- Florence I. Roullet
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Building 35 Room 1C-903/909, Mail Code 3730, Bethesda, MD 20892-3730, USA
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Building 35 Room 1C-903/909, Mail Code 3730, Bethesda, MD 20892-3730, USA
| |
Collapse
|
58
|
Markram K, Markram H. The intense world theory - a unifying theory of the neurobiology of autism. Front Hum Neurosci 2010; 4:224. [PMID: 21191475 PMCID: PMC3010743 DOI: 10.3389/fnhum.2010.00224] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022] Open
Abstract
Autism covers a wide spectrum of disorders for which there are many views, hypotheses and theories. Here we propose a unifying theory of autism, the Intense World Theory. The proposed neuropathology is hyper-functioning of local neural microcircuits, best characterized by hyper-reactivity and hyper-plasticity. Such hyper-functional microcircuits are speculated to become autonomous and memory trapped leading to the core cognitive consequences of hyper-perception, hyper-attention, hyper-memory and hyper-emotionality. The theory is centered on the neocortex and the amygdala, but could potentially be applied to all brain regions. The severity on each axis depends on the severity of the molecular syndrome expressed in different brain regions, which could uniquely shape the repertoire of symptoms of an autistic child. The progression of the disorder is proposed to be driven by overly strong reactions to experiences that drive the brain to a hyper-preference and overly selective state, which becomes more extreme with each new experience and may be particularly accelerated by emotionally charged experiences and trauma. This may lead to obsessively detailed information processing of fragments of the world and an involuntarily and systematic decoupling of the autist from what becomes a painfully intense world. The autistic is proposed to become trapped in a limited, but highly secure internal world with minimal extremes and surprises. We present the key studies that support this theory of autism, show how this theory can better explain past findings, and how it could resolve apparently conflicting data and interpretations. The theory also makes further predictions from the molecular to the behavioral levels, provides a treatment strategy and presents its own falsifying hypothesis.
Collapse
Affiliation(s)
- Kamila Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
59
|
Bhanja S, Mohanakumar KP. Early‐life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. Int J Dev Neurosci 2010; 28:317-24. [DOI: 10.1016/j.ijdevneu.2010.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 11/10/2009] [Accepted: 02/18/2010] [Indexed: 11/25/2022] Open
Affiliation(s)
- Shravani Bhanja
- Division of Cell Biology & PhysiologyIndian Institute of Chemical Biology (CSIR)4, Raja S.C. Mullick RoadKolkata700 032West BengalIndia
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology & PhysiologyIndian Institute of Chemical Biology (CSIR)4, Raja S.C. Mullick RoadKolkata700 032West BengalIndia
| |
Collapse
|
60
|
Increased IgG4 levels in children with autism disorder. Brain Behav Immun 2009; 23:389-95. [PMID: 19136055 PMCID: PMC2696343 DOI: 10.1016/j.bbi.2008.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/03/2008] [Accepted: 12/13/2008] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that immune dysfunction is associated with autism disorders in a significant subset of children. Previous reports have shown abnormal immunoglobulin (Ig) levels, including an increased presence of autoreactive antibodies in the circulation of individuals with autism. As IgG is the predominant antibody isotype in circulation, we expected that an altered immune response could result in an abnormal IgG subclass profile in children with autism. We examined circulating plasma levels of IgG1, IgG2, IgG3, and IgG4 in 241 children from the CHARGE (Childhood Autism Risks from Genetics and the Environment) study, a large epidemiologic case-control investigation, including 114 children who meet full criteria for autism disorder (AU), 96 typically developing control children (TD) from a randomly selected sample of the general population, and 31 children with developmental delays (DD). We report significantly increased levels of the IgG4 subclass in children with AU compared with TD control children (p=0.016) and compared with DD controls (p=0.041). These results may suggest an underlying immunological abnormality in AU subjects resulting in elevated IgG4 production. Further investigation is necessary to elucidate the relationship between immunological findings and behavioral impairments in autism.
