51
|
Convissar S, Armouti M, Fierro MA, Winston NJ, Scoccia H, Zamah AM, Stocco C. Regulation of AMH by oocyte-specific growth factors in human primary cumulus cells. Reproduction 2017; 154:745-753. [PMID: 28874516 DOI: 10.1530/rep-17-0421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
The regulation of AMH production by follicular cells is poorly understood. The purpose of this study was to determine the role of the oocyte-secreted factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on AMH production in primary human cumulus cells. Cumulus cells from IVF patients were cultured with a combination of GDF9, BMP15, recombinant FSH and specific signaling inhibitors. Stimulation with GDF9 or BMP15 separately had no significant effect on AMH mRNA levels. In contrast, simultaneous stimulation with GDF9 and BMP15 (G + B) resulted in a significant increase in AMH mRNA expression. Increasing concentration of G + B (0.6, 2.5, 5 and 10 ng/mL) stimulated AMH in a dose-dependent manner, showing a maximal effect at 5 ng/mL. Western blot analyses revealed an average 16-fold increase in AMH protein levels in cells treated with G + B when compared to controls. FSH co-treatment decreased the stimulation of AMH expression by G + B. The stimulatory effect of G + B on the expression of AMH was significantly decreased by inhibitors of the SMAD2/3 signaling pathway. These findings show for the first time that AMH production is regulated by oocyte-secreted factors in primary human cumulus cells. Moreover, our novel findings establish that the combination of GDF9 + BMP15 potently stimulates AMH expression.
Collapse
Affiliation(s)
- Scott Convissar
- Department of Physiology and BiophysicsThe University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Marah Armouti
- Department of Physiology and BiophysicsThe University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Michelle A Fierro
- Division of Reproductive Endocrinology and InfertilityDepartment of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Nicola J Winston
- Division of Reproductive Endocrinology and InfertilityDepartment of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Humberto Scoccia
- Division of Reproductive Endocrinology and InfertilityDepartment of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - A Musa Zamah
- Division of Reproductive Endocrinology and InfertilityDepartment of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Carlos Stocco
- Department of Physiology and BiophysicsThe University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
52
|
Law NC, Donaubauer EM, Zeleznik AJ, Hunzicker-Dunn M. How Protein Kinase A Activates Canonical Tyrosine Kinase Signaling Pathways To Promote Granulosa Cell Differentiation. Endocrinology 2017; 158:2043-2051. [PMID: 28460125 PMCID: PMC5505220 DOI: 10.1210/en.2017-00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
Protein kinase A (PKA) has recently been shown to mimic the actions of follicle-stimulating hormone (FSH) by activating signaling pathways that promote granulosa cell (GC) differentiation, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We sought to elucidate the mechanism by which PKA, a Ser/Thr kinase, intersected the PI3K/AKT and MAPK/ERK pathways that are canonically activated by receptor tyrosine kinases (RTKs). Our results show that for both of these pathways, the RTK is active in the absence of FSH yet signaling down the pathways to commence transcriptional responses requires FSH-stimulated PKA activation. For both pathways, PKA initiates signaling by regulating the activity of a protein phosphatase (PP). For the PI3K/AKT pathway, PKA activates the Ser/Thr PP1 complexed with the insulinlike growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS1) to dephosphorylate Ser residues on IRS1, authorizing phosphorylation of IRS1 by the IGF-1R to activate PI3K. Treatment of GCs with FSH and exogenous IGF-1 initiates synergistic IRS1 Tyr phosphorylation and resulting gene activation. The mechanism by which PKA activates PI3K is conserved in preovulatory GCs, MCF7 breast cancer cells, and FRTL thyroid cells. For the MAPK/ERK pathway, PKA promotes inactivation of the MAPK phosphatase (MKP) dual specificity phosphatase (DUSP) MKP3/DUSP6 to permit MEK-phosphorylated ERK to accumulate downstream of the epidermal growth factor receptor. Thus, for the two central signaling pathways that regulate gene expression in GCs, FSH via PKA intersects canonical RTK-regulated signaling by modulating the activity of PPs.
