51
|
Asif S, Ahmad B, Hamza SA, Taib H, Kassim NK, Zainuddin SLA. Investigation of Salivary RANKL and OPG Levels in Periodontitis Patients at Hospital Universiti Sains Malaysia. Eur J Dent 2021; 16:173-178. [PMID: 34571567 PMCID: PMC8890913 DOI: 10.1055/s-0041-1731930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective
This study was aimed to determine the levels of salivary receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) and its association with periodontal status among periodontitis patients.
Materials and Methods
A cross-sectional study was designed and performed at the Dental Clinic, Hospital Universiti Sains Malaysia (HUSM). Random sampling was employed to identify 88 participants into three groups: 30 mild periodontitis, 30 moderate to severe periodontitis, and 28 healthy (nonperiodontitis) patients. Periodontal parameters: periodontal pocket depth (PPD), clinical attachment level (CAL), plaque score (PS), and gingival bleeding index (GBI) were recorded. In total, 4 mL of unstimulated whole saliva was collected to determine the levels of salivary RANKL and OPG proteins by using ELISA technique. Data were analyzed by using SPSS software version 24.0.
Results
Mean values for PPD (5.3 ± 0.5) and CAL (5.6 ± 0.5) were observed higher for moderate to severe periodontitis as compared with values (4.4 ± 0.2) (4.5 ± 0.2) in mild periodontitis patients. The mean salivary RANKL and OPG was 0.23 ± 0.07 ng/mL and 1.78 ± 0.70 ng/mL respectively in moderate to severe periodontitis. Only salivary RANKL levels were significantly and positively correlated with all the clinical periodontal parameters.
Conclusion
The levels of salivary RANKL were higher as opposed to lower OPG levels in periodontitis patients in contrast to healthy (nonperiodontitis) patients. RANKL levels were significantly associated with the periodontal parameters. Therefore, we can conclude that RANKL can potentially aid as an adjunctive diagnostic protein in evaluating periodontal disease.
Collapse
Affiliation(s)
- Saba Asif
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Basaruddin Ahmad
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Syed Ameer Hamza
- Department of Oral Medicine, Dental Hospital, The University of Faisalabad, Pakistan
| | - Haslina Taib
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Karyatee Kassim
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | | |
Collapse
|
52
|
Li X, Cheng J, Dong B, Yu X, Zhao X, Zhou Z. Common Variants of the OPG gene Are Associated with Osteoporosis Risk: A Meta-Analysis. Genet Test Mol Biomarkers 2021; 25:600-610. [PMID: 34515523 DOI: 10.1089/gtmb.2020.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: The RANKL/RANK/OPG signaling pathway plays a critical role in osteoclastogenesis and bone remodeling. The associations between sequence variants of the osteoprotegerin (OPG) gene and osteoporosis risk have been widely investigated but remain inconclusive. Objective: We performed a meta-analysis to evaluate the associations between OPG gene variants and osteoporosis risk. Methods: We searched electronic databases and included studies meeting inclusion criteria. The genetic associations of four common OPG variants, A163G, T245G, T950C, and G1181C, with osteoporosis risk were explored. Pooled odds ratios (OR) and 95% confidence intervals (95% CI) were calculated for multiple genetic models. Subgroup analyses including ethnicity, gender, menopausal status, sample size, and control source were also performed. Results: Twenty-six studies comprising 4879 osteoporosis cases and 5708 controls were included. The A163G variant was found to be significantly associated with an increased risk of osteoporosis under both the allelic (G vs. A: OR = 1.45, 95% CI 1.29-1.64, p < 0.001) and dominant models (GG+GA vs. AA: OR = 1.48, 95% CI 1.29-1.70, p < 0.001). Significant associations were also found between the T245G variant and osteoporosis risk. In addition, we observed a reduced risk of osteoporosis in women with the CC genotype at T950C (OR = 0.76, 95% CI 0.64-0.89, p = 0.001) and among Caucasians with the GG or CG genotypes at the G1181C locus (OR = 0.78, 95% CI 0.64-0.94, p = 0.010). In postmenopausal women, only the GG/GA genotypes at the A163G variant were more predisposed to osteoporosis (OR = 1.31, 95% CI 1.00-1.71), whereas CC/CG carriers of G1181C locus may have reduced risk (OR = 0.83, 95% CI 0.66-1.03). Conclusions: Common variants of the OPG gene are associated with osteoporosis risk, especially in the Caucasian population and in the female subgroup. These genetic markers could potentially be used as predictive markers for osteoporosis.
Collapse
Affiliation(s)
- Xiaobin Li
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Junwen Cheng
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Bin Dong
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Xiaoping Yu
- Laboratory Department, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Xiaona Zhao
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Zhikang Zhou
- Department of Orthopedic Trauma, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| |
Collapse
|
53
|
The Roadmap of RANKL/RANK Pathway in Cancer. Cells 2021; 10:cells10081978. [PMID: 34440747 PMCID: PMC8393235 DOI: 10.3390/cells10081978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
The receptor activator of the nuclear factor-κB ligand (RANKL)/RANK signaling pathway was identified in the late 1990s and is the key mediator of bone remodeling. Targeting RANKL with the antibody denosumab is part of the standard of care for bone loss diseases, including bone metastases (BM). Over the last decade, evidence has implicated RANKL/RANK pathway in hormone and HER2-driven breast carcinogenesis and in the acquisition of molecular and phenotypic traits associated with breast cancer (BCa) aggressiveness and poor prognosis. This marked a new era in the research of the therapeutic use of RANKL inhibition in BCa. RANKL/RANK pathway is also an important immune mediator, with anti-RANKL therapy recently linked to improved response to immunotherapy in melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). This review summarizes and discusses the pre-clinical and clinical evidence of the relevance of the RANKL/RANK pathway in cancer biology and therapeutics, focusing on bone metastatic disease, BCa onset and progression, and immune modulation.
Collapse
|
54
|
Interleukin-20 Acts as a Promotor of Osteoclastogenesis and Orthodontic Tooth Movement. Stem Cells Int 2021; 2021:5539962. [PMID: 34122555 PMCID: PMC8172288 DOI: 10.1155/2021/5539962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast–osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. Methods For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague–Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. Results In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF-κB/NFATc1 acted as downstream signalling molecule for IL-20. In vivo analysis showed that OTM speed was significantly increased after intraperitoneal injection of IL-20; additionally, mechanical stress sensing proteins were markedly activated. Conclusions IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-κB/NFATc1 signalling pathway. IL-20 inhibition can effectively reduce osteoclast differentiation and diminish bone resorption. Furthermore, IL-20 can accelerate orthodontic tooth movement and activate mechanical stress sensing proteins.
Collapse
|
55
|
Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J Clin Med 2021; 10:jcm10071488. [PMID: 33916672 PMCID: PMC8038382 DOI: 10.3390/jcm10071488] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cause of tooth loss in the industrialized world is periodontitis, a bacterial anaerobic infection whose pathogenesis is characterized by composite immune response. At present, the diagnose of periodontitis is made by a complete status check of the patient’s periodontal health; full-mouth plaque score, full-mouth bleeding score, probing depth, clinical attachment level, bleeding on probing, recessions, mobility, and migration are evaluated in order to provides a clear picture of the periodontal conditions of a single patient. Chair-side diagnostic tests based on whole saliva could be routinely used by periodontists for a very early diagnosis of periodontitis, monitoring, prognosis, and management of periodontal patients by biomarker detection, whose diagnostic validity is related to sensitivity and specificity. Recent paper reviews and meta-analyses have focused on five promising host derived biomarkers as candidate for early diagnosis of periodontitis: MMP-8 (Metalloproteinase-8), MIP-1α (Macrophage inflammatory protein-1 alpha), IL-1 β (Interleukin-1 beta), IL-6 (Interleukin-6), and HB (Hemoglobin), and their combinations. Chair-side Lab-on-a-chip (LOC) technology may soon become an important part of efforts to detect such biomarkers in saliva medium to improve worldwide periodontal health in developed nations as well as in underserved communities and poor countries. Their applications in preventive and predictive medicine is now fundamental, and is aimed at the early detection of risk factors or the presence or evolution of the disease, and in personalized medicine, which aims to identify tailor-made treatments for individual patients. The aim of the present paper is to be informative about host derived periodontal biomarkers and, in particular, we intend to report information about the most important immune response derived biomarkers and Hemoglobin as candidates to be routinely utilized in order to obtain a chair-side early diagnosis of periodontal disease.
