51
|
Gordon PV, Paxton JB, Kuemmerle JF, Fox NS. A 14-kDa cathepsin L-derived carboxyl IGFBP-2 fragment is sequestered by cultured rat ileal crypt cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G79-87. [PMID: 15705658 DOI: 10.1152/ajpgi.00384.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IGF-II gut drives mucosal growth during gestation. IGF binding protein-2 (IGFBP-2) has a high affinity for IGF-II and tightly regulates IGF-II availability during fetal and early neonatal growth. We have previously demonstrated that glucocorticoids alter IGF homeostasis in the neonatal ileum, but the mechanism(s) by which this occurs is poorly understood. We hypothesized that dexamethasone alters proteolytic regulation of IGFBP-2 in ileal crypt cells. To test this, ileal crypt [ileal epithelial (IEC)-18] cells were cultured in serum-free media and used to study IGFBP-2 catabolism by immunochemistry, gene array analysis, and pharmacological perturbation with dexamethasone. In addition, isolated human IGFBP-2, IGF-II, and cathepsins B, D, and L were utilized for in vitro protease assays. We found IGFBP-2 to be highly abundant in IEC-18 culture, and sequestration of carboxyl IGFBP-2 antigen was seen within vesicular bodies of some cells. Dexamethasone significantly decreased the number of these cells and decreased IGFBP-2 in the media. On gene array analysis, cathepsin L's message abundance was significantly increased by dexamethasone, and, by in vitro assay, cathepsin L created a 14-kDa carboxyl fragment that corresponded to the sole antigen detected in IEC-18 cell lysates as well as a 16.5-kDa fragment found in the media. The sequestered fragment size was formed preferentially when IGF-II was present, whereas the larger fragment size was formed preferentially when IGF-II was absent. Cathepsins B and D did not produce these fragments in vitro and were not detected in IEC-18 media. We conclude that dexamethasone alters IGFBP-2 catabolism through its effects on cathepsin L.
Collapse
Affiliation(s)
- Phillip V Gordon
- Division of Neonatology, Department of Pediatrics, University of Virginia Health Sciences, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
52
|
Foulstone E, Prince S, Zaccheo O, Burns JL, Harper J, Jacobs C, Church D, Hassan AB. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 2005; 205:145-53. [PMID: 15641016 DOI: 10.1002/path.1712] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review aims to summarize experimental evidence supporting the role of the insulin-like growth factor (IGF) signalling system in the progression, maintenance, and treatment of cancer. These data implicate the IGF system as an important modifier of cancer cell proliferation, survival, growth, and treatment sensitivity. The role of the IGF system in cancer should be examined in the context of the extra-cellular and intra-cellular signalling networks, in particular: phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt/PKB), mammalian target of rapamycin (mTOR), and forkhead transcription factors (FOXO). This review highlights evidence derived from molecular structure and functional genetics with respect to how the extra-cellular components of the IGF system function normally, and their subsequent modifications in cancer. The therapeutic relevance of the research evidence described is also addressed, as the challenge is to apply this knowledge to human health.
Collapse
Affiliation(s)
- E Foulstone
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Wolf E, Schneider MR, Zhou R, Fisch TM, Herbach N, Dahlhoff M, Wanke R, Hoeflich A. Functional consequences of IGFBP excess-lessons from transgenic mice. Pediatr Nephrol 2005; 20:269-78. [PMID: 15602658 DOI: 10.1007/s00467-004-1657-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/26/2004] [Accepted: 07/26/2004] [Indexed: 11/29/2022]
Abstract
The functions of insulin-like growth factor-binding proteins (IGFBPs) have been studied extensively in vitro, revealing IGF-dependent and also IGF-independent effects on cell growth, differentiation, and survival. In contrast, the biological relevance of IGFBPs in vivo is only partially understood. In the past decade, mouse models lacking or overexpressing specific IGFBPs have been generated by transgenic technology. Phenotypic analysis revealed features that are common for most IGFBPs (growth inhibition), but also effects that appear to be specific for some but not all IGFBPs, such as disturbed glucose homeostasis (IGFBP-1 and -3) or impaired fertility (IGFBP-1, -5, and -6). Future systematic comparison of IGFBP functions in transgenic mice will be facilitated by targeted insertion of IGFBP expression vectors and by standardized phenotype assessment. Furthermore, analysis of IGFBP expression in growth-selected mouse lines or pedigrees segregating for growth phenotypes will be important to understand the roles of IGFBPs in multigenic growth regulation.
