51
|
The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: Comparison to HPβCD and the solubility-permeability interplay. Eur J Pharm Sci 2015; 77:73-8. [PMID: 26006306 DOI: 10.1016/j.ejps.2015.05.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/06/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
The aim of this research was to study the interaction of sulfobutyl ether7 β-cyclodextrin (captisol) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) with the poorly soluble antiarrhythmic drug amiodarone, and to investigate the consequent solubility-permeability interplay. Phase-solubility studies of amiodarone with the two cyclodextrins, followed by PAMPA and rat intestinal permeability experiments, were carried out, and the solubility-permeability interplay was then illustrated as a function of increasing cyclodextrin content. Equimolar levels of captisol allowed ∼10-fold higher amiodarone solubility than HPβCD, as well as binding constant. With both captisol and HPβCD, decreased in vitro and in vivo amiodarone apparent permeability was evident with increasing CD levels and increased apparent solubility. A theoretical model assuming direct proportionality between the apparent solubility increase allowed by the CD and permeability decrease was able to accurately predict the solubility-permeability tradeoff as a function of CD levels. In conclusion, the addition of ionic interactions (e.g. amiodarone-captisol) to hydrophobic interactions of the inclusion complex formation may result in synergic effect on solubilization; however, it is not merely the solubility that should be examined when formulating an oral poorly soluble compound, but the solubility-permeability balance, in order to maximize the overall drug exposure.
Collapse
|
52
|
Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, Dahan A. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay. J Pharm Sci 2015; 104:2941-7. [PMID: 25989509 DOI: 10.1002/jps.24496] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 11/07/2022]
Abstract
The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs.
Collapse
Affiliation(s)
- Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | - David Lindley
- AbbVie Incorporation, North Chicago, Illinois, 60064
| | - Robert A Carr
- AbbVie Incorporation, North Chicago, Illinois, 60064
| | | | - Riad Agbaria
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
53
|
Papich MG, Martinez MN. Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls. AAPS JOURNAL 2015; 17:948-64. [PMID: 25916691 DOI: 10.1208/s12248-015-9743-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/12/2014] [Indexed: 01/29/2023]
Abstract
The Biopharmaceutical Classification System (BCS) has been a prognostic tool for assessing the potential effects of formulation on the human drug oral bioavailability. When used in conjunction with in vitro dissolution tests, the BCS can support the prediction of in vivo product performance and the development of mechanistic models that support formulation assessments through the generation of "what if" scenarios. To date, the applicability of existing human BCS criteria has not been evaluated in dogs, thereby limiting its use in canine drug development. Therefore, we examined 50 drugs for which absolute bioavailability (F) was available both in dogs and humans. The drugs were also evaluated for any potential association between solubility (calculated from the dose number, Do) or lipophilicity (LogP) and F in dogs. In humans, solubility is determined in 250 mL of fluid. However, the appropriate volume for classifying drug solubility in dogs has not been established. In this analysis, the estimated volume of a water flush administered to fasted dogs (6 mL) and a volume of 250 mL scaled to a Beagle dog (35 mL) were examined. In addition, in humans, a Do value greater than 1.0 is used to define a compound as highly soluble and a LogP value greater than 1.72 as high permeability. These same criteria were applied for defining highly soluble and highly permeable in dogs. Whether using 35 or 6 mL to determine Do, the canine solubility classification remained unchanged for all but seven compounds. There were no clear associations between a drug's F in dogs and humans or between the canine value of F and either its human BCS classification, its LogP value, or the canine Do estimate. There was a tendency for those drugs with canine values of F equal to or greater than 80% to have LogP values equal to or greater than 1.0. Exceptions to this observation tended to be those compounds known to be absorbed via mechanisms other than passive diffusion (e.g., via transporters or paracellular transporters). Although there are limitations to the approach used in this study, the results of our assessment strongly suggest that the human BCS classification system requires substantial modification before it can be reliably applied to dogs.