Collapse
|
56
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
57
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
58
|
Yamaguchi M, Fukasawa S. Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. Int J Mol Sci 2021; 22:2388. [PMID: 33673606 PMCID: PMC7957544 DOI: 10.3390/ijms22052388] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Ginza Orthodontic Clinic, Ginza Granvia 6F, 3-3-14 Ginza, Chuo-ku, Tokyo 104-0061, Japan;
| | | |
Collapse
|
59
|
Forbes SC, Candow DG, Ferreira LHB, Souza-Junior TP. Effects of Creatine Supplementation on Properties of Muscle, Bone, and Brain Function in Older Adults: A Narrative Review. J Diet Suppl 2021; 19:318-335. [PMID: 33502271 DOI: 10.1080/19390211.2021.1877232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aging is associated with reductions in muscle and bone mass and brain function, which may be counteracted by several lifestyle factors, of which exercise appears to be most beneficial. However, less than 20% of older adults (> 55 years of age) adhere to performing the recommended amount of resistance training (≥ 2 days/week) and less than 12% regularly meet the aerobic exercise guidelines (≥ 150 min/week of moderate to vigorous intensity aerobic exercise) required to achieve significant health benefits. Therefore, from a healthy aging and clinical perspective, it is important to determine whether other lifestyle interventions (independent of exercise) can have beneficial effects on aging muscle quality and quantity, bone strength, and brain function. Creatine, a nitrogen containing organic compound found in all cells of the body, has the potential to have favorable effects on muscle, bone, and brain health (independent of exercise) in older adults. The purpose of this narrative review is to examine and summarize the small body of research investigating the effects of creatine supplementation alone on measures of muscle mass and performance, bone mineral and strength, and indices of brain health in older adults.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Luis H B Ferreira
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tacito P Souza-Junior
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
60
|
El-Gazzar A, Högler W. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. Int J Mol Sci 2021; 22:ijms22020625. [PMID: 33435159 PMCID: PMC7826666 DOI: 10.3390/ijms22020625] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bone material strength is determined by several factors, such as bone mass, matrix composition, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal osteoporosis). In this review, we highlight the main disease mechanisms underlying the development of human bone fragility associated with low bone mass known to date. The pathways we focus on are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways has led to targeted, pathway-specific treatments.
Collapse
Affiliation(s)
| | - Wolfgang Högler
- Correspondence: ; Tel.: +43-(0)5-7680-84-22001; Fax: +43-(0)5-7680-84-22004
| |
Collapse
|
61
|
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 2021; 39:19-26. [PMID: 33079279 DOI: 10.1007/s00774-020-01162-6] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is predominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting the RANKL-RANKL receptor interaction. MATERIALS AND METHODS In this review, we would like to summarize our experimental results on signal transduction that regulates the expression of RANKL and OPG. RESULTS Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia inhibitory factor (LIF) reduces the expression of sclerostin in osteocytes and promotes bone formation. WP9QY (W9) is a peptide that was designed to be structurally similar to one of the cysteine-rich TNF-receptortype-I domains. Addition of the W9 peptide to bone marrow culture simultaneously inhibited osteoclast differentiation and stimulated osteoblastic cell proliferation. An anti-sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) antibody inhibited multinucleated osteoclast formation induced by RANKL and macrophage colony-stimulating factor (M-CSF). Pit-forming activity of osteoclasts was also inhibited by the anti-Siglec-15 antibody. In addition, anti-Siglec-15 antibody treatment stimulated the appearance of osteoblasts in cultures of mouse bone marrow cells in the presence of RANKL and M-CSF. CONCLUSIONS Bone mass loss depends on the RANK-RANKL-OPG system, which is a major regulatory system of osteoclast differentiation induction, activation, and survival.
Collapse
Affiliation(s)
- Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan.
| | - Masanori Koide
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuko Nakamichi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuriko Furuya
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Chie Fukuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Eisuke Tsuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
62
|
Hanada R. The role of the RANKL/RANK/OPG system in the central nervous systems (CNS). J Bone Miner Metab 2021; 39:64-70. [PMID: 32888064 DOI: 10.1007/s00774-020-01143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
The receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK have essential roles in regulating bone metabolism and the immune system. Besides, the RANKL/RANK system plays important roles in multiple physiological and pathophysiological processes such as mammary gland development during pregnancy, cancer development, and bone metastasis. While it has long been known that RANKL and RANK are expressed in the central nervous system (CNS), the physiological roles of RANKL/RANK system in the CNS and the underlying molecular mechanisms have been elucidated recently. Over the last decade, several reports showed that the central RANKL/RANK system plays important roles in regulating body temperature, brain ischemia, autoimmune encephalopathy, feeding behavior, and energy metabolism. In this review, it is provided an updated information regarding the roles of RANKL/RANK system in the CNS.
Collapse
Affiliation(s)
- Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Yufu City, Oita, 879-5593, Japan.
| |
Collapse
|
63
|
Abstract
Almost a quarter century has passed since discovery of receptor activator of NF-κB ligand (RANKL). This discovery had a major impact on identification of mechanisms regulating osteoclast differentiation and function, establishment of a research field bridging bone and the immune system (osteoimmunology), and development of a fully human anti-RANKL neutralizing antibody (denosumab). Denosumab is now clinically available for treatment of osteoporosis and cancer-induced bone diseases in the US, Europe and many other countries, including Japan. Denosumab is a so-called blockbuster drug, with sales of 5.0 billion US dollars in 2019. This is a real success story from bench to bedside. In this review, the pivotal roles of the RANKL/RANK/OPG system in osteoclast differentiation and function are shown. RANKL is a ligand required for osteoclast generation, RANK is the receptor for RANKL, and osteoprotegerin (OPG) is a decoy receptor for RANKL. The review covers recent results showing the importance of RANKL on osteoblasts in regulation of osteogenesis and the role of RANKL-RANK dual signaling in coupling of bone resorption and formation, including demonstration of RANKL reverse signaling that we had previously hypothesized. Possible applications of anti-RANKL antibody in treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50, Kano-cho, Nagahama, Shiga, 526-0804, Japan.
| |
Collapse
|
64
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
65
|
He L, Sun X, Liu Z, Qiu Y, Niu Y. Pathogenesis and multidisciplinary management of medication-related osteonecrosis of the jaw. Int J Oral Sci 2020; 12:30. [PMID: 33087699 PMCID: PMC7578793 DOI: 10.1038/s41368-020-00093-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of bone-modifying agents and inhibits angiogenesis agents. Although the pathogenesis of MRONJ is not entirely clear, multiple factors may be involved in specific microenvironments. The TGF-β1 signalling pathway may have a key role in the development of MRONJ. According to the clinical stage, multiple variables should be considered when selecting the most appropriate treatment. Therefore, the prevention and management of treatment of MRONJ should be conducted in patient-centred multidisciplinary team collaborative networks with oncologists, dentists and dental specialists. This would comprise a closed responsibility treatment loop with all benefits directed to the patient. Thus, in the present review, we aimed to summarise the pathogenesis, risk factors, imaging features, clinical staging, therapeutic methods, prevention and treatment strategies associated with MRONJ, which may provide a reference that can inform preventive strategies and improve the quality of life for patients in the future.