Collapse
Affiliation(s)
- Nathan C. Law
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Elyse M. Donaubauer
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Anthony J. Zeleznik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mary Hunzicker-Dunn
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| |
Collapse
|
53
|
Baumgarten SC, Armouti M, Ko C, Stocco C. IGF1R Expression in Ovarian Granulosa Cells Is Essential for Steroidogenesis, Follicle Survival, and Fertility in Female Mice. Endocrinology 2017; 158:2309-2318. [PMID: 28407051 PMCID: PMC5505221 DOI: 10.1210/en.2017-00146] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/07/2017] [Indexed: 02/03/2023]
Abstract
Folliculogenesis is a lengthy process that requires the proliferation and differentiation of granulosa cells (GCs) for preovulatory follicle formation. The most crucial endocrine factor involved in this process is follicle-stimulating hormone (FSH). Interestingly, previous in vitro studies indicated that FSH does not stimulate GC proliferation in the absence of the insulinlike growth factor 1 receptor (IGF1R). To determine the role of the IGF1R in vivo, female mice with a conditional knockdown of the IGF1R in the GCs were produced and had undetectable levels of IGF1R mRNA and protein in the GCs. These animals were sterile, and their ovaries were smaller than those of control animals and contained no antral follicles even after gonadotropin stimulation. The lack of antral follicles correlated with a 90% decrease in serum estradiol levels. In addition, under a superovulation protocol no oocytes were found in the oviducts of these animals. Accordingly, the GCs of the mutant females expressed significantly lower levels of preovulatory markers including aromatase, luteinizing hormone receptor, and inhibin α. In contrast, no alterations in FSH receptor expression were observed in GCs lacking IGF1R. Immunohistochemistry studies demonstrated that ovaries lacking IGF1R had higher levels of apoptosis in follicles from the primary to the large secondary stages. Finally, molecular studies determined that protein kinase B activation was significantly impaired in mutant females when compared with controls. These in vivo findings demonstrate that IGF1R has a crucial role in GC function and, consequently, in female fertility.
Collapse
Affiliation(s)
- Sarah C. Baumgarten
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Marah Armouti
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaigne, Illinois 60812
| | - Carlos Stocco
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
54
|
Lin YJ, Tsai CC, Huang LT, Sheen JM, Tiao MM, Yu HR, Chen CC, Tain YL. Detrimental effect of maternal and post-weaning high-fat diet on the reproductive function in the adult female offspring rat: roles of insulin-like growth factor 2 and the ovarian circadian clock. J Assist Reprod Genet 2017; 34:817-826. [PMID: 28417351 PMCID: PMC5445052 DOI: 10.1007/s10815-017-0915-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/29/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We evaluate the impact of maternal and post-weaning high-fat (HF) diet on ovarian follicular population, steroidogenesis, and gene expression with a focus on the circadian clock system and insulin-like growth factor 2 (Igf2) in adult offspring ovaries, and to elucidate whether a maternal and post-weaning diet confers similar risks. METHODS Virgin Sprague-Dawley rats were fed with normal chow (C) diet or HF diet for 5 weeks before mating, during gestation, and lactation. Female offspring were fed with the C or HF diet from weaning to 6 months of age, resulting in four study groups (n = 6 per group): C/C, C/HF, HF/C, and HF/HF. RESULTS Ovaries from offspring exposed to post-weaning HF diet (i.e., the C/HF and HF/HF groups) had a decrease in small follicle numbers, but with similar numbers of antral follicles and corpora lutea. Offspring from HF-fed dams (i.e., the HF/C and HF/HF groups) had increased plasma estradiol concentrations and decreased luteinizing hormone levels at 6 months of age. In addition, Igf2 and each of the circadian rhythm core genes Clock, Per1, Per2, and Per3 were increased in the ovaries of offspring exposed to maternal HF diet (both HF/C and HF/HF groups). CONCLUSIONS Maternal and post-weaning HF diet programs the reproductive profile of the female offspring in adult life through different manners. Post-weaning HF intake resulted in the reduction of small follicles in adulthood, whereas maternal HF diet had long-term deleterious consequences on female offspring steroidogenesis and coincided with alteration of the upregulation of the imprinted gene Igf2 and changes in ovarian circadian rhythms.