Collapse
Affiliation(s)
- Mark G Papich
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina, 27607, USA,
| | | |
Collapse
|
54
|
Kim DH. Gut Microbiota-Mediated Drug-Antibiotic Interactions. Drug Metab Dispos 2015; 43:1581-9. [PMID: 25926432 DOI: 10.1124/dmd.115.063867] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022] Open
Abstract
Xenobiotic metabolism involves the biochemical modification of drugs and phytochemicals in living organisms, including humans and other animals. In the intestine, the gut microbiota catalyzes the conversion of hydrophilic drugs into absorbable, hydrophobic compounds through hydroxyzation and reduction. Drugs and phytochemicals are transformed into bioactive (sulfasalazine, lovastatin, and ginsenoside Rb1), bioinactive (chloramphenicol, ranitidine, and metronidazole), and toxic metabolites (nitrazepam), thus affecting the pharmacokinetics of the original compounds. Antibiotics suppress the activities of drug-metabolizing enzymes by inhibiting the proliferation of gut microbiota. Antibiotic treatment might influence xenobiotic metabolisms more extensively and potently than previously recognized and reduce gut microbiota-mediated transformation of orally administered drugs, thereby altering the systemic concentrations of intact drugs, their metabolites, or both. This review describes the effects of antibiotics on the metabolism of drugs and phytochemicals by the gut microbiota.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
55
|
Herbrink M, Nuijen B, Schellens JHM, Beijnen JH. Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev 2015; 41:412-22. [PMID: 25818541 DOI: 10.1016/j.ctrv.2015.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/23/2023]
Abstract
Small molecular tyrosine kinase inhibitors (smTKIs) are in the centre of the very quickly expanding area of personalized chemotherapy and oral applicability thereof. The number of drugs in this class is rapidly growing, with twenty current approvals by both the European Medicines Agency (EMA) and the Food and Drug Administration (FDA). The drugs are, however, generally characterized by a poor oral, and thus variable, bioavailability. This results in significant variation in plasma levels and exposure. The cause is a complex interplay of factors, including poor aqueous solubility, issued permeability, membrane transport and enzymatic metabolism. Additionally, food and drug-drug interactions can play a significant role. The issues related with an impaired bioavailability generally receive little attention. To the best of our knowledge, this article is the first to provide an overview of the factors that determine the bioavailability of the smTKIs.
Collapse
Affiliation(s)
- Maikel Herbrink
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands.
| | - Bastiaan Nuijen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands; Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands; Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
56
|
Arrunátegui LB, Silva-Barcellos NM, Bellavinha KR, Ev LDS, Souza JD. Biopharmaceutics classification system: importance and inclusion in biowaiver guidance. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000100015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pharmacological therapy is essential in many diseases treatment and it is important that the medicine policy is intended to offering safe and effective treatment with affordable price to the population. One way to achieve this is through biowaiver, defined as the replacement of in vivo bioequivalence studies by in vitro studies. For biowaiver of new immediate release solid oral dosage forms, data such as intestinal permeability and solubility of the drug are required, as well as the product dissolution. The Biopharmaceutics Classification System (BCS) is a scientific scheme that divides drugs according to their solubility and permeability and has been used by various guides as a criterion for biowaiver. This paper evaluates biowaiver application, addressing the general concepts and parameters used by BCS, making a historical account of its use, the requirements pertaining to the current legislation, the benefits and risks associated with this decision. The results revealed that the use of BCS as a biowaiver criterion greatly expands the therapeutics options, contributing to greater therapy access of the general population with drug efficacy and safety guaranteed associated to low cost.
Collapse
|
57
|
Ozawa M, Tsume Y, Zur M, Dahan A, Amidon GL. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification. Mol Pharm 2014; 12:204-11. [PMID: 25423288 DOI: 10.1021/mp500553b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the permeability criteria for BCS high permeability classification.
Collapse
Affiliation(s)
- Makoto Ozawa
- College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | | | | | | | | |
Collapse
|
58
|
Newby D, Freitas AA, Ghafourian T. Comparing multilabel classification methods for provisional biopharmaceutics class prediction. Mol Pharm 2014; 12:87-102. [PMID: 25397721 DOI: 10.1021/mp500457t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The biopharmaceutical classification system (BCS) is now well established and utilized for the development and biowaivers of immediate oral dosage forms. The prediction of BCS class can be carried out using multilabel classification. Unlike single label classification, multilabel classification methods predict more than one class label at the same time. This paper compares two multilabel methods, binary relevance and classifier chain, for provisional BCS class prediction. Large data sets of permeability and solubility of drug and drug-like compounds were obtained from the literature and were used to build models using decision trees. The separate permeability and solubility models were validated, and a BCS validation set of 127 compounds where both permeability and solubility were known was used to compare the two aforementioned multilabel classification methods for provisional BCS class prediction. Overall, the results indicate that the classifier chain method, which takes into account label interactions, performed better compared to the binary relevance method. This work offers a comparison of multilabel methods and shows the potential of the classifier chain multilabel method for improved biological property predictions for use in drug discovery and development.