Collapse
Affiliation(s)
- Lina He
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Zhijie Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanfen Qiu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China. .,School of Stomatology, Harbin Medical University, Harbin, China.
| |
Collapse
|
66
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
67
|
Pérez-Hernández N, Posadas-Sánchez R, Vargas-Alarcón G, Cazarín-Santos BG, Miranda-Duarte A, Rodríguez-Pérez JM. Genetic Variants and Haplotypes in OPG Gene Are Associated with Premature Coronary Artery Disease and Traditional Cardiovascular Risk Factors in Mexican Population: The GEA Study. DNA Cell Biol 2020; 39:2085-2094. [PMID: 32955941 DOI: 10.1089/dna.2020.5949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Basic and clinical research have demonstrated that osteoprotegerin (OPG) plays an important role in the development and progression of cardiovascular diseases. The aim of this study was to evaluate the association of four polymorphic sites (rs2073618, rs3134069, rs3134070, and rs3102735) of OPG gene with premature coronary artery disease (pCAD), and with cardiometabolic parameters. The polymorphisms were genotyped using 5' exonuclease TaqMan genotyping assays with real-time PCR in 1098 individuals with pCAD and 1041 healthy controls. rs2073618 polymorphism was associated with a high risk of developing pCAD according to different inheritance models: additive (p = 0.001; odds ratio [OR] = 1.283), dominant (p = 0.006; OR = 1.383), recessive (p = 0.011; OR = 1.423), and codominant 2 (p = 0.001; OR = 1.646). The four polymorphisms were associated with different cardiovascular risk factors in individuals with pCAD and controls. Our results suggest that OPG rs2073618 polymorphism is associated with an increased risk of pCAD. In addition, two haplotypes were associated with pCAD, one increasing the risk (CACT) and another one as protective (GACC).
Collapse
Affiliation(s)
- Nonanzit Pérez-Hernández
- Department of Molecular Biology and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Gilberto Vargas-Alarcón
- Department of Molecular Biology and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Antonio Miranda-Duarte
- Department of Genetics, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | | |
Collapse
|
68
|
Kram V, Jani P, Kilts TM, Li L, Chu EY, Young MF. OPG-Fc treatment partially rescues low bone mass phenotype in mature Bgn/Fmod deficient mice but is deleterious to the young mouse skeleton. J Struct Biol 2020; 212:107627. [PMID: 32950603 DOI: 10.1016/j.jsb.2020.107627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023]
Abstract
Biglycan (Bgn) and Fibromodulin (Fmod) are small leucine rich proteoglycans (SLRPs) which are abundant in the extra-cellular matrix (ECM) of mineralized tissues. We have previously generated a Bgn/Fmod double knock-out (DKO) mouse model and found it has a 3-fold increase in osteoclastogenesis compared with Wild type (WT) controls, resulting in a markedly low bone mass (LBM) phenotype. To try and rescue/repair the LBM phenotype of Bgn/Fmod DKO mice by suppressing osteoclast formation and activity, 3- and 26-week-old Bgn/Fmod DKO mice and age/gender matched WT controls were treated with OPG-Fc for 6 weeks after which bone parameters were evaluated using DEXA, micro-computed tomography (μCT) and serum biomarkers analyses. In the appendicular skeleton, OPG-Fc treatment improved some morphometric and geometric parameters in both the trabecular and cortical compartments in Bgn/Fmod DKO female and male mice, especially in the repair module. For many of the skeletal parameters analyzed, the Bgn/Fmod DKO mice were more responsive to the treatment than their WT controls. In addition, we found that OPG-Fc treatment was not able to prevent or ameliorate the formation of ectopic ossification, which are common lesions seen in aged joints and are one of the phenotypical hallmarks of our Bgn/Fmod DKO model. Analysis of skull bones, specifically the occipital bone, showed the treatment recovered some parameters of LBM phenotype in the craniofacial skeleton, more so in the younger rescue module. Using OPG-Fc as treatment alleviated, yet did not completely restore, the severe osteopenia and mineralized tissue structural abnormalities that Bgn/Fmod DKO mice suffer from.
Collapse
Affiliation(s)
- Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Emily Y Chu
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States.
| |
Collapse
|
69
|
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020; 9:E2073. [PMID: 32927921 PMCID: PMC7564526 DOI: 10.3390/cells9092073] [Citation(s) in RCA: 663] [Impact Index Per Article: 132.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Jung-Min Kim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Chujiao Lin
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Zheni Stavre
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (J.-M.K.); (C.L.); (Z.S.)
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
70
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
71
|
Davidson RK, Himes ER, Takigawa S, Chen A, Horn MR, Meijome T, Wallace JM, Kacena MA, Yokota H, Nguyen AV, Li J. The loss of STAT3 in mature osteoclasts has detrimental effects on bone structure. PLoS One 2020; 15:e0236891. [PMID: 32730332 PMCID: PMC7392311 DOI: 10.1371/journal.pone.0236891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/15/2020] [Indexed: 01/05/2023] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) has recently been shown to be involved in bone development and has been implicated in bone diseases, such as Job’s Syndrome. Bone growth and changes have been known for many years to differ between sexes with male bones tending to have higher bone mass than female bones and older females tending to lose bone mass at faster rates than older males. Previous studies using conditional knock mice with Stat3 specifically deleted from the osteoblasts showed both sexes exhibited decreased bone mineral density (BMD) and strength. Using the Cre-Lox system with Cathepsin K promotor driving Cre to target the deletion of the Stat3 gene in mature osteoclasts (STAT3-cKO mice), we observed that 8-week old STAT3-cKO female femurs exhibited significantly lower BMD and bone mineral content (BMC) compared to littermate control (CN) females. There were no differences in BMD and BMC observed between male knock-out and male CN femurs. However, micro-computed tomography (μCT) analysis showed that both male and female STAT3-cKO mice had significant decreases in bone volume/tissue volume (BV/TV). Bone histomorphometry analysis of the distal femur, further revealed a decrease in bone formation rate and mineralizing surface/bone surface (MS/BS) with a significant decrease in osteoclast surface in female, but not male, STAT3-cKO mice. Profiling gene expression in an osteoclastic cell line with a knockdown of STAT3 showed an upregulation of a number of genes that are directly regulated by estrogen receptors. These data collectively suggest that regulation of STAT3 differs in male and female osteoclasts and that inactivation of STAT3 in osteoclasts affects bone turnover more in females than males, demonstrating the complicated nature of STAT3 signaling pathways in osteoclastogenesis. Drugs targeting the STAT3 pathway may be used for treatment of diseases such as Job’s Syndrome and osteoporosis.
Collapse
Affiliation(s)
- Rebecca K. Davidson
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Evan R. Himes
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Shinya Takigawa
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - M. Ryne Horn
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Tomas Meijome
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Andrew V. Nguyen
- Department of Biological Sciences and Geology, the City University of New York-Queensborough Community College, Bayside, New York, United States of America
- * E-mail: (JL); (AVN)
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail: (JL); (AVN)
| |
Collapse
|
72
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
73
|
Zaker B, Ardalan M. Vascular calcification; Stony bridge between kidney and heart. J Cardiovasc Thorac Res 2020; 12:165-171. [PMID: 33123321 PMCID: PMC7581848 DOI: 10.34172/jcvtr.2020.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification is a high prevalent complication that arises as a consequence of impaired calcium and phosphate balance amongst cardiovascular patients. Multiple inducer/ inhibitory molecules and pathways as well as genetic background and lifestyle play role in this phenomenon. According to which vessel layer (intima, media or both) is involved different types of vascular calcification take place. Actual mechanism and consensus pathways have not been elucidated yet and needs further investigations.