Collapse
Affiliation(s)
- Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology/Gene Center, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Li Y, Xiang J, Duan C. Insulin-like Growth Factor-binding Protein-3 Plays an Important Role in Regulating Pharyngeal Skeleton and Inner Ear Formation and Differentiation. J Biol Chem 2005; 280:3613-20. [PMID: 15550380 DOI: 10.1074/jbc.m411479200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypoglycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner ear development and growth in zebrafish.
Collapse
Affiliation(s)
- Yun Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
55
|
Sherwin JRA, Freeman TC, Stephens RJ, Kimber S, Smith AG, Chambers I, Smith SK, Sharkey AM. Identification of Genes Regulated by Leukemia-Inhibitory Factor in the Mouse Uterus at the Time of Implantation. Mol Endocrinol 2004; 18:2185-95. [PMID: 15178747 DOI: 10.1210/me.2004-0110] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The endometrium is prepared for implantation by the actions of estradiol (E2) and progesterone (P4). In mice the luminal epithelium (LE) only becomes fully receptive to the attaching blastocyst in response to the nidatory estrogen surge on d 4 of pregnancy. The cytokine leukemia-inhibitory factor (LIF) is rapidly induced by nidatory estrogen and has been shown to be the primary mediator of its action. Implantation fails in the absence of LIF, and injection of LIF on d 4 of pregnancy can substitute for the nidatory estrogen. In this study, we sought to identify genes regulated by LIF in the uterine epithelium. We used oligonucleotide microarrays to compare the transcript profiles of paired uterine horns from LIF-deficient MF1 mice after intraluminal injection of LIF or PBS on d 4 of pseudopregnancy. IGF-binding protein 3 was identified as a gene up-regulated by LIF; this was confirmed by RT-PCR. In situ hybridization showed that the primary site of IGF-binding protein 3 expression is the luminal epithelium (LE), the known site of LIF action in the uterus. We identified two other genes: amphiregulin and immune response gene-1, the expression of which were also up-regulated by LIF. Immune response gene 1 has recently been shown to be essential for implantation. Expression of all three of these genes in the LE is known to be regulated by P4. The expression of osteoblast-specific factor 2 and leukocyte 12/15 lipoxygenase, which are also expressed in LE under the control of P4, were not increased by LIF. This suggests that one of the actions of LIF on LE may be to enhance the expression of a subset of P4-regulated genes.
Collapse
Affiliation(s)
- J R A Sherwin
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Although the primary control of gonadotropin secretion is by the hypothalamic GnRH and the gonadal function is controlled by the pituitary gonadotropins and prolactin, the emerging evidence suggests a vital role of the somatotropic axis, growth hormone (GH), and insulin-like growth factor-I (IGF-I) in the control of the pituitary and gonadal functions. It has been shown that GH deficiency, GH resistance, and experimental alterations in IGF-I secretion modify folliculogenesis, ovarian maturation, ovulation, and pregnancy, and in the male, GH/IGF-I plays an important role in spermatogenesis and the Leydig cell function. The primary focus of this review is to examine the role of GH/ IGF-I on the onset of puberty, fertility, pituitary, and gonadal endocrine functions. A number of studies have revealed that fertility is affected in GH-deficient dwarf and in IGF-I gene-ablated mice, possibly due to subnormal function of either the pituitary gland or the gonads. In the female GH receptor gene knockout (GHR-KO) mice, there was impairment in follicular development, ovulation rate, sexual maturation, production of and responsiveness to pheromonal signals, and the corpus luteum function. In IGF-I-deficient male GHR-KO mice, puberty is delayed, spermatogenesis is affected, and neuroendocrine-gonadal function is attenuated. Similarly, in some of the human Laron syndrome patients, puberty is delayed due to GH resistance. These data suggest that, in addition to GnRH and gonadotropins, GH/IGF-I influences the pituitary and gonadal functions in animals and humans.