Collapse
Affiliation(s)
- Danielle Newby
- Medway School of Pharmacy, Universities of Kent and Greenwich , Chatham, Kent, ME4 4TB, U.K
| | | | | |
Collapse
|
59
|
Dahlgren D, Roos C, Sjögren E, Lennernäs H. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods. J Pharm Sci 2014; 104:2702-26. [PMID: 25410736 DOI: 10.1002/jps.24258] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022]
Abstract
Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
60
|
Wolk O, Agbaria R, Dahan A. Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development. Drug Des Devel Ther 2014; 8:1563-75. [PMID: 25284986 PMCID: PMC4181551 DOI: 10.2147/dddt.s68909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main objective of this work was to investigate in-silico predictions of physicochemical properties, in order to guide oral drug development by provisional biopharmaceutics classification system (BCS). Four in-silico methods were used to estimate LogP: group contribution (CLogP) using two different software programs, atom contribution (ALogP), and element contribution (KLogP). The correlations (r(2)) of CLogP, ALogP and KLogP versus measured LogP data were 0.97, 0.82, and 0.71, respectively. The classification of drugs with reported intestinal permeability in humans was correct for 64.3%-72.4% of the 29 drugs on the dataset, and for 81.82%-90.91% of the 22 drugs that are passively absorbed using the different in-silico algorithms. Similar permeability classification was obtained with the various in-silico methods. The in-silico calculations, along with experimental melting points, were then incorporated into a thermodynamic equation for solubility estimations that largely matched the reference solubility values. It was revealed that the effect of melting point on the solubility is minor compared to the partition coefficient, and an average melting point (162.7 °C) could replace the experimental values, with similar results. The in-silico methods classified 20.76% (± 3.07%) as Class 1, 41.51% (± 3.32%) as Class 2, 30.49% (± 4.47%) as Class 3, and 6.27% (± 4.39%) as Class 4. In conclusion, in-silico methods can be used for BCS classification of drugs in early development, from merely their molecular formula and without foreknowledge of their chemical structure, which will allow for the improved selection, engineering, and developability of candidates. These in-silico methods could enhance success rates, reduce costs, and accelerate oral drug products development.
Collapse
Affiliation(s)
- Omri Wolk
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Riad Agbaria
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
61
|
Khoshakhlagh P, Johnson R, Nawroth T, Langguth P, Schmueser L, Hellmann N, Decker H, Szekely NK. Nanoparticle structure development in the gastro-intestinal model fluid FaSSIFmod6.5from several phospholipids at various water content relevant for oral drug administration. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pooneh Khoshakhlagh
- Johannes Gutenberg University, Institute of Pharmacy and Biochemistry, Division of Pharmaceutical Technology and Biopharmaceutics; Mainz Germany
| | - Raphael Johnson
- Johannes Gutenberg University, Institute of Pharmacy and Biochemistry, Division of Pharmaceutical Technology and Biopharmaceutics; Mainz Germany
| | - Thomas Nawroth
- Johannes Gutenberg University, Institute of Pharmacy and Biochemistry, Division of Pharmaceutical Technology and Biopharmaceutics; Mainz Germany
| | - Peter Langguth
- Johannes Gutenberg University, Institute of Pharmacy and Biochemistry, Division of Pharmaceutical Technology and Biopharmaceutics; Mainz Germany
| | - Lars Schmueser
- Johannes Gutenberg University, Molecular Biophysics Institute; Mainz Germany
| | - Nadja Hellmann
- Johannes Gutenberg University, Molecular Biophysics Institute; Mainz Germany
| | - Heinz Decker
- Johannes Gutenberg University, Molecular Biophysics Institute; Mainz Germany
| | | |
Collapse
|
62
|
Comparison of two approaches of intestinal absorption by puerarin. J Pharmacol Toxicol Methods 2014; 70:6-11. [DOI: 10.1016/j.vascn.2014.03.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/23/2014] [Accepted: 03/13/2014] [Indexed: 01/28/2023]
|
63
|
Is the full potential of the biopharmaceutics classification system reached? Eur J Pharm Sci 2014; 57:224-31. [DOI: 10.1016/j.ejps.2013.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/05/2013] [Accepted: 09/15/2013] [Indexed: 11/18/2022]
|
64
|
Skachilova SY, Shilova EV, Mitrokhin NM. Synthesis of biologically active compounds and biopharmaceutical aspects of polymorphic and solvatomorphic modifications. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Encinas L, O'Keefe H, Neu M, Remuiñán MJ, Patel AM, Guardia A, Davie CP, Pérez-Macías N, Yang H, Convery MA, Messer JA, Pérez-Herrán E, Centrella PA, Alvarez-Gómez D, Clark MA, Huss S, O'Donovan GK, Ortega-Muro F, McDowell W, Castañeda P, Arico-Muendel CC, Pajk S, Rullás J, Angulo-Barturen I, Alvarez-Ruíz E, Mendoza-Losana A, Ballell Pages L, Castro-Pichel J, Evindar G. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. J Med Chem 2014; 57:1276-88. [PMID: 24450589 DOI: 10.1021/jm401326j] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.