Collapse
Affiliation(s)
- Behzad Zaker
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
74
|
Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell Death Differ 2020; 28:156-169. [PMID: 32694652 PMCID: PMC7853126 DOI: 10.1038/s41418-020-0590-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
p53 plays a pivotal role in controlling the differentiation of mesenchymal stem cells (MSCs) by regulating genes involved in cell cycle and early steps of differentiation process. In the context of osteogenic differentiation of MSCs and bone homeostasis, the osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB (OPG/RANKL/RANK) axis is a critical signaling pathway. The absence or loss of function of p53 has been implicated in aberrant osteogenic differentiation of MSCs that results in higher bone formation versus erosion, leading to an unbalanced bone remodeling. Here, we show by microCT that mice with p53 deletion systemically or specifically in mesenchymal cells possess significantly higher bone density than their respective littermate controls. There is a negative correlation between p53 and OPG both in vivo by analysis of serum from p53+/+, p53+/-, and p53-/- mice and in vitro by p53 knockdown and ChIP assay in MSCs. Notably, high expression of Opg or its combination with low level of p53 are prominent features in clinical cancer lesion of osteosarcoma and prostate cancer respectively, which correlate with poor survival. Intra-bone marrow injection of prostate cancer cells, together with androgen can suppress p53 expression and enhance local Opg expression, leading to an enhancement of bone density. Our results support the notion that MSCs, as osteoblast progenitor cells and one major component of bone microenvironment, represent a cellular source of OPG, whose amount is regulated by the p53 status. It also highlights a key role for the p53-OPG axis in regulating the cancer associated bone remodeling.
Collapse
|
75
|
Effects of low dietary phosphorus on tibia quality and metabolism in caged laying hens. Prev Vet Med 2020; 181:105049. [PMID: 32526547 DOI: 10.1016/j.prevetmed.2020.105049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/23/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a common bone metabolic disease in caged laying hens. This disease affects animal welfare and economic costs. In this study, a model of osteoporosis induced by low dietary phosphorus was established. A total of sixty 22-week-old Roman white laying hens were randomly divided into two groups, including a control group (group C) and a low dietary phosphorus group (group P). The effects of low dietary phosphorus on the endocrine and tibial osteoprotegerin (OPG)/nuclear factor kappa B receptor activating factor ligand (RANKL) signaling pathways of osteoporosis in caged laying hens were analyzed by serology, bone biomechanics, molecular biology and histopathology. The results showed that low dietary phosphorus decreased the production performance, and egg quality of laying hens and increased the contents of serum calcium (Ca), osteocalcin (OCN), alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRACP). The contents of serum phosphorus, calcitonin (CT), OPG and tibial biomechanics index decreased. The bone mineral density (BMD), cortical bone thickness and the expression level of OPG protein in tibia decreased. The expression of OCN, nuclear factor kappa B receptor activating factor (RANK) and RANKL protein increased. Low dietary phosphorus caused thinning and fracture of the bone trabeculae and enlargement of the bone marrow cavity of tibia. Our results suggest that phosphorus may affect bone metabolism by regulating the OPG/RANKL signaling pathway.
Collapse
|
76
|
Bouzid A, Tekari A, Jbeli F, Chakroun A, Hansdah K, Souissi A, Singh N, Mosrati MA, Achour I, Ghorbel A, Charfeddine I, Ramchander PV, Masmoudi S. Osteoprotegerin gene polymorphisms and otosclerosis: an additional genetic association study, multilocus interaction and meta-analysis. BMC MEDICAL GENETICS 2020; 21:122. [PMID: 32493243 PMCID: PMC7268516 DOI: 10.1186/s12881-020-01036-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Otosclerosis (OTSC) is among the most common causes of a late-onset hearing loss in adults and is characterized by an abnormal bone growth in the otic capsule. Alteration in the osteoprotegerin (OPG) expression has been suggested in the implication of OTSC pathogenesis. METHODS A case-control association study of rs2228568, rs7844539, rs3102734 and rs2073618 single nucleotide polymorphisms (SNPs) in the OPG gene was performed in a Tunisian-North African population composed of 183 unrelated OTSC patients and 177 healthy subjects. In addition, a multilocus association and a meta-analysis of existing studies were conducted. RESULTS Rs3102734 (p = 0.013) and rs2073618 (p = 0.007) were significantly associated with OTSC, which were predominantly detected in females after multiple corrections. Among the OPG studied SNPs, the haplotypes A-A-C-G (p = 0.0001) and A-A-C-C (p = 0.0004) were significantly associated with OTSC in females. Multilocus association revealed that the SNPs: rs2073618 in OPG, rs1800472 in TGFβ1, rs39335, rs39350 and rs39374 in RELN, and rs494252 in chromosome 11 showed significant OTSC-associated alleles in Tunisian individuals. In addition, meta-analysis of the rs2073618 SNP in Tunisian, Indian and Italian populations revealed evidence of an association with OTSC (OR of 0.826, 95% CI [0.691-0.987], p = 0.035). CONCLUSIONS Our findings suggest that rs3102734 and rs2073618 variants are associated with OTSC in North African ethnic Tunisian population. Meta-analysis of the rs2073618 in three different ethnic population groups indicated an association with OTSC.
Collapse
Affiliation(s)
- Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia.
