51
|
Abdel-Khalik J, Björklund E, Hansen M. Simultaneous determination of endogenous steroid hormones in human and animal plasma and serum by liquid or gas chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 928:58-77. [PMID: 23598050 DOI: 10.1016/j.jchromb.2013.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
Analytical methodologies based on liquid or gas chromatography coupled to tandem mass spectrometry for the simultaneous determination of two or more endogenous steroid hormones in human and animal plasma and serum has received increased attention the last few years. Especially in the clinical setting steroid profiling is of major importance in disease diagnostics. This paper discusses recent findings in such multi-steroid hormone procedures published from 2001 to 2012. The aim was to elucidate possible relationships between chosen analytical technique and the obtained analyte sensitivity for endogenous steroid hormones. By evaluating the success, at which the currently applied techniques have been utilized, more general knowledge on the field is provided. Furthermore the evaluation provides directions in which future studies may be interesting to conduct.
Collapse
Affiliation(s)
- Jonas Abdel-Khalik
- Toxicology Laboratory, Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
52
|
Abstract
Mass spectrometry methods have the potential to measure different hormones during the same analysis and have improved specificity and a wide analytical range compared with many immunoassay methods. Increasingly in clinical laboratories liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays are replacing immunoassays for the routine measurement of testosterone, 17-hydroxyprogesterone, and other steroid hormones. Reference LC-MS/MS methods for steroid, thyroid, and peptide hormones are being used for assessment of the performance and calibration of commercial immunoassays. In this chapter, the general principles of tandem mass spectrometry and examples of hormone assays are described.
Collapse
Affiliation(s)
- Helen P Field
- Department of Specialist Laboratory Medicine, St. James's University Hospital, Leeds, UK
| |
Collapse
|
53
|
Dénes J, Szabó E, Robinette SL, Szatmári I, Szőnyi L, Kreuder JG, Rauterberg EW, Takáts Z. Metabonomics of Newborn Screening Dried Blood Spot Samples: A Novel Approach in the Screening and Diagnostics of Inborn Errors of Metabolism. Anal Chem 2012; 84:10113-20. [DOI: 10.1021/ac302527m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Júlia Dénes
- Biomolecular Medicine, Department
of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Steven L. Robinette
- Biomolecular Medicine, Department
of Surgery and Cancer, Imperial College London, United Kingdom
| | - Ildikó Szatmári
- Metabolic Diagnostic Laboratory,
1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - László Szőnyi
- Metabolic Diagnostic Laboratory,
1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Joachim G. Kreuder
- Hesse
Child Health Centre, Johann Wolfgang Goethe University Hospital, Giessen,
Germany
| | - Ernst W. Rauterberg
- Hesse
Child Health Centre, Johann Wolfgang Goethe University Hospital, Giessen,
Germany
| | - Zoltán Takáts
- Biomolecular Medicine, Department
of Surgery and Cancer, Imperial College London, United Kingdom
- Metabolic Diagnostic Laboratory,
1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
54
|
Bioanalytical method development: considering information from a suite of complementary methods. Bioanalysis 2012; 4:115-9. [PMID: 22250793 DOI: 10.4155/bio.11.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
55
|
Abstract
Quantification of endogenous hormonal steroids and their precursors is essential for diagnosing a wide range of endocrine disorders. Historically, these analyses have been carried out using immunoassay, but such methods are problematic, especially for low-concentration analytes, due to assay interference by other endogenous steroids. MS offers improved specificity over immunoassay and can be highly sensitive. GC–MS, with use of stable isotopically labeled internal standards, is considered the ‘gold standard’ method for serum steroid analysis. GC–MS is the method of choice for profiling steroid metabolites in urine, but these techniques are not appropriate for routine use in clinical laboratories owing to a need for extensive sample preparation, as well as analytical expertise. LC–MS/MS compares well to GC–MS in terms of accuracy, precision and sensitivity, but allows simplified sample preparation. While most publications have featured only one or a limited number of steroids, we consider that steroid paneling (which we propose as the preferred term for multitargeted steroid analysis) has great potential to enable clinicians to make a definitive diagnosis. It is adaptable for use in a number of matrices, including serum, saliva and dried blood spots. However, LC–MS/MS-based steroid analysis is not straightforward, and understanding the chemical and analytical processes involved is essential for implementation of a robust clinical service. This article discusses specific challenges in the measurement of endogenous steroids using LC–MS/MS, and provides examples of the benefits it offers.
