51
|
|
52
|
Cheema MU, Irsik DL, Wang Y, Miller-Little W, Hyndman KA, Marks ES, Frøkiær J, Boesen EI, Norregaard R. Estradiol regulates AQP2 expression in the collecting duct: a novel inhibitory role for estrogen receptor α. Am J Physiol Renal Physiol 2015; 309:F305-17. [PMID: 26062878 DOI: 10.1152/ajprenal.00685.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/30/2015] [Indexed: 11/22/2022] Open
Abstract
While there is evidence that sex hormones influence multiple systems involved in salt and water homeostasis, the question of whether sex hormones regulate aquaporin-2 (AQP2) and thus water handling by the collecting duct has been largely ignored. Accordingly, the present study investigated AQP2 expression, localization and renal water handling in intact and ovariectomized (OVX) female rats, with and without estradiol or progesterone replacement. OVX resulted in a significant increase in urine osmolality and increase in p256-AQP2 in the renal cortex at 7 days post-OVX, as well as induced body weight changes. Relative to OVX alone, estradiol repletion produced a significant increase in urine output, normalized urinary osmolality and reduced both total AQP2 (protein and mRNA) and p256-AQP2 expression, whereas progesterone repletion had little effect. Direct effects of estradiol on AQP2 mRNA and protein levels were further tested in vitro using the mpkCCD principal cell line. Estradiol treatment of mpkCCD cells reduced AQP2 at both the mRNA and protein level in the absence of deamino-8-d-AVP (dDAVP) and significantly blunted the dDAVP-induced increase in AQP2 at the protein level only. We determined that mpkCCD and native mouse collecting ducts express both estrogen receptor (ER)α and ERβ and that female mice lacking ERα displayed significant increases in AQP2 protein compared with wild-type littermates, implicating ERα in mediating the inhibitory effect of estradiol on AQP2 expression. These findings suggest that changes in estradiol levels, such as during menopause or following reproductive surgeries, may contribute to dysregulation of water homeostasis in women.
Collapse
Affiliation(s)
| | - Debra L Irsik
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Yan Wang
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Kelly A Hyndman
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eileen S Marks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Jørgen Frøkiær
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Rikke Norregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
53
|
Skowronska A, Młotkowska P, Wojciechowicz B, Okrasa S, Nielsen S, Skowronski MT. Progesterone, estradiol, arachidonic acid, oxytocin, forskolin and cAMP influence on aquaporin 1 and 5 expression in porcine uterine explants during the mid-luteal phase of the estrous cycle and luteolysis: an in vitro study. Reprod Biol Endocrinol 2015; 13:7. [PMID: 25884220 PMCID: PMC4341226 DOI: 10.1186/s12958-015-0004-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/07/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The cell membrane water channel protein, aquaporins (AQPs), regulate cellular water transport and cell volume and play a key role in water homeostasis. Recently, AQPs are considered as important players in the field of reproduction. In previous studies, we have established the presence of AQP1 and 5 in porcine uterus. Their expression at protein level altered in distinct tissues of the female reproductive system depending on the phase of the estrous cycle. However, the regulation of aquaporin genes and proteins expression has not been examined in porcine uterine tissue. Therefore, we have designed an in vitro experiment to explain whether steroid hormones, progesterone (P4) and estradiol (E2), and other factors: oxytocine (OT), arachidonic acid (AA; substrate for prostaglandins synthesis) as well as forskolin (FSK; adenylate cyclase activator) and cAMP (second messenger, cyclic adenosine monophosphate) may impact AQPs expression. METHODS Uterine tissues were collected on Days 10-12 and 14-16 of the estrous cycle representing the mid-luteal phase and luteolysis. Real-time PCR and Western blot analysis were performed to examine the expression of porcine AQP1 and AQP5. Their expression in the uterine explants was also evaluated by immunohistochemistry. RESULTS The results indicated that uterine expression of AQP1 and AQP5 potentially remains under control of steroid hormones and AA-derived compounds (e.g. prostaglandins). P4, E2, AA, FSK and cAMP cause translocation of AQP5 from apical to the basolateral plasma membrane of the epithelial cells, which might affect the transcellular water movement (through epithelial cells) between uterine lumen and blood vessels. The AC/cAMP pathway is involved in the intracellular signals transduction connected with the regulation of AQPs expression in the pig uterus. CONCLUSIONS This study documented specific patterns of AQP1 and AQP5 expression in response to P4, E2, AA, FSK and cAMP, thereby providing new indirect evidence of their role in maintaining the local fluid balance within the uterus during the mid-luteal phase of the estrous cycle and luteolysis in pigs.