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Fida Jbeli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Amine Chakroun
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | - Kirtal Hansdah
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Neha Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mohamed Ali Mosrati
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Imen Achour
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | - Abdelmonem Ghorbel
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | - Ilhem Charfeddine
- Department of Otorhinolaryngology, Habib Bourguiba Teaching Hospital, University of Sfax, Avenue El Ferdaws, 3029, Sfax, Tunisia
| | | | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Road Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisia
| |
Collapse
|
77
|
Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy. Front Cell Dev Biol 2020; 8:325. [PMID: 32478071 PMCID: PMC7240042 DOI: 10.3389/fcell.2020.00325] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is age-related deterioration in bone mass and micro-architecture. Denosumab is a novel human monoclonal antibody for osteoporosis. It is a receptor activator of nuclear factor-κB ligand (RANKL) inhibitor, which binds to and inhibits osteoblast-produced RANKL, in turn reduces the binding between RANKL and osteoclast receptor RANK, therefore decreases osteoclast-mediated bone resorption and turnover. However, adverse events have also been reported after denosumab treatment, including skin eczema, flatulence, cellulitis and osteonecrosis of the jaw (ONJ). Extensive researches on the mechanism of adverse reactions caused by denosumab have been conducted and may provide new insights into developing new RANKL inhibitors that achieve better specificity and safety. Aptamers are single-stranded oligonucleotides that can bind to target molecules with high specificity and affinity. They are screened from large single-stranded synthetic oligonucleotides and enriched by a technology named SELEX (systematic evolution of ligands by exponential enrichment). With extra advantages such as high stability, low immunogenicity and easy production over antibodies, aptamers are hypothesized to be promising candidates for therapeutic drugs targeting RANKL to counteract osteoporosis. In this review, we focus on the pros and cons of denosumab treatment in osteoporosis and the implication for novel aptamer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
78
|
Wang T, He H, Liu S, Jia C, Fan Z, Zhong C, Yu J, Liu H, He C. Autophagy: A Promising Target for Age-related Osteoporosis. Curr Drug Targets 2020; 20:354-365. [PMID: 29943700 DOI: 10.2174/1389450119666180626120852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is a process the primary role of which is to clear up damaged cellular components such as long-lived proteins and organelles, thus participating in the conservation of different cells. Osteoporosis associated with aging is characterized by consistent changes in bone metabolism with suppression of bone formation as well as increased bone resorption. In advanced age, not only bone mass but also bone strength decrease in both sexes, resulting in an increased incidence of fractures. Clinical and animal experiments reveal that age-related bone loss is associated with many factors such as accumulation of autophagy, increased levels of reactive oxygen species, sex hormone deficiency, and high levels of endogenous glucocorticoids. Available basic and clinical studies indicate that age-associated factors can regulate autophagy. Those factors play important roles in bone remodeling and contribute to decreased bone mass and bone strength with aging. In this review, we summarize the mechanisms involved in bone metabolism related to aging and autophagy, supplying a theory for therapeutic targets to rescue bone mass and bone strength in older people.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongchen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shaxin Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyan Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Can Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiadan Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Honghong Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
79
|
YASHIMA Y, KAKU M, YAMAMOTO T, IZUMINO J, KAGAWA H, IKEDA K, SHIMOE S, TANIMOTO K. Effect of continuous compressive force on the expression of RANKL, OPG, and VEGF in osteocytes. Biomed Res 2020; 41:91-99. [DOI: 10.2220/biomedres.41.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuka YASHIMA
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Masato KAKU
- Department of Anatomy and Functional Restorations, Division of Oral Health Sciences, Hiroshima University Graduate School of Biomedical Sciences
| | - Taeko YAMAMOTO
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Jin IZUMINO
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Haruka KAGAWA
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Kazutaka IKEDA
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Saiji SHIMOE
- Department of Anatomy and Functional Restorations, Division of Oral Health Sciences, Hiroshima University Graduate School of Biomedical Sciences
| | - Kotaro TANIMOTO
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| |
Collapse
|
80
|
Primary Retention of Molars and RANKL Signaling Alteration during Craniofacial Growth. J Clin Med 2020; 9:jcm9040898. [PMID: 32218136 PMCID: PMC7231205 DOI: 10.3390/jcm9040898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
The primary retention of molars observed in clinic corresponds to a still-unexplained absence of molar eruption despite the presence of an eruption pathway, resembling the experimental transient inhibition of RANKL signaling in mice. The aim of the present study was to confront the hypothesis according to which the primary retention of molars is associated with transitory perturbations to RANKL signaling during growth as part of a wider craniofacial skeleton pattern. The experimental strategy was based on combining a clinical study and an animal study corresponding to the characterization of the craniofacial phenotypes of patients with primary retention of molars and analyses in mice of the consequences of transient inhibition of RANKL signaling on molar eruption and craniofacial growth. The clinical study validated the existence of a particular craniofacial phenotype in patients with primary retention of molars: a retromandibular skeletal class II typology with reduced mandibular dimensions which manifests itself at the dental level by a class II/2 with palatoversion of the upper incisors and anterior overbite. The animal study demonstrated that transient invalidation of RANKL signaling had an impact on the molar eruption process, the severity of which was dependent on the period of inhibition and was associated with a reduction in two craniofacial morphometric parameters: total skull length and craniofacial vault length. In conclusion, primary retention of molars may be proposed as part of the craniofacial skeleton phenotype associated with a transitory alteration in RANKL signaling during growth.
Collapse
|
81
|
Sugisaki R, Miyamoto Y, Yoshimura K, Sasa K, Kaneko K, Tanaka M, Itose M, Inoue S, Baba K, Shirota T, Chikazu D, Kamijo R. Possible involvement of elastase in enhanced osteoclast differentiation by neutrophils through degradation of osteoprotegerin. Bone 2020; 132:115216. [PMID: 31899346 DOI: 10.1016/j.bone.2019.115216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Neutrophils are one of the most abundant leukocytes in the sites of lesion of inflammatory diseases such as periodontitis and rheumatoid arthritis. These diseases are accompanied by bone loss, which worsens the quality of life of the patients. However, the role of neutrophils in the inflammatory bone loss has not been fully investigated. In the present study, we found that human neutrophils enhanced osteoclast differentiation from mouse bone marrow cells co-cultured with mouse osteoblasts in the presence of active vitamin D3. The enhanced osteoclast differentiation was significantly suppressed by elastatinal, a synthetic inhibitor of neutrophil elastase. Also, we found that human neutrophils degraded human recombinant osteoprotegerin (OPG), a decoy receptor for nuclear factor κB (RANK) ligand (RANKL), the essential osteoclast differentiation-inducing factor, expressed by osteoblasts. Degradation of OPG by neutrophils was suppressed by human α1-protease inhibitor, the major endogenous inhibitor of neutrophil elastase. Recombinant human neutrophil elastase degraded human OPG in its death domain-like region. These results indicated that the degradation of OPG by elastase contributed at least in part to the enhanced osteoclast differentiation by neutrophils. There is a possibility that neutrophils play an important role in inflammatory bone loss.
Collapse
Affiliation(s)
- Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kotaro Kaneko
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Tanaka
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Masakatsu Itose
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Sakie Inoue
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Kazuyoshi Baba
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
82
|
Peters H, Macke C, Mommsen P, Zeckey C, Clausen JD, Krettek C, Neunaber C, Winkelmann M. Predictive Value of Osteoprotegerin and Neutrophil Gelatinase-associated Lipocalin on Multiple Organ Failure in Multiple Trauma. In Vivo 2020; 33:1573-1580. [PMID: 31471407 DOI: 10.21873/invivo.11639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Multiple organ dysfunction syndrome (MODS) is the leading cause of late posttraumatic mortality. This study analyzed the prognostic values of osteoprotegerin (OPG) and neutrophil gelatinase-associated lipocalin (NGAL/lipocalin 2) compared to interleukin-6 (IL-6) in multiply injured patients. PATIENTS AND METHODS A retrospective observational cohort study on multiply injured patients with an injury severity score (ISS) of ≥16 was performed. OPG, NGAL and IL-6 blood concentrations were measured. Statistical analysis comprised receiver-operating-characteristic (ROC) analysis with the corresponding area under the curve (AUC). RESULTS Thirty-nine patients with a mean ISS of 34±11 were included. Fourteen patients (36%) developed MODS and 8 patients (21%) died. Plasma levels of NGAL, OPG, and IL-6 were significantly elevated in the MODS+ group. Each biomarker positively correlated with MODS score and diagnosis of MODS. CONCLUSION NGAL and OPG might be indicative of MODS and could have the potential to be biomarkers in the early detection of patients at risk of posttraumatic MODS.