Collapse
Affiliation(s)
- Lourdes Encinas
- ELT Boston, Platform Technology & Science, GlaxoSmithKline , Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Döring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev 2014; 46:261-82. [PMID: 24483608 DOI: 10.3109/03602532.2014.882353] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Collapse
Affiliation(s)
- Barbara Döring
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg, Justus-Liebig-University Giessen , Giessen , Germany
| | | |
Collapse
|
67
|
Fotaki N. Pros and cons of methods used for the prediction of oral drug absorption. Expert Rev Clin Pharmacol 2014; 2:195-208. [DOI: 10.1586/17512433.2.2.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Dezani AB, Pereira TM, Caffaro AM, Reis JM, Serra CHDR. Equilibrium solubility versus intrinsic dissolution: characterization of lamivudine, stavudine and zidovudine for BCS classification. BRAZ J PHARM SCI 2013. [DOI: 10.1590/s1984-82502013000400026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Solubility and dissolution rate of drugs are of major importance in pre-formulation studies of pharmaceutical dosage forms. The solubility improvement allows the drugs to be potential biowaiver candidates and may be a good way to develop more dose-efficient formulations. Solubility behaviour of lamivudine, stavudine and zidovudine in individual solvents (under pH range of 1.2 to 7.5) was studied by equilibrium solubility and intrinsic dissolution methods. In solubility study by equilibrium method (shake-flask technique), known amounts of drug were added in each media until to reach saturation and the mixture was subjected to agitation of 150 rpm for 72 hours at 37 ºC. In intrinsic dissolution test, known amount of each drug was compressed in the matrix of Wood's apparatus and subjected to dissolution in each media with agitation of 50 rpm at 37 ºC. In solubility by equilibrium method, lamivudine and zidovudine can be considered as highly soluble drugs. Although stavudine present high solubility in pH 4.5, 6.8, 7.5 and water, the solubility determination in pH 1.2 was not possible due stability problems. Regarding to intrinsic dissolution, lamivudine and stavudine present high speed of dissolution. Considering a boundary value presented by Yu and colleagues (2004), all drugs studied present high solubility characteristics in intrinsic dissolution method. Based on the obtained results, intrinsic dissolution seems to be superior for solubility studies as an alternative method for biopharmaceutical classification purposes.
Collapse
|
69
|
Lennernäs H. Human in vivo regional intestinal permeability: importance for pharmaceutical drug development. Mol Pharm 2013; 11:12-23. [PMID: 24206063 DOI: 10.1021/mp4003392] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Both the development and regulation of pharmaceutical dosage forms have undergone significant improvements and development over the past 25 years, due primarily to the extensive application of the biopharmaceutical classification system (BCS). The Biopharmaceutics Drug Disposition Classification System, which was published in 2005, has also been a useful resource for predicting the influence of transporters in several pharmacokinetic processes. However, there remains a need for the pharmaceutical industry to develop reliable in vitro/in vivo correlations and in silico methods for predicting the rate and extent of complex gastrointestinal (GI) absorption, the bioavailability, and the plasma concentration-time curves for orally administered drug products. Accordingly, a more rational approach is required, one in which high quality in vitro or in silico characterizations of active pharmaceutical ingredients and formulations are integrated into physiologically based in silico biopharmaceutics models to capture the full complexity of GI drug absorption. The need for better understanding of the in vivo GI process has recently become evident after an unsuccessful attempt to predict the GI absorption of BCS class II and IV drugs. Reliable data on the in vivo permeability of the human intestine (Peff) from various intestinal regions is recognized as one of the key biopharmaceutical requirements when developing in silico GI biopharmaceutics models with improved predictive accuracy. The Peff values for human jejunum and ileum, based on historical open, single-pass, perfusion studies are presented in this review. The main objective of this review is to summarize and discuss the relevance and current status of these human in vivo regional intestinal permeability values.