Collapse
Affiliation(s)
- Agnieszka Skowronska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Patrycja Młotkowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Bartosz Wojciechowicz
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Stanisław Okrasa
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Soren Nielsen
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| | - Mariusz T Skowronski
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
- Institute of Veterinary, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
54
|
Cano-Peñalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption. FASEB J 2014; 28:3645-59. [PMID: 24784577 DOI: 10.1096/fj.13-249250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the clinical alterations observed in chronic renal disease (CRD) is the impaired urine concentration, known as diabetes insipidus (DI). Tubulointerstitial fibrosis of the kidney is also a pathological finding observed in CRD and involves composition of extracellular matrix (ECM). However, an association between these two events has not been elucidated. In this study, we showed that the extracellular-to-intracellular scaffold protein integrin-linked kinase (ILK) regulates expression of tubular water channel aquaporin-2 (AQP2) and its apical membrane presence in the renal tubule. Basally, polyuria and decreased urine osmolality were present in ILK conditional-knockdown (cKD-ILK) adult mice compared with nondepleted ILK littermates. No changes were observed in arginine-vasopressin (AVP) blood levels, renal receptor (V2R), or AQP3 expression. However, tubular AQP2 was decreased in expression and apical membrane presence in cKD-ILK mice, where the canonical V2R/cAMP axis activation is still functional, but independent of the absence of ILK. Thus, cKD-ILK constitutes a nephrogenic diabetes insipidus (NDI) model. AQP2 and ILK colocalize in cultured inner medullary collecting duct (mIMCD3) cells. Specific ILK siRNAs and collagen I (Col) decrease ILK and AQP2 levels and AQP2 presence on the membrane of tubular mIMCD3 cells, which impairs the capacity of the cells to transport water under hypotonic stress. The present work points to ILK as a therapeutic target in NDI.
Collapse
Affiliation(s)
- Jose Luis Cano-Peñalver
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Serrano
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain; Biomedical Research Foundation and Department of Nephrology, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain;
| | - Manuel Rodríguez-Puyol
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
55
|
Liu XM, Zhang D, Wang TT, Sheng JZ, Huang HF. Ion/Water Channels for Embryo Implantation Barrier. Physiology (Bethesda) 2014; 29:186-95. [PMID: 24789983 DOI: 10.1152/physiol.00039.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.
Collapse
Affiliation(s)
- Xin-Mei Liu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Pathology & Pathophysiology, School of Medicine, Zhejiang University, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| | - Ting-Ting Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| | - Jian-Zhong Sheng
- Department of Pathology & Pathophysiology, School of Medicine, Zhejiang University, People's Republic of China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| |
Collapse
|
56
|
Low-dose mifepristone increases uterine expression of aquaporin 1/aquaporin 2 at the time of implantation. Contraception 2013; 87:844-9. [DOI: 10.1016/j.contraception.2012.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 11/18/2022]
|
57
|
Zhang H, Zhang Y, Zhao H, Zhang Y, Chen Q, Peng H, Lei L, Qiao J, Shi J, Cao Z, Duan E, Jin Y. Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins. PLoS One 2013; 8:e63823. [PMID: 23717491 PMCID: PMC3661669 DOI: 10.1371/journal.pone.0063823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 04/05/2013] [Indexed: 01/03/2023] Open
Abstract
In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification.