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123 Dabi Road, Niausung, Kaohsiung, 833, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123 Dabi Road, Niausung, Kaohsiung, 833, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123 Dabi Road, Niausung, Kaohsiung, 833, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123 Dabi Road, Niausung, Kaohsiung, 833, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123 Dabi Road, Niausung, Kaohsiung, 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, 123 Dabi Road, Niausung, Kaohsiung, 833, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
55
|
Xiong Y, Chen H, Lin P, Wang A, Wang L, Jin Y. ATF6 knockdown decreases apoptosis, arrests the S phase of the cell cycle, and increases steroid hormone production in mouse granulosa cells. Am J Physiol Cell Physiol 2017; 312:C341-C353. [PMID: 28100484 DOI: 10.1152/ajpcell.00222.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Activating transcription factor 6 (ATF6), a sensor protein located in the endoplasmic reticulum (ER) membrane, is an important factor in the ER stress signaling pathway. ER stress is known to be involved in folliculogenesis, follicular growth, and ovulation; however, the physiological function of ATF6 in mouse granulosa cells remains largely unknown. The aim of this study was to assess the role of ATF6 in mouse granulosa cells with respect to apoptosis, the cell cycle, and steroid hormone production, as well as several key genes related to follicular development, via RNA interference, immunohistochemical staining, real-time quantitative PCR, Western blotting, flow cytometry, terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling (TUNEL) assay, and ELISA. Immunohistochemical staining revealed that ATF6 was extensively distributed in the granulosa cells of various ovarian follicles and oocytes in adult female mice. FSH or LH treatment significantly increased ATF6 protein levels in mouse granulosa cells. In the meantime, a recombinant plasmid was used to deplete ATF6 successfully using short hairpin RNA-mediated interference technology, which was verified at both the mRNA and protein levels. Flow cytometry and TUNEL assay analysis indicated that ATF6 depletion decreased apoptosis and arrested the S phase of the cell cycle in mouse granulosa cells. Consistent with these results, p53, caspase-3, B cell lymphoma 2 (Bcl-2)-associated X protein, CCAAT-enhancer-binding protein homologous protein, cyclin A1, cyclin B1, and cyclin D2 mRNA expression decreased, whereas Bcl-2 and glucose-regulated protein 78 kDa mRNA expression increased. Interestingly, ATF6 knockdown obviously increased progesterone and estradiol production in mouse granulosa cells. Cytochrome P450 1b1 (Cyp1b1) mRNA levels were downregulated, whereas Cyp11a1, steroidogenic acute regulatory, and Cyp19a1 mRNA levels were upregulated, in keeping with the changes in steroid hormones. Furthermore, ATF6 disruption remarkably increased insulin-like growth factor binding protein4 (Igfbp4) expression and decreased hyaluronan synthase 2 (Has2), prostaglandin-endoperoxide synthase 2 (Ptgs2), and prostaglandin F receptor (Ptgfr) expression in mouse granulosa cells, which are proteins crucial for follicular development. But, after treating with tunicamycin, the levels of Has2, Ptgs2, and Ptgfr increased relatively, whereas Igfbp4 expression decreased. Collectively, these results imply that ATF6, as a key player in ER stress signaling, may regulate apoptosis, the cell cycle, steroid hormone synthesis, and other modulators related to folliculogenesis in mouse granulosa cells, which may indirectly be involved in the development, ovulation, and atresia of ovarian follicles by affecting the physiological function of granulosa cells. The present study extends our understanding and provides new insights into the physiological significance of ATF6, a key signal transducer of ER stress, in ovarian granulosa cells.