Collapse
Affiliation(s)
- Varadaraj Chandrashekar
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|
57
|
Salih DAM, Tripathi G, Holding C, Szestak TAM, Gonzalez MI, Carter EJ, Cobb LJ, Eisemann JE, Pell JM. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci U S A 2004; 101:4314-9. [PMID: 15010534 PMCID: PMC384738 DOI: 10.1073/pnas.0400230101] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Indexed: 12/27/2022] Open
Abstract
The insulin-like growth factors (IGFs) are essential for development; bioavailable IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). Igfbp5 is the most conserved and is developmentally up-regulated in key lineages and pathologies; in vitro studies suggest that IGFBP-5 functions independently of IGF interaction. Genetic ablation of individual Igfbps has yielded limited phenotypes because of substantial compensation by remaining family members. Therefore, to reveal Igfbp5 actions in vivo, we generated lines of transgenic mice that ubiquitously overexpressed Igfbp5 from early development. Significantly increased neonatal mortality, reduced female fertility, whole-body growth inhibition, and retarded muscle development were observed in Igfbp5-overexpressing mice. The magnitude of the response in individual transgenic lines was positively correlated with Igfbp5 expression. Circulating IGFBP-5 concentrations increased a maximum of only 4-fold, total and free IGF-I concentrations increased up to 2-fold, and IGFBP-5 was detected in high M(r) complexes; however, no detectable decrease in the proportion of free IGF-I was observed. Thus, despite only modest changes in IGF and IGFBP concentrations, the Igfbp5-overexpressing mice displayed a phenotype more extreme than that observed for other Igfbp genetic models. Although growth retardation was obvious prenatally, maximal inhibition occurred postnatally before the onset of growth hormone-dependent growth, regardless of Igfbp5 expression level, revealing a period of sensitivity to IGFBP-5 during this important stage of tissue programming.
Collapse
Affiliation(s)
- Dervis A M Salih
- Signalling Programme, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Bridgewater DJ, Matsell DG. Insulin-like growth factor binding protein-2 modulates podocyte mitogenesis. Pediatr Nephrol 2003; 18:1109-15. [PMID: 12955485 DOI: 10.1007/s00467-003-1242-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 05/27/2003] [Accepted: 05/28/2003] [Indexed: 10/26/2022]
Abstract
To study the role of insulin-like growth factors (IGF) in podocyte maturation, we isolated and characterized fetal visceral glomerular epithelial cells from human kidneys obtained at 8-18 weeks gestation. Cells were identified as podocyte lineage by their cobblestone morphology and immunoreactivity with synaptopodin, Wilms tumor-1 suppressor gene product (WT-1), complement receptor CR1, and cytoskeletal proteins smooth muscle actin and vimentin. Stimulation of the podocyte cell monolayers with IGF-II resulted in a slight increase in mitogenesis, an effect that was concentration and time dependent and abrogated by co-incubation with exogenous IGF binding protein 2 (IGFBP-2). Western blot analysis of conditioned media revealed that cultured podocytes expressed endogenous IGFBP-2 exclusively. IGF-II stimulation enhanced IGFBP-2 production in a dose- and time-dependent fashion and was associated with an increase in IGFBP-2 mRNA production. These data demonstrate that IGF-II-stimulated IGFBP-2 production appears to inhibit the mitogenic effect of IGF-II, and may have an autocrine effect on the maturation, differentiation, and survival of fetal podocytes.
Collapse
Affiliation(s)
- Darren J Bridgewater
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond Street, N6A 5B8, London, Ontario, Canada
| | | |
Collapse
|
59
|
Nayak NR, Giudice LC. Comparative Biology of the IGF System in Endometrium, Decidua, and Placenta, and Clinical Implications for Foetal Growth and Implantation Disorders. Placenta 2003; 24:281-96. [PMID: 14626217 DOI: 10.1053/plac.2002.0906] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The insulin like growth factors and their binding proteins appear to play a central role during implantation and establishment of pregnancy in all species studied. Although there are similarities among species in the cell types that express IGFs and IGFBPs and their regulation during implantation and pregnancy, there are also significant differences. Understanding of the role of the IGF system in placental function in the human is of immense clinical importance, because serious complications of pregnancy such as intrauterine growth restriction and pre-eclampsia are thought to be associated with alterations in IGF system during early pregnancy and later in gestation. Research in laboratory and domestic animals, including transgenic and gene targeting studies in mice, has significantly improved our understanding of the role of IGF system in placental and foetal development. This paper reviews the diversity in the expression and regulation of IGF system in the decidua and placenta at the foetal-maternal interface in the human and different animal species, which may benefit in directing future studies in understanding of various complications of human pregnancy.