Collapse
|
56
|
Kushnir MM, Rockwood AL, Roberts WL, Yue B, Bergquist J, Meikle AW. Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem 2011; 44:77-88. [DOI: 10.1016/j.clinbiochem.2010.07.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/28/2010] [Accepted: 07/04/2010] [Indexed: 01/18/2023]
|
57
|
Fernández BH, Fernández ME, Íñiguez ED, Zubicaray BE, Martín MBR, Arnao MDR, Sánchez AR. Neonatal screening for congenital adrenal hyperplasia: transitory elevation of 17-hydroxyprogesterone. ACTA ACUST UNITED AC 2011. [DOI: 10.1515/jpem.2011.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
58
|
Sarafoglou K, Himes JH, Lacey JM, Netzel BC, Singh RJ, Matern D. Comparison of multiple steroid concentrations in serum and dried blood spots throughout the day of patients with congenital adrenal hyperplasia. Horm Res Paediatr 2011; 75:19-25. [PMID: 20798478 PMCID: PMC3202930 DOI: 10.1159/000315910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/21/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM periodic measurement of plasma concentrations of cortisol precursors on a clinic visit may be of limited value in patients with congenital adrenal hyperplasia because it does not reflect a patient's circadian patterns of adrenal steroid secretion. Steroid profiling in dried blood spots (DBS) may allow for more frequent and sensitive monitoring. METHODS we compared the agreement between 17α-hydroxyprogesterone (17-OHP) and androstenedione (D4A) levels determined from DBS samples and concurrently collected serum samples. Blood was drawn from 9 congenital adrenal hyperplasia patients every 4 h over a 24-hour period. Serum and DBS steroid levels were measured by liquid chromatography tandem mass spectrometry. RESULTS DBS determinations of 17-OHP overestimated corresponding serum levels (mean difference 1.67 ng/ml), and underestimated D4A serum levels (mean difference 0.84 ng/ml). However, the DBS assay yielded excellent agreement (97%) with serum 17-OHP, but did considerably poorer for D4A (31%). CONCLUSIONS our results indicate an excellent agreement between DBS and serum 17-OHP measurements to identify the peaks and troughs associated with an individual's circadian pattern. Larger-scale studies are required to evaluate the utility of DBS for home monitoring and to determine if more frequent monitoring leads to improved clinical outcomes.
Collapse
Affiliation(s)
- Kyriakie Sarafoglou
- Department of Pediatrics, School of Public Health, University of Minnesota, Minneapolis, Minn. 55455, USA.
| | - John H. Himes
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minn., USA
| | - Jean M. Lacey
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minn., USA
| | - Brian C. Netzel
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minn., USA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minn., USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minn., USA
| |
Collapse
|
59
|
Shushan B. A review of clinical diagnostic applications of liquid chromatography-tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:930-944. [PMID: 20949635 DOI: 10.1002/mas.20295] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) technology is emerging as a complementary method to traditional methodology used for clinical applications. Enhanced specificity and high-throughput capabilities are providing significant benefits to clinical diagnostic laboratories conducting routine analyses. This technology is expected to expand rapidly as scientists focus on more complicated challenges that can be solved efficiently by adding LC/MS/MS to their arsenal of techniques.
Collapse
Affiliation(s)
- Bori Shushan
- Clinical Mass Spec Consultants, Toronto, ON, Canada, M4W 2W6.