Collapse
Affiliation(s)
- Yongjie Xiong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
56
|
Hua G, He C, Lv X, Fan L, Wang C, Remmenga SW, Rodabaugh KJ, Yang L, Lele SM, Yang P, Karpf AR, Davis JS, Wang C. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription. Cell Death Dis 2016; 7:e2297. [PMID: 27415427 PMCID: PMC4973349 DOI: 10.1038/cddis.2016.207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/04/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022]
Abstract
The four and a half LIM domains 2 (FHL2) has been shown to play important roles in the regulation of cell proliferation, survival, adhesion, motility and signal transduction in a cell type and tissue-dependent manner. However, the function of FHL2 in ovarian physiology and pathology is unclear. The aim of this study was to determine the role and functional mechanism of FHL2 in the progression of ovarian granulosa cell tumors (GCTs). Immunohistochemical analysis indicated that FHL2 was overexpressed in GCT tissues. Cellular localization of FHL2 in GCT cells was cell cycle dependent. Knockdown of FHL2 suppressed GCT cell growth, reduced cell viability and inhibited cell migration. Consistently, ectopic expression of FHL2 in GCT cells with very low endogenous FHL2 promoted cell growth, improved cell viability and enhance cell migration. Importantly, overexpression of FHL2 promoted GCT progression in vivo. Mechanistic studies indicated that FHL2 regulates AKT1 gene expression in vitro and in vivo. Knockdown of FHL2 or AKT1 in GCT cell lines induced very similar phenotypes. Ectopic expression of constitutively active AKT1 rescued FHL2 knockdown-induced arrest of GCT cell growth and reduction of GCT cell viability, suggesting that FHL2 regulates GCT cell growth and viability through controlling AKT1 expression. Finally, co-immunoprecipitation and chromatin immunoprecipitation analyses indicated that FHL2 functions as a co-activator of NFκB and AP-1 to regulate AKT1 gene transcription. In conclusion, results from the present study indicate that FHL2 exerts its oncogenic action in GCT cells via controlling AKT1 gene expression. FHL2 is a promising target for the development of novel drugs against ovarian granulosa cell tumor.
Collapse
Affiliation(s)
- G Hua
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province 430070, China
| | - C He
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province 430070, China
| | - X Lv
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - L Fan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province 430070, China
| | - C Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province 430070, China
| | - S W Remmenga
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K J Rodabaugh
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - L Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province 430070, China
| | - S M Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - P Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - A R Karpf
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - J S Davis
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Omaha Veterans Affairs Medical Center, Omaha, NE 68105, USA
| | - C Wang
- Olson Center for Women's Health, Department of Obstetrics/Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
57
|
Wang XJ, Xiong GP, Luo XM, Huang SZ, Liu J, Huang XL, Xie YZ, Lin WP. Dibutyl Phthalate Inhibits the Effects of Follicle-Stimulating Hormone on Rat Granulosa Cells Through Down-Regulation of Follicle-Stimulating Hormone Receptor. Biol Reprod 2016; 94:144. [PMID: 26962121 DOI: 10.1095/biolreprod.115.136002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/07/2016] [Indexed: 11/01/2022] Open
Abstract
Dibutyl phthalate (DBP) is used worldwide in solvents and plasticizers. The cytotoxicity and potential tumorigenic effect of DBP have been reported. DBP has also been shown to impact reproductive function. In this study, to further evaluate the effects of DBP on granulosa cells (GCs), we treated rat GCs in vitro with DBP before evaluation of the biological alterations of these GCs. We found that DBP did not induce significant GC death at the tested concentrations. However, follicle-stimulating hormone (FSH)-induced KIT ligand (KITLG) expression in GCs was significantly reduced at both mRNA and protein levels by DBP treatment in a dose-dependent manner. The down-regulation of KITLG was due to the down-regulation of expression of FSH receptor (FSHR) in GCs. Down-regulation of FSHR impaired FSH-induced intracellular signaling in GCs, demonstrated by decreased phosphorylation of AKT and mechanistic target of rapamycin (mTOR). Furthermore, DBP treatment also reduced FSH-induced expression of hypoxia-inducible factor 1-alpha (HIF1A), which is an important signaling component for KITLG expression. Other FSH-induced biological effects, such as production of estradiol and progesterone, as well as GC proliferation, were also suppressed by DBP. Therefore, our study discovered a unique mechanism underlying the toxicity of DBP on GCs. These findings may initiate the development of novel therapeutic interventions for DBP-induced damage to GCs.
Collapse
Affiliation(s)
- Xue-Jin Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Gong-Peng Xiong
- Department of Hepatobiliary Surgery, Liver Disease Center of Xiamen Traditional Hospital affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Xiang-Min Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Su-Zhen Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jin Liu
- Public Health Institute of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Lan Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yuan-Zhi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wen-Ping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
58
|
Law NC, Hunzicker-Dunn ME. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation. J Biol Chem 2015; 291:4547-60. [PMID: 26702053 DOI: 10.1074/jbc.m115.698761] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|