Collapse
Affiliation(s)
- He Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Ying Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huashan Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunfang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Peng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingqiao Qiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junchao Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghong Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YJ); (ED)
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
- * E-mail: (YJ); (ED)
| |
Collapse
|
58
|
Zou LB, Shi S, Zhang RJ, Wang TT, Tan YJ, Zhang D, Fei XY, Ding GL, Gao Q, Chen C, Hu XL, Huang HF, Sheng JZ. Aquaporin-1 plays a crucial role in estrogen-induced tubulogenesis of vascular endothelial cells. J Clin Endocrinol Metab 2013; 98:E672-82. [PMID: 23450058 DOI: 10.1210/jc.2012-4081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CONTEXT Aquaporin-1 (AQP1) has been proposed as a mediator of estrogen-induced angiogenesis in human breast cancer and endometrial cancer. Elucidation of the molecular mechanisms governing AQP1-mediated, estrogen-induced angiogenesis may contribute to an improved understanding of tumor development. OBJECTIVE Our objective was to identify the estrogen-response element (ERE) in the promoter of the Aqp1 gene and investigate the effects and mechanisms of AQP1 on estrogen-induced tubulogenesis of vascular endothelial cells. SETTING The study was conducted in a university hospital in eastern China. MAIN OUTCOME MEASURES Immunohistological, real-time PCR and Western blot analyses were used to determine the expression AQP1 mRNA and protein in vascular endothelial cells. Chromatin immunoprecipitation analyses and luciferase reporter assays identified ERE-like motif in the promoter of the Aqp1 gene. RESULTS Expression of AQP1 in blood vessels of human breast and endometrial carcinoma tissues were significantly higher than controls. Estradiol (E2) dose-dependently increased the expression levels of AQP1 mRNA and protein in human umbilical vein endothelial cells (HUVECs). A functional ERE-like motif was identified in the promoter of the Aqp1 gene. AQP1 colocalized with ezrin, a component of the ezrin/radixin/moesin protein complex, and, ezrin colocalized with filamentous actin in HUVECs. Knockdown of AQP1 or ezrin with specific small interfering RNA significantly attenuated the formation of transcytoplasmic filamentous actin stress fibers induced by E2 and inhibited E2-enhanced cell proliferation, migration, invasion, and tubule formation of HUVECs. CONCLUSIONS Estrogen induces AQP1 expression by activating ERE in the promoter of the Aqp1 gene, resulting in tubulogenesis of vascular endothelial cells. These results provide new insights into the molecular mechanisms underpinning the angiogenic effects of estrogen.
Collapse
Affiliation(s)
- Li-Bo Zou
- The Key Laboratory of Reproductive Genetics, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Functions of water channels in male and female reproductive systems. Mol Aspects Med 2012; 33:676-90. [DOI: 10.1016/j.mam.2012.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
60
|
Jiang XX, Xu KH, Ma JY, Tian YH, Guo XY, Lin J, Wu RJ. Reduced migration of Ishikawa cells associated with downregulation of aquaporin-5. Oncol Lett 2012; 4:257-261. [PMID: 22844365 DOI: 10.3892/ol.2012.738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/14/2012] [Indexed: 12/20/2022] Open
Abstract
Aquaporin (AQP)-dependent cell migration has broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring and other events requiring cell movement. There are 13 isoforms of AQP (0-12) that have been identified in mammals. It is unclear whether AQP5 plays a role in the development of endometrial cancer. We recently demonstrated that ovarian steroids may affect the expression of AQP5 in the female genital tract. In this study, we considered whether AQP5 may affect cell migration in Ishikawa cells, an adenocarcinoma cell line derived from the endometrium. The results showed that the downregulation of AQP5 results in reduced Ishikawa cell migration. The estrogen (E2) receptor in the promoter of AQP5 mediated the regulation of AQP5 expression in the normal endometrium and endometrial cancer. By contrast, the upregulation of AQP5 by E2 increased cell migration, invasion and adhesion through increased annexin-2, which is responsible for F-actin remodeling and rearrangement. E2 regulates Ishikawa cell migration by regulating the AQP5 expression.
Collapse
Affiliation(s)
- Xiu Xiu Jiang
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | | | | | | | |
Collapse
|