| |
Collapse
|
60
|
Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HFL, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010; 95:4133-60. [PMID: 20823466 PMCID: PMC2936060 DOI: 10.1210/jc.2009-2631] [Citation(s) in RCA: 659] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We developed clinical practice guidelines for congenital adrenal hyperplasia (CAH). PARTICIPANTS The Task Force included a chair, selected by The Endocrine Society Clinical Guidelines Subcommittee (CGS), ten additional clinicians experienced in treating CAH, a methodologist, and a medical writer. Additional experts were also consulted. The authors received no corporate funding or remuneration. CONSENSUS PROCESS Consensus was guided by systematic reviews of evidence and discussions. The guidelines were reviewed and approved sequentially by The Endocrine Society's CGS and Clinical Affairs Core Committee, members responding to a web posting, and The Endocrine Society Council. At each stage, the Task Force incorporated changes in response to written comments. CONCLUSIONS We recommend universal newborn screening for severe steroid 21-hydroxylase deficiency followed by confirmatory tests. We recommend that prenatal treatment of CAH continue to be regarded as experimental. The diagnosis rests on clinical and hormonal data; genotyping is reserved for equivocal cases and genetic counseling. Glucocorticoid dosage should be minimized to avoid iatrogenic Cushing's syndrome. Mineralocorticoids and, in infants, supplemental sodium are recommended in classic CAH patients. We recommend against the routine use of experimental therapies to promote growth and delay puberty; we suggest patients avoid adrenalectomy. Surgical guidelines emphasize early single-stage genital repair for severely virilized girls, performed by experienced surgeons. Clinicians should consider patients' quality of life, consulting mental health professionals as appropriate. At the transition to adulthood, we recommend monitoring for potential complications of CAH. Finally, we recommend judicious use of medication during pregnancy and in symptomatic patients with nonclassic CAH.
Collapse
Affiliation(s)
- Phyllis W Speiser
- Cohen Children's Medical Center of New York and Hofstra University School of Medicine, New Hyde Park, New York 11040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Shackleton C. Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 2010; 121:481-90. [PMID: 20188832 DOI: 10.1016/j.jsbmb.2010.02.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/04/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Automated rapid HPLC tandem mass spectrometry has become the method of choice for clinical steroid analysis. It is replacing immunoassay techniques in most instances because it has high sensitivity, better reproducibility, greater specificity and can be used to analyze multiple steroids simultaneously. Modern multiplex instruments can analyze thousands of samples per month so even with high instrument costs the price of individual assays can be affordable. The mass spectrometry of steroids goes back decades; the first on-line chromatography/mass spectrometry methods for hormone analysis date to the 1960s. This paper reviews the evolution of mass spectrometric techniques applied to sterol and steroid measurement There have been three eras: (1) gas chromatography-mass spectrometry (GC/MS), (2) Fast Atom Bombardment (FAB) and (3) HPLC/MS. The first technique is only suitable for unconjugated steroids, the second for conjugated, and the third equally useful for free or conjugated. FAB transformed biological mass spectrometry in the 1980s but in the end was an interim technique; GC/MS retains unique qualities but is unsuited to commercial routine analysis, while LC-MS/MS is rightly stealing the show and has become the dominant method for steroid analysis in endocrinology.
Collapse
Affiliation(s)
- Cedric Shackleton
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Institute of Biomedical Research, University of Birmingham, UK.
| |
Collapse
|
62
|
Rauh M. Steroid measurement with LC-MS/MS. Application examples in pediatrics. J Steroid Biochem Mol Biol 2010; 121:520-7. [PMID: 20036331 DOI: 10.1016/j.jsbmb.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/16/2009] [Accepted: 12/20/2009] [Indexed: 10/20/2022]
Abstract
The correct measurement of steroids is vital for the diagnosis of congenital adrenal hyperplasia (CAH), apparent mineralocorticoid excess, familial hyperaldosteronism type I, primary aldosteronism, Cushing's disease, adrenal insufficiency, etc. Steroid diagnostics also plays an important role in disorders of sexual differentiation and gonadal function. Steroid metabolism is involved in evaluations for precocious puberty, premature thelarche, and polycystic-ovary disease. Finally, the hypothalamo-pituitary-adrenal (HPA) axis is considered to be one of the major systems involved in fetal programming or in stress regulation. Most methods for the determination of steroid hormones are based on immunoassays, which are rapid and easy to perform. However, the reliability of several steroid immunoassays has been shown to be questionable because of the lack of specificity and of matrix effects. Immunological methods, especially direct assays, often overestimate true steroid values. Patient follow-up over time or between laboratories, as well as longitudinal studies, are therefore extremely difficult. This is of particular importance in pediatrics. Liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) is an increasingly common tool in the clinical laboratory and has the potential to overcome the limitations of immunoassays. LC-MS/MS affords the specificity, imprecision, and limits of quantification necessary for the reliable measurement of steroids, expanding diagnostic capabilities. In addition to the high throughput, the method requires minimal sample preparation and a small sample volume. All these features make it an attractive method to use in a clinical setting. Moreover, LC-MS/MS has the advantage that a spectrum of steroid hormones can be measured simultaneously. Steroid profiling is a very effective method for distinguishing almost all steroid-related disorders. It allows accurate diagnosis and is very useful in many clinical situations. Steroid profiles open up new vistas. The applicability for clinical samples and questions in pediatric endocrinology will be discussed.