Collapse
Affiliation(s)
- Henning Peters
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Christian Macke
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Philipp Mommsen
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Christian Zeckey
- Trauma Department, Hannover Medical School, Hannover, Germany.,Department of General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
83
|
Deligiorgi MV, Panayiotidis MI, Griniatsos J, Trafalis DT. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis 2020; 37:13-30. [PMID: 31578655 DOI: 10.1007/s10585-019-09997-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
More than 2 decades ago, the discovery of osteoprotegerin (OPG) as inhibitor of the receptor of activator of nuclear factor Kb (RANK) ligand (RANKL) revolutionized our understanding of bone biology and oncology. Besides acting as decoy receptor for RANKL, OPG acts as decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). OPG, RANKL, and TRAIL are ubiquitously expressed, stimulating per se pivotal signaling cascades implicated in cancer. In the context of cancer cell-bone cell interactions, cancer cells skew the OPG/RANKL/RANK (RANKL cognate receptor) balance towards bone destruction and tumor growth through favoring the RANKL/RANK interface, circumventing OPG. Numerous preclinical and clinical studies demonstrate the dual role of OPG in cancer: antitumor and tumor-promoting. OPG potentially conveys an antitumor signal through inhibiting the tumor-promoting RANKL signaling-both the osteoclast-dependent and the osteoclast-independent-and the tumor-promoting TRAIL signaling. On the other hand, the presumed tumor-promoting functions of OPG are: (i) abrogation of TRAIL-induced apoptosis of cancer cells; (ii) abrogation of RANKL-induced antitumor immunity; and (iii) stimulation of oncogenic and prometastatic signaling cascades downstream of the interaction of OPG with diverse proteins. The present review dissects the role of OPG in bone oncology. It presents the available preclinical and clinical data sustaining the dual role of OPG in cancer and focuses on the imbalanced RANKL/RANK/OPG interplay in the landmark "vicious cycle" of skeletal metastatic disease, osteosarcoma, and multiple myeloma. Finally, current challenges and future perspectives in exploiting OPG signaling in bone oncology therapeutics are discussed.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Clinical Pharmacology Unit, Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Goudi, 11527, Athens, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Ellison Building, Room A516, Newcastle upon Tyne, NE1 8ST, UK
| | - John Griniatsos
- 1st Department of Surgery, Faculty of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, 17 Agiou Thoma Str, Goudi, 115-27, Athens, Greece
| | - Dimitrios T Trafalis
- Clinical Pharmacology Unit, Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Goudi, 11527, Athens, Greece
| |
Collapse
|
84
|
Al Mamun MA, Asim MMH, Sahin MAZ, Al‐Bari MAA. Flavonoids compounds from Tridax procumbens inhibit osteoclast differentiation by down-regulating c-Fos activation. J Cell Mol Med 2020; 24:2542-2551. [PMID: 31919976 PMCID: PMC7028861 DOI: 10.1111/jcmm.14948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
The total flavonoids from Tridax procumbens (TPFs) have been reported significantly to suppress on RANKL-induced osteoclast differentiation and bone resorption in mouse primary cultured osteoclasts. However, the effects of ethyl ether fraction of Tridax procumbens flavonoids (TPF) on osteoclastogenesis remain unknown. In this study, we investigated the effects of TPF on lipopolysaccharides (LPS)-induced osteoclast differentiation, actin ring formation, and explored its molecular mechanism in vitro. Matured osteoclast was counted as the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, and activity of osteoclast was assessed by performing the pit formation assays. Real-time polymerase chain reaction (RT-PCR) was performed for evaluation of the expression of osteoclast differentiation-related genes. TPF reduced the TRAP-positive multinucleated osteoclasts, inhibited TRAP and acid phosphatase (ACP) activities and decreased the expression of osteoclast differentiating genes, including cathepsin K, metalloproteinase-2 (MMP-2), MMP-9, MMP-13 and osteoclast-associated receptor (OSCAR). Furthermore, osteoclast-dependent actin rings formation and resorption pits were dramatically inhibited by the treatment with TPF. TPF markedly decreased the expression levels of transcription factors such as c-Fos, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and activator protein-1 (AP-1). Taken together, our findings indicated that TPF suppressed both osteoclast differentiation and activities. Therefore, TPF might be a promising and emerging drug candidate for the treatment of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Md. Abdullah Al Mamun
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Md. Muzammal Haque Asim
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Md. Ali Zaber Sahin
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | | |
Collapse
|
85
|
Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, Takahashi-Iwanaga H, Yamada T, Hisamoto M, Nakamura M, Udagawa N, Sato S, Kaisho T, Iwanaga T, Hase K. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun 2020; 11:234. [PMID: 31932605 PMCID: PMC6957684 DOI: 10.1038/s41467-019-13883-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Microfold cells (M cells) are responsible for antigen uptake to initiate immune responses in the gut-associated lymphoid tissue (GALT). Receptor activator of nuclear factor-κB ligand (RANKL) is essential for M cell differentiation. Follicle-associated epithelium (FAE) covers the GALT and is continuously exposed to RANKL from stromal cells underneath the FAE, yet only a subset of FAE cells undergoes differentiation into M cells. Here, we show that M cells express osteoprotegerin (OPG), a soluble inhibitor of RANKL, which suppresses the differentiation of adjacent FAE cells into M cells. Notably, OPG deficiency increases M cell number in the GALT and enhances commensal bacterium-specific immunoglobulin production, resulting in the amelioration of disease symptoms in mice with experimental colitis. By contrast, OPG-deficient mice are highly susceptible to Salmonella infection. Thus, OPG-dependent self-regulation of M cell differentiation is essential for the balance between the infectious risk and the ability to perform immunosurveillance at the mucosal surface. Microfold cells (M cells) sit at the gut epithelial surface to sample antigens and maintain local immune homeostasis. Here the authors show that M cells are feedback-regulated by M cell-originated osteoprotegerin (OPG) to suppress RNAKL-induced M cell differentiation, and that OPG deficiency alters both gut colitis and infection phenotypes.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan. .,Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan. .,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan
| | - Nobuhide Kobayashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan
| | - Katsuyuki Shiroguchi
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, 565-0874, Japan.,Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan
| | - Eiryo Kawakami
- RIKEN Medical Sciences Innovation Hub Program (MIH), Yokohama, 230-0045, Japan
| | - Mami Mutoh
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Hiromi Takahashi-Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan
| | - Meri Hisamoto
- Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Shintaro Sato
- Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.,Mucosal Vaccine Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Osaka, 565-0871, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan. .,Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, 108-8639, Japan.
| |
Collapse
|
86
|
TAKAYANAGI H. Osteoimmunology - Bidirectional dialogue and inevitable union of the fields of bone and immunity. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:159-169. [PMID: 32281551 PMCID: PMC7247972 DOI: 10.2183/pjab.96.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 05/28/2023]
Abstract
Bone is a critically important part of the skeletal system that is essential for body support and locomotion. The immune system protects against pathogens and is active in host defense. These two seemingly distinct systems in fact interact with each other, share molecules and create a collaborative regulatory system called the "osteoimmune system". The most representative osteoimmune molecule is receptor activator of NF-κB ligand (RANKL), which plays multiple roles in the osteoimmune system under both physiological and pathological conditions such as rheumatoid arthritis and cancer metastasis to bone. Based on accumulating evidence for such mutual dependence, it is concluded that the relationship between bone and the immune system did not develop by accident but as a necessary consequence of evolution. Here I describe the history of and recent advances in osteoimmunology, providing a perspective in the contexts of both science and medicine.
Collapse
Affiliation(s)
- Hiroshi TAKAYANAGI
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
87
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
88
|
Verlinden L, Janssens I, Doms S, Vanhevel J, Carmeliet G, Verstuyf A. Vdr expression in osteoclast precursors is not critical in bone homeostasis. J Steroid Biochem Mol Biol 2019; 195:105478. [PMID: 31561003 DOI: 10.1016/j.jsbmb.2019.105478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
The long-recognized role of the vitamin D endocrine system is to maintain stable serum calcium concentrations, which are ensured by a complex interplay between parathyroid gland, kidney, intestine, and bone. However, although VDR is expressed in osteoclastogenic cells, the contribution of VDR-mediated signaling to osteoclast differentiation and activity remains undefined. We therefore deleted Vdr expression efficiently and specifically in myeloid cells by use of M lysozyme-driven Cre expression, which targets granulocytes, monocytes, macrophages and osteoclasts (Vdrmyel- mice). Bone and calcium homeostasis were investigated under basal conditions and in conditions of increased bone remodeling, by feeding Vdrmyel- and Vdrmyel+ (wildtype) mice either a normal (1%) or a low (0.02%) calcium diet from weaning onwards. Vdrmyel- mice developed normally and were normocalcemic at the age of 8 weeks, both at the normal and the low calcium diet. No differences in trabecular or cortical bone mass were observed between Vdrmyel- mice and their wildtype littermates. Dietary calcium restriction resulted in a comparable reduction of trabecular bone mass (40%) and cortical thickness (48%) in Vdrmyel- and Vdrmyel+ mice, pointing to a massive transfer of calcium from the bone to the serum. In agreement with these results, osteoclastic differentiation of hematopoietic cells of Vdrmyel- mice, either induced by M-CSF and RANKL, or cocultured with osteoblasts, occurred as efficiently as osteoclastogenesis from Vdrmyel+ mice. In conclusion, our data do not support a role for osteoclastic Vdr signaling in the control of bone homeostasis.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Herestraat 49, box 902, 3000, Leuven, Belgium.