Collapse
Affiliation(s)
- Hans Lennernäs
- Department of Pharmaceutics, Uppsala University , 753 12 Uppsala, Sweden
| |
Collapse
|
70
|
Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo. Eur J Pharm Sci 2013; 57:292-9. [PMID: 24189462 DOI: 10.1016/j.ejps.2013.10.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 11/23/2022]
Abstract
OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes.
Collapse
|
71
|
Dahan A, Wolk O, Kim YH, Ramachandran C, Crippen GM, Takagi T, Bermejo M, Amidon GL. Purely in Silico BCS Classification: Science Based Quality Standards for the World’s Drugs. Mol Pharm 2013; 10:4378-90. [DOI: 10.1021/mp400485k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Omri Wolk
- Department of Clinical Pharmacology, School of Pharmacy,
Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Young Hoon Kim
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Korea Food and Drug Administration, Seoul, South Korea
| | - Chandrasekharan Ramachandran
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gordon M. Crippen
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Toshihide Takagi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Gordon L. Amidon
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
72
|
Kang MJ, Ha HW, Kim GH, Lee SK, Ahn YT, Kim DH, Jeong HG, Jeong TC. Role of Metabolism by Intestinal Bacteria in Arbutin-Induced Suppression of Lymphoproliferative Response in vitro. Biomol Ther (Seoul) 2013; 20:196-200. [PMID: 24116295 PMCID: PMC3792218 DOI: 10.4062/biomolther.2012.20.2.196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 11/12/2022] Open
Abstract
Role of metabolism by intestinal bacteria in arbutin-induced immunotoxicity was investigated in splenocyte cultures. Following an incubation of arbutin with 5 different intestinal bacteria for 24 hr, its aglycone hydroquinone could be produced and detected in the bacterial culture media with different amounts. Toxic effects of activated arbutin by intestinal bacteria on lymphoproliferative response were tested in splenocyte cultures from normal mice. Lipopolysaccharide and concanavalin A were used as mitogens for B- and T-cells, respectively. When bacteria cultured medium with arbutin was treated into the splenocytes for 3 days, the medium cultured with bacteria producing large amounts of hydroquinone induced suppression of lymphoproliferative responses, indicating that metabolic activation by intestinal bacteria might be required in arbutin-induced toxicity. The results indicated that the present testing system might be applied for determining the possible role of metabolism by intestinal bacteria in certain chemical-induced immunotoxicity in animal cell cultures.
Collapse
Affiliation(s)
- Mi Jeong Kang
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Boehm G, Yao L, Han L, Zheng Q. Development of the generic drug industry in the US after the Hatch-Waxman Act of 1984. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
74
|
Siccardi M, Rajoli RKR, Curley P, Olagunju A, Moss D, Owen A. Physiologically based pharmacokinetic models for the optimization of antiretroviral therapy: recent progress and future perspective. Future Virol 2013. [DOI: 10.2217/fvl.13.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anti-HIV therapy is characterized by the chronic administration of antiretrovirals (ARVs), and consequently, several problems can arise during the management of HIV-positive patients. ARV disposition can be simulated by combining system data describing a population of patients and in vitro drug data through physiologically based pharmacokinetic (PBPK) models, which mathematically describe absorption, distribution, metabolism and elimination. PBPK modeling can find application in the investigation of clinically relevant scenarios, while providing the opportunity for a better understanding of the mechanisms regulating drug distribution. In this review, we have analyzed the most recent applications of PBPK models for ARVs and highlighted some of the most interesting areas of use, such as drug–drug interaction, pharmacogenetics, factors regulating absorption and tissue penetration, as well as therapy optimization in special populations. The application of the PBPK modeling approach might not be limited to the investigation of hypothetical clinical issues, but could be used to inform future prospective clinical trials.