Collapse
Affiliation(s)
- Manfred Rauh
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Loschgestr. 15, 91054 Erlangen, Germany.
| |
Collapse
|
63
|
De Jesús VR, Simms DA, Schiffer J, Kennedy M, Mei JV, Hannon WH. Pilot proficiency testing study for second tier congenital adrenal hyperplasia newborn screening. Clin Chim Acta 2010; 411:1684-7. [PMID: 20619255 DOI: 10.1016/j.cca.2010.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/27/2010] [Accepted: 06/30/2010] [Indexed: 12/01/2022]
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) is caused by inherited defects in steroid biosynthesis. The Newborn Screening Quality Assurance Program (NSQAP) initiated a pilot, dried-blood spot (DBS)-based proficiency testing program designed to investigate materials and laboratory performance for second tier CAH screening by tandem mass spectrometry (MS/MS). METHODS The ratio of 17-α-hydroxyprogesterone (17-OHP), androstenedione (4-AD) and cortisol is used as an indicator of CAH in laboratory protocols for second tier analysis of DBS specimens. DBS prepared by NSQAP contained a range of steroid concentrations resulting in different clinical ratios. Laboratories received blind-coded DBS specimens and reported results to NSQAP for evaluation. RESULTS Quantitative values reported by participants for 17-OHP, 4-AD, and cortisol, reflected small differences in their analytical methods. Average quantitative values for 17-OHP increased from 81% to 107% recovery over the 3.5-year period; cortisol recoveries increased from 61.9% to 89.5%; and 4-AD recoveries decreased from 184% to 68%. CONCLUSIONS Laboratory participation in the CAH second tier proficiency testing program has resulted in improved analyte recoveries and enhanced sample preparation methodologies. NSQAP services for the second tier CAH analysis in DBS demonstrate the need for surveillance to ensure harmonization and continuous improvements, and to achieve sustained high-performance of newborn screening laboratories worldwide.
Collapse
Affiliation(s)
- Víctor R De Jesús
- Newborn Screening Quality Assurance Program, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Abstract
Most steroid disorders of the adrenal cortex come to clinical attention in childhood and in order to investigate these problems, there are many challenges to the laboratory which need to be appreciated to a certain extent by clinicians. The analysis of sex steroids in biological fluids from neonates, over adrenarche and puberty present challenges of specificities and concentrations often in small sample sizes. Different reference ranges are also needed for interpretations. For around 40 years, quantitative assays for the steroids and their regulatory peptide hormones have been possible using immunoassay techniques. Problems are recognised and this review aims to summarise the benefits and failings of immunoassays and introduce where tandem mass spectrometry is anticipated to meet the clinical needs for steroid analysis in paediatric endocrine investigations. It is important to keep a dialogue between clinicians and the laboratory, especially when any laboratory result does not make sense in the clinical investigation.
Collapse
Affiliation(s)
- John W Honour
- Clinical Biochemistry, University College London Hospitals, London, England.
| |
Collapse
|
66
|
Honour JW. Diagnosis of diseases of steroid hormone production, metabolism and action. J Clin Res Pediatr Endocrinol 2009; 1:209-26. [PMID: 21274298 PMCID: PMC3005746 DOI: 10.4274/jcrpe.v1i5.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 12/01/2022] Open
Abstract
Biochemical tests have been the basis for investigations of disorders affecting steroid hormones. In recent years it has been possible however to study the genes that determine functional enzymes, cofactors, receptors, transcription factors and signaling systems that are involved in the process. Analyses of mutations are available as a diagnostic service for only a few of these genes although research laboratories may be able to provide a service. Both biochemical and genetic research have brought to light new disorders. Some genes for transcription factors involved in the development of the endocrine organs have also been identified and patients with defects in these processes have been found. This paper will review general aspects of adrenal disorders with emphasis on clinical and laboratory findings. As with all endocrine investigations there are few single measurements that provide a definitive answer to a diagnosis. Timing of samples in relation to age, gender and time of day needs to be considered.
Collapse
|