Collapse
Affiliation(s)
- N R Nayak
- Department of Gynecology and Obstetrics, Center for Research on Women's Health and Reproductive Medicine, Stanford University Medical Center, Stanford, CA 94305-5317, USA
| | | |
Collapse
|
60
|
Thompson K, Menzies S, Muckenthaler M, Torti FM, Wood T, Torti SV, Hentze MW, Beard J, Connor J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 2003; 71:46-63. [PMID: 12478613 DOI: 10.1002/jnr.10463] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several neurodegenerative disorders such as Parkinson's Disease (PD) and Alzheimer's Disease (AD) are associated with elevated brain iron accumulation relative to the amount of ferritin, the intracellular iron storage protein. The accumulation of more iron than can be adequately stored in ferritin creates an environment of oxidative stress. We developed a heavy chain (H) ferritin null mutant in an attempt to mimic the iron milieu of the brain in AD and PD. Animals homozygous for the mutation die in utero but the heterozygotes (+/-) are viable. We examined heterozygous and wild-type (wt) mice between 6 and 8 months of age. Macroscopically, the brains of +/- mice were well formed and did not differ from control brains. There was no evidence of histopathology in the brains of the heterozygous mice. Iron levels in the brain of the +/- and wild-type (+/+) mice were similar, but +/- mice had less than half the levels of H-ferritin. The other iron management proteins transferrin, transferrin receptor, light chain ferritin, Divalent Metal Transporter 1, ceruloplasmin, were increased in the +/- mice compared to +/+ mice. The relative amounts of these proteins in relation to the iron concentration are similar to that found in AD and PD. Thus, we hypothesized that the brains of the heterozygote mice should have an increase in indices of oxidative stress. In support of this hypothesis, there was a decrease in total superoxide dismutase (SOD) activity in the heterozygotes coupled with an increase in oxidatively modified proteins. In addition, apoptotic markers Bax and caspase-3 were detected in neurons of the +/- mice but not in the wt. Thus, we have developed a mouse model that mimics the protein profile for iron management seen in AD and PD that also shows evidence of oxidative stress. These results suggest that this mouse may be a model to determine the role of iron mismanagement in neurodegenerative disorders and for testing antioxidant therapeutic strategies.
Collapse
Affiliation(s)
- Khristy Thompson
- Department of Neuroscience and Anatomy, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.
Collapse
Affiliation(s)
- Sue M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | | |
Collapse
|
62
|
Abstract
The existence of abundant high affinity binding proteins for the IGFs, the IGF binding proteins (IGFBPs), was first demonstrated more than 40 yr ago in the very early days of somatomedin research. With the development of molecular techniques and transgenic and knockout mouse models, the nature, complexity, and redundancy of the IGFBPs have now started to be elucidated. Indeed the functional role of the circulating IGFs and the originally proposed endocrine somatomedin hypothesis have recently been questioned. The limited reports to date indicate that IGFBP knockout mice have few phenotypic manifestations. In contrast, overexpression of IGFBPs in transgenic mice is associated with manifestations that provide some insight into the physiological role of the binding proteins. The predominant effect of generalized or tissue-specific overexpression of the IGFBPs has been growth inhibition as would be anticipated from inhibition of the actions of IGF-I and -II. In addition, impaired glucose homeostasis and reduced fecundity have been observed in both IGFBP-1- and IGFBP-3-overexpressing transgenic mice. This review examines the data reported to date for transgenic mouse models that overexpress IGFBPs. In addition, data from transgenic mice that overexpress the acid-labile subunit, an important component of the ternary complex, have also been reviewed.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg R3E 0W3, Canada
| | | |
Collapse
|
63
|
Crossey PA, Pillai CC, Miell JP. Altered placental development and intrauterine growth restriction in IGF binding protein-1 transgenic mice. J Clin Invest 2002; 110:411-8. [PMID: 12163461 PMCID: PMC151083 DOI: 10.1172/jci10077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IGF binding protein-1 (IGFBP-1) is a secretory product of decidualized endometrium and a major constituent of amniotic fluid. It is thought to modulate the actions of the IGFs on trophoblast cells and is therefore potentially important in regulating placental development and fetal growth. To investigate this hypothesis, we have studied the effects of decidual IGFBP-1 excess on fetoplacental growth in transgenic mice overexpressing human IGFBP-1. Endogenous fetal IGFBP-1 overexpression is associated with a transient impairment of fetal growth in midgestation. Maternal decidual IGFBP-1 excess is also associated with impaired fetal growth in midgestation independent of fetal genotype, indicating placental insufficiency. Our data also demonstrate that amniotic fluid IGFBP-1 is derived almost exclusively from maternal sources. Decidual IGFBP-1 overexpression has a marked effect on placental development. Placental morphology is abnormal in transgenic females due to altered trophoblast invasion and differentiation. These changes result in an increase in placental mass throughout pregnancy. This study provides the first compelling in vivo evidence that IGFBP-1 plays a role in placentation and suggests that IGFBP-1 has a pathological role in preeclampsia, a disorder characterized by shallow uterine invasion and altered placental development.