| | - Iris Janssens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Herestraat 49, box 902, 3000, Leuven, Belgium
| | - Stefanie Doms
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Herestraat 49, box 902, 3000, Leuven, Belgium
| | - Justine Vanhevel
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Herestraat 49, box 902, 3000, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Herestraat 49, box 902, 3000, Leuven, Belgium
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Herestraat 49, box 902, 3000, Leuven, Belgium
| |
Collapse
|
89
|
Hosoyama Y, Domae E, Goda S, Matsumoto N. Effects of gallotannin on osteoclastogenesis and the p38 MAP kinase pathway. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2016.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yukiko Hosoyama
- Graduate School of Dentistry, Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| | - Eisuke Domae
- Department of Biochemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| | - Seiji Goda
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, 238-8580, Japan
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| |
Collapse
|
90
|
Me R, Gao N, Dai C, Yu FSX. IL-17 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. THE JOURNAL OF IMMUNOLOGY 2019; 204:169-179. [PMID: 31767781 DOI: 10.4049/jimmunol.1900736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to elucidate the expression and functions of IL-17 in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. We found that P. aeruginosa infection induced and increased signaling of IL-23/23R/17/17R in mouse corneas. Targeting IL-17A or the IL-17A-specific receptor IL-17RA/IL-17RC with neutralizing Abs resulted in a significant decrease in the severity of P. aeruginosa keratitis, including a decrease in bacterial burden and polymorphonuclear leukocyte infiltration. IL-17A-signaling blockade also significantly reduced the expression of the proinflammatory cytokines L-1β, IL-24, and MMP-13 and increased the expression of the anti-inflammatory cytokine IL-1RA in mouse corneal epithelium. The presence of mouse IL-17A exacerbated P. aeruginosa-mediated tissue destruction. A cytokine protein array revealed that the expression of osteoprotegerin (OPG) was regulated by IL-17A, and OPG neutralization also resulted in a decrease in the severity of P. aeruginosa keratitis. Although both IL-17 and OPG affected the balanced expression of IL-1β and IL-1RA, only IL-17 inhibited the expression of TH2 cytokines. Taken together, our results revealed that IL-17A, along with its downstream factor OPG, plays a detrimental role in the pathogenesis of P. aeruginosa keratitis. Targeting IL-17A and/or the OPG/RANKL/RANK/TRAIL system is a potential therapeutic strategy in controlling the outcome of P. aeruginosa keratitis, which was demonstrated by concurrent topical application of IL-17A-neutralizing Ab and ciprofloxacin in B6 mice.
Collapse
Affiliation(s)
- Rao Me
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Nan Gao
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Chenyang Dai
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and.,Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250014
| | - Fu-Shin X Yu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
91
|
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20:ijms20184653. [PMID: 31546898 PMCID: PMC6769977 DOI: 10.3390/ijms20184653] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Béla Kovács
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Enikő Vajda
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| |
Collapse
|
92
|
Azizieh FY, Shehab D, Jarallah KA, Gupta R, Raghupathy R. Circulatory Levels of RANKL, OPG, and Oxidative Stress Markers in Postmenopausal Women With Normal or Low Bone Mineral Density. Biomark Insights 2019; 14:1177271919843825. [PMID: 31452599 PMCID: PMC6700864 DOI: 10.1177/1177271919843825] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and oxidative stress markers are suggested to contribute to bone loss in osteoporosis that occurs in menopause. However, the association between these markers and bone mineral density (BMD) is controversial. The aim of this study was to measure circulatory levels of these parameters in postmenopausal women with normal or low BMD. Methods: The study population included 71 postmenopausal women, of whom 25 had normal BMD, 31 had osteopenia, and 15 had osteoporosis. Serum levels of RANKL, OPG, and 5 oxidative stress markers (catalase, peroxiredoxin 2 [PRX2], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and thioredoxin [TRx1]) were measured using the Multiplex system. Results: As compared with subjects having normal BMD, subjects with low BMD had significantly lower median serum levels of OPG, catalase, SOD2, and PRX2 (P = .004, .031, .044, and .041 respectively). Although levels of RANKL were not different between the 2 groups, the RANKL/OPG ratio was higher in women with low BMD (P = .027). Conclusions: These data provide insights into the possible roles of OPG, RANKL, and oxidative stress in the pathogenesis of postmenopausal osteoporosis. However, the lack of association between these markers and BMD indicates that osteoporosis is complex and multivariate.
Collapse
Affiliation(s)
- Fawaz Y Azizieh
- Department of Mathematics and Natural Sciences, International Centre for Applied Mathematics and Computational Bioengineering, Gulf University for Science and Technology, Hawally, Kuwait
| | - Diaa Shehab
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Khaled Al Jarallah
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Renu Gupta
- Department of Radiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
93
|
Yasuda H. [The mechanism of anti-RANKL antibody in the treatment of metabolic bone diseases including osteoporosis - possible applications of anti-RANKL antibody to the treatment of cancer patients]. Nihon Yakurigaku Zasshi 2019; 153:11-15. [PMID: 30643086 DOI: 10.1254/fpj.153.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Discovery of RANKL (receptor activator of NF-κB ligand) gave a great impact on identification of the mechanisms regulating osteoclast differentiation and function, establishment of research field bridging bone and mineral research and immunology (osteoimmunology), and development of a fully human anti-RANKL monoclonal neutralizing antibody (denosumab). Denosumab has been clinically available for treatment of osteoporosis and cancer-induced bone diseases in the US, Europe and many countries including Japan. Denosumab is a so-called blockbuster of which sales amount was 3.9 billion US dollars in 2017. Because RANKL is the absolute factor for osteoclast differentiation, anti-RANKL antibody is very effective and its application is good news for many patients. Recent topics are the identification of importance of RANKL on osteoblasts in regulation of osteogenesis and the demonstration of RANKL-RANK (the receptor of RANKL) dual signaling in coupling between bone resorption and bone formation. RANKL reverse signaling that we had hypothesized was demonstrated at last. In this review I describe the mechanism of anti-RANKL antibody in the treatment of metabolic bone diseases including osteoporosis. I also suggest possible applications of anti-RANKL antibody to the treatment of cancer patients.
Collapse
Affiliation(s)
- Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd
| |
Collapse
|
94
|
Rabinovich IM, Snegirev MV, Markheev CI. [Dental root resorption etiology, diagnosis and treatment]. STOMATOLOGII︠A︡ 2019; 98:109-116. [PMID: 31322606 DOI: 10.17116/stomat201998031109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The process of resorption of hard tooth tissues is associated with the activity of osteoclasts. However, the initiation of resorption can be caused by many factors acting separately or simultaneously. The paper presents the characteristics of pathological tooth resorption. The main etiological factors, pathogenesis, clinical manifestations, as well as treatment of various forms of tooth resorption are described.