Collapse
|
61
|
Markram H, Rinaldi T, Markram K. The intense world syndrome--an alternative hypothesis for autism. Front Neurosci 2007; 1:77-96. [PMID: 18982120 PMCID: PMC2518049 DOI: 10.3389/neuro.01.1.1.006.2007] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 12/19/2022] Open
Abstract
Autism is a devastating neurodevelopmental disorder with a polygenetic predisposition that seems to be triggered by multiple environmental factors during embryonic and/or early postnatal life. While significant advances have been made in identifying the neuronal structures and cells affected, a unifying theory that could explain the manifold autistic symptoms has still not emerged. Based on recent synaptic, cellular, molecular, microcircuit, and behavioral results obtained with the valproic acid (VPA) rat model of autism, we propose here a unifying hypothesis where the core pathology of the autistic brain is hyper-reactivity and hyper-plasticity of local neuronal circuits. Such excessive neuronal processing in circumscribed circuits is suggested to lead to hyper-perception, hyper-attention, and hyper-memory, which may lie at the heart of most autistic symptoms. In this view, the autistic spectrum are disorders of hyper-functionality, which turns debilitating, as opposed to disorders of hypo-functionality, as is often assumed. We discuss how excessive neuronal processing may render the world painfully intense when the neocortex is affected and even aversive when the amygdala is affected, leading to social and environmental withdrawal. Excessive neuronal learning is also hypothesized to rapidly lock down the individual into a small repertoire of secure behavioral routines that are obsessively repeated. We further discuss the key autistic neuropathologies and several of the main theories of autism and re-interpret them in the light of the hypothesized Intense World Syndrome.
Collapse
Affiliation(s)
- Henry Markram
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Switzerland
| | | | | |
Collapse
|
62
|
Bassanini S, Hallene K, Battaglia G, Finardi A, Santaguida S, Cipolla M, Janigro D. Early cerebrovascular and parenchymal events following prenatal exposure to the putative neurotoxin methylazoxymethanol. Neurobiol Dis 2007; 26:481-95. [PMID: 17398107 PMCID: PMC3041024 DOI: 10.1016/j.nbd.2007.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/31/2007] [Accepted: 02/21/2007] [Indexed: 01/19/2023] Open
Abstract
One of the most common causes of neurological disabilities are malformations of cortical development (MCD). A useful animal model of MCD consists of prenatal exposure to methylazoxymethanol (MAM), resulting in a postnatal phenotype characterized by cytological aberrations reminiscent of human MCD. Although postnatal effects of MAM are likely a consequence of prenatal events, little is known on how the developing brain reacts to MAM. General assumption is the effects of prenatally administered MAM are short lived (24 h) and neuroblast-specific. MAM persisted for several days after exposure in utero in both maternal serum and fetal brain, but at levels lower than predicted by a neurotoxic action. MAM levels and time course were consistent with a different mechanism of indirect neuronal toxicity. The most prominent acute effects of MAM were cortical swelling associated with mild cortical disorganization and neurodegeneration occurring in absence of massive neuronal cell death. Delayed or aborted vasculogenesis was demonstrated by MAM's ability to hinder vessel formation. In vitro, MAM reduced synthesis and release of VEGF by endothelial cells. Decreased expression of VEGF, AQP1, and lectin-B was consistent with a vascular target in prenatal brain. The effects of MAM on cerebral blood vessels persisted postnatally, as indicated by capillary hypodensity in heterotopic areas of adult rat brain. In conclusion, these results show that MAM does not act only as a neurotoxin per se, but may additionally cause a short-lived toxic effect secondary to cerebrovascular dysfunction, possibly due to a direct anti-angiogenic effect of MAM itself.
Collapse
Affiliation(s)
- Stefania Bassanini
- Department of Cerebrovascular Research, Cleveland, OH, USA
- Department of Experimental Neurophysiology, Lab of Molecular Neuroanatomy, Neurological Institute “C. Besta”, Milano, Italy
| | - Kerri Hallene
- Department of Cerebrovascular Research, Cleveland, OH, USA
| | - Giorgio Battaglia
- Department of Experimental Neurophysiology, Lab of Molecular Neuroanatomy, Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Department of Experimental Neurophysiology, Lab of Molecular Neuroanatomy, Neurological Institute “C. Besta”, Milano, Italy
| | | | - Marilyn Cipolla
- The University of Vermont College of Medicine, Burlington, VT, USA
| | - Damir Janigro
- Department of Cerebrovascular Research, Cleveland, OH, USA
- Department of Cell Biology, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland, OH, USA
- Corresponding author. Molecular Medicine, Cleveland Clinic Foundation, NB-20 LRI, 9500 Euclid Ave, Cleveland, OH 44195, USA. Fax: +1 216 445 1466. (D. Janigro)
| |
Collapse
|
63
|
Schmitz B, Krämer G, Helmstädter C, Jokeit H, Koch S, Luef G, Schaefer C. [Neuropsychological outcome following intrauterine exposure to valproate]. DER NERVENARZT 2006; 77:901-11. [PMID: 16670922 DOI: 10.1007/s00115-006-2085-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A number of recent studies suggest a link between in utero exposure to valproate (VPA) and low IQ and behavioural disorders in children of mothers with epilepsy. In this review, a commission of the German Section of the International League Against Epilepsy discusses the evidence in the literature and practical recommendations for the use of VPA in women of childbearing potential. It is concluded that despite methodological shortcomings--largely due to the complexity of the problem and small case numbers in prospective studies--the existing data are sufficiently alarming to require great caution in the use of VPA in women who could become pregnant. The underlying mechanisms of how antiepileptic drugs may lead to neurodevelopmental problems are unclear. Further prospective studies are urgently needed to clarify this clinically important issue, and a collaborative study is suggested based on the international network established by the European Registry of Antiepileptic Drugs and Pregnancy.