Collapse
Affiliation(s)
- Paul A Crossey
- Department of Diabetes, Endocrinology and Internal Medicine, Guy's, King's and St. Thomas' School of Medicine, London, United Kingdom.
| | | | | |
Collapse
|
64
|
O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL. IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002; 39:85-97. [PMID: 12112378 DOI: 10.1002/glia.10081] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used a model of hypoxic-ischemic brain injury in adult male C57BL/6 mice to study insulin-like growth factor-I (IGF-I) and IGF-binding protein (IGFBP) expression in response to cerebral hypoxia-ischemia (H/I) in the adult mouse. A period of 20 min of H/I that resulted in histopathology in cortex, striatum, and thalamus was correlated with induction of mRNA for IGF-I, IGFBP-2, IGFBP-3, IGFBP-5, and glial fibrillary acidic protein (GFAP) by 4 days of recovery. Increased IGF-I mRNA was located within damaged regions and was surrounded by IGFBP-2 mRNA expression. The results of combined immunostaining/in situ hybridzation showed that the cells expressing IGFBP-2 mRNA were also GFAP-positive and comprised a subset of activated astrocytes immediately surrounding areas of damage. In contrast, staining within damaged regions showed high numbers of cells immunopositive for F4/80 and lectin B(4) indicative of microglia and macrophages but no cells immunopositive for the astrocytic proteins GFAP or S-100beta. Microglia/macrophages within the damaged areas expressed IGF-I mRNA and were also immunopositive for the proliferating cell nuclear antigen. To determine whether expression of IGF-I could contribute to proliferation of microglia, we treated purified cultures of adult brain microglia with IGF-I in the presence of (3)H-thymidine. IGF-I stimulated a twofold increase in DNA synthesis in cultures of adult brain microglia. Taken together with previous data demonstrating that IGF-I promotes proliferation of peripheral macrophages, these data support the hypothesis that IGF-I is an autocrine/paracrine mitogen for microglia/macrophages after H/I.
Collapse
Affiliation(s)
- Steven L O'Donnell
- Department of Neuroscience and Anatomy, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
65
|
Holley SJ, Hall SB, Mellon PL. Complementary expression of IGF-II and IGFBP-5 during anterior pituitary development. Dev Biol 2002; 244:319-28. [PMID: 11944940 DOI: 10.1006/dbio.2002.0608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specification of the five individual hormone-secreting cell types in the anterior pituitary requires a series of sequential cell fate decisions. We have immortalized cells at several stages along this pathway of pituitary differentiation. Here, we present analysis of differences in gene expression between an anterior pituitary precursor cell line, alphaT1-1, and an immature gonadotrope cell line, alphaT3-1, identified by using cDNA subtraction. Messenger RNA expression of members of the insulin-like growth factor signaling system, IGF-II and IGFBP-5, was found in the alphaT1-1 precursor cell line, but not in the more differentiated cell line, alphaT3-1. This inferred stage specificity was confirmed in the mouse embryo by using in situ hybridization on embryonic days e10.5 through e18.5. Expression of IGF-II and IGFBP-5 mRNAs was both temporally and spatially regulated during pituitary development. IGF-II was highly expressed in the epithelium surrounding Rathke's pouch at e10.5, while IGFBP-5 expression was restricted to the adjacent oral epithelium. At e11.5 (represented by alphaT1-1), IGF-II was expressed throughout the pouch, but was coexpressed with IGFBP-5 and alpha-subunit in the ventral portion of the pouch epithelium. On e12.5, the two mRNAs were expressed in opposing dorsoventral (IGF-II) and ventrodorsal (IGFBP-5) patterns, with IGF-II excluded from the rostral, alpha-subunit-expressing region. A decrease of both mRNAs was observed at e14.5 (equivalent to alphaT3-1), with IGF-II levels low and IGFBP-5 concentrated in the anterior pituitary rostral tip. These findings suggest that the timing of IGF-II expression and regulation of its accessibility by IGFBP-5 may play a role in anterior pituitary differentiation, survival, and/or proliferation.
Collapse
Affiliation(s)
- Sandra J Holley
- Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0674, USA
| | | | | |
Collapse
|