Collapse
Affiliation(s)
- I M Rabinovich
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - M V Snegirev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - Ch I Markheev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
95
|
Souza PPC, Lerner UH. Finding a Toll on the Route: The Fate of Osteoclast Progenitors After Toll-Like Receptor Activation. Front Immunol 2019; 10:1663. [PMID: 31379855 PMCID: PMC6652233 DOI: 10.3389/fimmu.2019.01663] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
M-CSF and RANKL are two crucial cytokines stimulating differentiation of mature, bone resorbing, multinucleated osteoclasts from mononucleated progenitor cells in the monocyte/macrophage lineage. In addition to the receptors for M-CSF and RANKL, osteoclast progenitor cells express receptors for several other pro- and anti-osteoclastogenic cytokines, which also regulate osteoclast formation by affecting signaling downstream M-CSF and RANKL receptors. Similar to many other cells originating from myeloid hematopoetic stem cells, also osteoclast progenitors express toll-like receptors (TLRs). Nine murine TLRs are expressed in the progenitors and all, with the exception of TLR2 and TLR4, are downregulated during osteoclastogenesis. Activation of TLR2, TLR4, and TLR9, but not TLR5, in osteoclast progenitors stimulated with M-CSF and RANKL arrests differentiation along the osteoclastic lineage and keeps the cells at a macrophage stage. When the progenitors are primed with M-CSF/RANKL and then stimulated with agonists for TLR2, TLR4, or TLR9 in the presence of M-CSF, but in the absence of RANKL, the cells differentiate to mature, bone resorbing osteoclasts. TLR 2, 4, 5, and 9 are also expressed on osteoblasts and their activation increases osteoclast differentiation by an indirect mechanism through stimulation of RANKL. In mice, treatment with agonists for TLR2, 4, and 5 results in osteoclast formation and extensive bone loss. It remains to be shown the relative importance of inhibitory and stimulatory effects by TLRs on osteoclast progenitors and the role of RANKL produced by TLR stimulated osteoblasts, for the bone resorbing effects in vivo.
Collapse
Affiliation(s)
- Pedro P C Souza
- Faculty of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
96
|
Salvador F, Llorente A, Gomis RR. From latency to overt bone metastasis in breast cancer: potential for treatment and prevention. J Pathol 2019; 249:6-18. [PMID: 31095738 PMCID: PMC6771808 DOI: 10.1002/path.5292] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Bone metastasis is present in a high percentage of breast cancer (BCa) patients with distant disease, especially in those with the estrogen receptor‐positive (ER+) subtype. Most cells that escape primary tumors are unable to establish metastatic lesions, which suggests that target organ microenvironments are hostile for tumor cells. This implies that BCa cells must achieve a process of speciation to adapt to the new conditions imposed in the new organ. Bone has unique characteristics that can be exploited by cancer cells: it undergoes constant remodeling and comprises diverse environments (including osteogenic, perivascular, and hematopoietic stem cell niches). This allows colonizing cells to take advantage of numerous adhesion molecules, matrix proteins, and soluble factors that facilitate homing, survival, and, eventually, metastatic outgrowth. However, in most cases, metastatic lesions enter into a latency state that can last months, years, or even decades, before forming a clinically detectable macrometastasis. This dormant state challenges the effectiveness of adjuvant chemotherapy. Detecting which tumors are more prone to metastasize to bone and developing new specific therapies that target bone metastasis represent urgent clinical needs. Here, we review the biological mechanisms of BCa bone metastasis and provide the latest options of treatments and predictive markers that are currently in clinical use or are being tested in clinical assays. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fernando Salvador
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alicia Llorente
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Roger R Gomis
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
97
|
Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proc Natl Acad Sci U S A 2019; 116:11988-11996. [PMID: 31138692 PMCID: PMC6575181 DOI: 10.1073/pnas.1821770116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Identifying components of breast milk that influence postnatal development though their effects on the gut microbiota and immune system could provide new therapeutic approaches for childhood undernutrition, including heretofore treatment-refractory linear growth faltering (stunting). Plasma biomarkers of osteoclast-mediated bone resorption and osteoblast-driven bone formation in stunted Bangladeshi children provided evidence for elevated osteoclastic activity. Gnotobiotic mice, colonized with a stunted infant’s gut microbiota, exhibited decreased bone resorption when consuming diets supplemented with a purified bovine oligosaccharide mixture dominated by sialylated structures found in human breast milk. Supplementation decreased osteoclastogenesis while sparing osteoblast activity; the microbiota, intestinal cell populations, and immune mediators contribute to these responses. The influence of milk oligosaccharides on the gut microbiota–bone axis has diagnostic and therapeutic implications. Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2′-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting.
Collapse
|
98
|
TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets? Clin Sci (Lond) 2019; 133:1145-1166. [PMID: 31097613 PMCID: PMC6526163 DOI: 10.1042/cs20181116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.
Collapse
|
99
|
Jiang M, Peng L, Yang K, Wang T, Yan X, Jiang T, Xu J, Qi J, Zhou H, Qian N, Zhou Q, Chen B, Xu X, Deng L, Yang C. Development of Small-Molecules Targeting Receptor Activator of Nuclear Factor-κB Ligand (RANKL)—Receptor Activator of Nuclear Factor-κB (RANK) Protein–Protein Interaction by Structure-Based Virtual Screening and Hit Optimization. J Med Chem 2019; 62:5370-5381. [PMID: 31082234 DOI: 10.1021/acs.jmedchem.8b02027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Lei Peng
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kai Yang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Tianqi Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Xueming Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Tao Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Bo Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
100
|
Lin ZM, Liu YT, Xu YS, Yang XQ, Zhu FH, Tang W, He SJ, Zuo JP. Cervus and cucumis peptides ameliorates bone erosion in experimental arthritis by inhibiting osteoclastogenesis. Lupus Sci Med 2019; 6:e000331. [PMID: 31168402 PMCID: PMC6519612 DOI: 10.1136/lupus-2019-000331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Rheumatoid arthritis is an autoimmune disease characterised by inflammation and bone loss, leading to joint destruction and deformity. The cervus and cucumis polypeptide (CCP) injection, one of the traditional Chinese medicine injections combined extracts from deer horn and sweet melon seeds, is widely used to treat arthritis and bone fracture in China. The present study investigated the therapeutic efficacy and mechanism of CCP on pathological immune cells and bone homoeostasis in rodent experimental arthritis. METHODS The effects of CCP (4 mg/kg and 2 mg/kg) on clinical arthritis symptoms, bone erosion, proinflammatory cytokines and pathological immune cells induced by complete Freund's adjuvant was evaluated in male Sprague-Dawley rats. The impacts of CCP (2 mg/kg) on joint erythema and swelling, production of pathogenic antibodies and the proportion of inflammatory cells were assessed in collagen-induced arthritis (CIA) in DBA/1J mice. Regulation of osteoclastogenesis by CCP was observed in the murine macrophage-like RAW264.7 cells treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). RESULTS CCP administration significantly prevented disease progression in both adjuvant-induced arthritis (AIA) rats and CIA mice. The therapeutic benefits were accompanied by reduction of paw oedema, reversed bone destruction, decreased pathological changes and osteoclast numbers in joints in AIA rats, as well as attenuated clinical manifestation and autoantibodies production in CIA mice. Meanwhile, in vitro supplemented of CCP concentration dependently inhibited RANKL/M-CSF-induced osteoclast differentiation, without showing cytotoxicity in RAW264.7 cells. Further, the presence of CCP dampened the augmented downstream signalling transduction as well as activation of osteoclast-specific genes and transcription factors induced by RANKL/M-CSF in RAW264.7 cells. CONCLUSION Our study suggested that the therapeutic effects of CCP in experimental arthritis could be attributed to its intervention on RANKL-induced osteoclastogenesis signalling pathway in osteoclast precursor cells.
Collapse
Affiliation(s)
- Ze-Min Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Yu-Ting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Sheng Xu
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Jun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|