Collapse
Affiliation(s)
- B Schmitz
- Neurologische Klinik und Poliklinik, Charité, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin.
| | | | | | | | | | | | | |
Collapse
|
64
|
Hallene KL, Oby E, Lee BJ, Santaguida S, Bassanini S, Cipolla M, Marchi N, Hossain M, Battaglia G, Janigro D. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations. Neuroscience 2006; 142:267-83. [PMID: 16859833 PMCID: PMC3900293 DOI: 10.1016/j.neuroscience.2006.06.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/02/2006] [Accepted: 06/06/2006] [Indexed: 11/27/2022]
Abstract
Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.
Collapse
Affiliation(s)
- K. L. Hallene
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - E. Oby
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - B. J. Lee
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - S. Santaguida
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - S. Bassanini
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Experimental Neurophysiology, Neurological Institute “C. Besta,” Milano, Italy
| | - M. Cipolla
- Department of Neurology, The University of Vermont College of Medicine, Burlington, VT, USA
| | - N. Marchi
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - M. Hossain
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - G. Battaglia
- Department of Experimental Neurophysiology, Neurological Institute “C. Besta,” Milano, Italy
| | - D. Janigro
- Department of Cerebrovascular Research, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Molecular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Correspondence to: D. Janigro, Cleveland Clinic Foundation, NB-20 LRI, 9500 Euclid Avenue, Cleveland, OH 44195, USA. Tel: +1-216-445-0561; fax: +1-216-445-1466. (D. Janigro)
| |
Collapse
|
65
|
Miyazaki K, Narita N, Narita M. Maternal administration of thalidomide or valproic acid causes abnormal serotonergic neurons in the offspring: implication for pathogenesis of autism. Int J Dev Neurosci 2005; 23:287-97. [PMID: 15749253 DOI: 10.1016/j.ijdevneu.2004.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/19/2004] [Accepted: 05/03/2004] [Indexed: 12/11/2022] Open
Abstract
Embryonic exposure to thalidomide (THAL) or valproic acid (VPA) before neural tube closure has been demonstrated as a useful model for human autism in rats. Abnormalities of the serotonergic system which are often observed in human autism have been shown in these rats. Thus, we examined whether early serotonergic neuronal development is perturbed by THAL/VPA. When pregnant rats were exposed to THAL or VPA on embryonic day 9, a dramatic shift of the distribution of serotonergic neurons in the dorsal raphe nucleus was observed on postnatal day 50. This alteration is thought to reflect abnormality of serotonergic neuronal differentiation and migration. In vitro studies revealed that VPA retards the maturation of serotonergic neuron from ES cell-derived neuronal progenitors, whereas exogenously added Sonic hedgehog, a morphogen that has been implicated in serotonergic cell fate, partially prevented this retardation. These results indicate that disruption of early serotonergic neuronal development might be involved in the etiology of autism.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Neurobiology Laboratory, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-City, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
66
|
Abstract
Autism is a complex, behaviorally defined, static disorder of the immature brain that is of great concern to the practicing pediatrician because of an astonishing 556% reported increase in pediatric prevalence between 1991 and 1997, to a prevalence higher than that of spina bifida, cancer, or Down syndrome. This jump is probably attributable to heightened awareness and changing diagnostic criteria rather than to new environmental influences. Autism is not a disease but a syndrome with multiple nongenetic and genetic causes. By autism (the autistic spectrum disorders [ASDs]), we mean the wide spectrum of developmental disorders characterized by impairments in 3 behavioral domains: 1) social interaction; 2) language, communication, and imaginative play; and 3) range of interests and activities. Autism corresponds in this article to pervasive developmental disorder (PDD) of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition and International Classification of Diseases, Tenth Revision. Except for Rett syndrome--attributable in most affected individuals to mutations of the methyl-CpG-binding protein 2 (MeCP2) gene--the other PDD subtypes (autistic disorder, Asperger disorder, disintegrative disorder, and PDD Not Otherwise Specified [PDD-NOS]) are not linked to any particular genetic or nongenetic cause. Review of 2 major textbooks on autism and of papers published between 1961 and 2003 yields convincing evidence for multiple interacting genetic factors as the main causative determinants of autism. Epidemiologic studies indicate that environmental factors such as toxic exposures, teratogens, perinatal insults, and prenatal infections such as rubella and cytomegalovirus account for few cases. These studies fail to confirm that immunizations with the measles-mumps-rubella vaccine are responsible for the surge in autism. Epilepsy, the medical condition most highly associated with autism, has equally complex genetic/nongenetic (but mostly unknown) causes. Autism is frequent in tuberous sclerosis complex and fragile X syndrome, but these 2 disorders account for but a small minority of cases. Currently, diagnosable medical conditions, cytogenetic abnormalities, and single-gene defects (eg, tuberous sclerosis complex, fragile X syndrome, and other rare diseases) together account for <10% of cases. There is convincing evidence that "idiopathic" autism is a heritable disorder. Epidemiologic studies report an ASD prevalence of approximately 3 to 6/1000, with a male to female ratio of 3:1. This skewed ratio remains unexplained: despite the contribution of a few well characterized X-linked disorders, male-to-male transmission in a number of families rules out X-linkage as the prevailing mode of inheritance. The recurrence rate in siblings of affected children is approximately 2% to 8%, much higher than the prevalence rate in the general population but much lower than in single-gene diseases. Twin studies reported 60% concordance for classic autism in monozygotic (MZ) twins versus 0 in dizygotic (DZ) twins, the higher MZ concordance attesting to genetic inheritance as the predominant causative agent. Reevaluation for a broader autistic phenotype that included communication and social disorders increased concordance remarkably from 60% to 92% in MZ twins and from 0% to 10% in DZ pairs. This suggests that interactions between multiple genes cause "idiopathic" autism but that epigenetic factors and exposure to environmental modifiers may contribute to variable expression of autism-related traits. The identity and number of genes involved remain unknown. The wide phenotypic variability of the ASDs likely reflects the interaction of multiple genes within an individual's genome and the existence of distinct genes and gene combinations among those affected. There are 3 main approaches to identifying genetic loci, chromosomal regions likely to contain relevant genes: 1) whole genome screens, searching for linkage of autism to shared genetic markers in populations of multiplex families (families with >1 affected family member; 2) cytogenetic studies that may guide molecular studies by pointing to relevant inherited or de novo chromosomal abnormalities in affected individuals and their families; and 3) evaluation of candidate genes known to affect brain development in these significantly linked regions or, alternatively, linkage of candidate genes selected a priori because of their presumptive contribution to the pathogenesis of autism. Data from whole-genome screens in multiplex families suggest interactions of at least 10 genes in the causation of autism. Thus far, a putative speech and language region at 7q31-q33 seems most strongly linked to autism, with linkages to multiple other loci under investigation. Cytogenetic abnormalities at the 15q11-q13 locus are fairly frequent in people with autism, and a "chromosome 15 phenotype" was described in individuals with chromosome 15 duplications. Among other candidate genes are the FOXP2, RAY1/ST7, IMMP2L, and RELN genes at 7q22-q33 and the GABA(A) receptor subunit and UBE3A genes on chromosome 15q11-q13. Variant alleles of the serotonin transporter gene (5-HTT) on 17q11-q12 are more frequent in individuals with autism than in nonautistic populations. In addition, animal models and linkage data from genome screens implicate the oxytocin receptor at 3p25-p26. Most pediatricians will have 1 or more children with this disorder in their practices. They must diagnose ASD expeditiously because early intervention increases its effectiveness. Children with dysmorphic features, congenital anomalies, mental retardation, or family members with developmental disorders are those most likely to benefit from extensive medical testing and genetic consultation. The yield of testing is much less in high-functioning children with a normal appearance and IQ and moderate social and language impairments. Genetic counseling justifies testing, but until autism genes are identified and their functions are understood, prenatal diagnosis will exist only for the rare cases ascribable to single-gene defects or overt chromosomal abnormalities. Parents who wish to have more children must be told of their increased statistical risk. It is crucial for pediatricians to try to involve families with multiple affected members in formal research projects, as family studies are key to unraveling the causes and pathogenesis of autism. Parents need to understand that they and their affected children are the only available sources for identifying and studying the elusive genes responsible for autism. Future clinically useful insights and potential medications depend on identifying these genes and elucidating the influences of their products on brain development and physiology.
Collapse
Affiliation(s)
- Rebecca Muhle
- Class of 2004, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|