Collapse
Affiliation(s)
- Marco Siccardi
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rajith Kumar Reddy Rajoli
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Adeniyi Olagunju
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Darren Moss
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
75
|
Lennernäs H. Regional intestinal drug permeation: biopharmaceutics and drug development. Eur J Pharm Sci 2013; 57:333-41. [PMID: 23988845 DOI: 10.1016/j.ejps.2013.08.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/28/2022]
Abstract
Over the last 25 years, profound changes have been seen in both the development and regulation of pharmaceutical dosage forms, due primarily to the extensive use of the biopharmaceutical classification system (BCS) in both academia and industry. The BCS and the FDA scale-up and post-approval change guidelines were both developed during the 1990s and both are currently widely used to claim biowaivers. The development of the BCS and its wide acceptance were important steps in pharmaceutical science that contributed to the more rational development of oral dosage forms. The effective permeation (Peff) of drugs through the intestine often depends on the combined outcomes of passive diffusion and multiple parallel transport processes. Site-specific jejunal Peff cannot reflect the permeability of the whole intestinal tract, since this varies along the length of the intestine, but is a useful approximation of the fraction of the oral dose that is absorbed. It appears that drugs with a jejunal Peff>1.5×10(-4)cm/s will be completely absorbed no matter which transport mechanisms are utilized. In this paper, historical clinical data originating from earlier open, single-pass perfusion studies have been used to calculate the Peff of different substances from sites in the jejunum and ileum. More exploratory in vivo studies are required in order to obtain reliable data on regional intestinal drug absorption. The development of experimental and theoretical methods of assessing drug absorption from both small intestine and various sites in the colon is encouraged. Some of the existing human in vivo data are discussed in relation to commonly used cell culture models. It is crucial to accurately determine the input parameters, such as the regional intestinal Peff, as these will form the basis for the expected increase in modeling and simulation of all the processes involved in GI drug absorption, thus facilitating successful pharmaceutical development in the future. It is suggested that it would be feasible to use open, single-pass perfusion studies for the in vivo estimation of regional intestinal Peff, but that care should be taken in the study design to optimize the absorption conditions.
Collapse
Affiliation(s)
- Hans Lennernäs
- Department of Pharmaceutics, Uppsala University, Sweden.
| |
Collapse
|
76
|
Jiang YR, Zhang ZH, Liu QY, Hu SY, Chen XY, Jia XB. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles. Int J Nanomedicine 2013; 8:2285-93. [PMID: 23836971 PMCID: PMC3699171 DOI: 10.2147/ijn.s40374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01). Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone.
Collapse
Affiliation(s)
- Yan-rong Jiang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
77
|
Martin P, Giardiello M, McDonald TO, Rannard SP, Owen A. Mediation of in Vitro Cytochrome P450 Activity by Common Pharmaceutical Excipients. Mol Pharm 2013; 10:2739-48. [DOI: 10.1021/mp400175n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip Martin
- Department of Molecular
and
Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke
Place, Liverpool, L69 3GF, U.K
| | - Marco Giardiello
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
| | - Tom O. McDonald
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
| | - Steven P. Rannard
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
- MRC Centre for Drug Safety Science,
University of Liverpool, Liverpool, L69 3GE, U.K
| | - Andrew Owen
- Department of Molecular
and
Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke
Place, Liverpool, L69 3GF, U.K
- MRC Centre for Drug Safety Science,
University of Liverpool, Liverpool, L69 3GE, U.K
| |
Collapse
|
78
|
Determination of lamivudine and zidovudine permeability using a different ex vivo method in Franz cells. J Pharmacol Toxicol Methods 2013; 67:194-202. [DOI: 10.1016/j.vascn.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 01/06/2023]
|
79
|
Hanh ND, Sinchaipanid N, Mitrevej A. Physicochemical characterization of phyllanthin from Phyllanthus amarus Schum. et Thonn. Drug Dev Ind Pharm 2013; 40:793-802. [PMID: 23594304 DOI: 10.3109/03639045.2013.788010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phyllanthin is a major bioactive lignan component of Phyllanthus amarus, with several known biological activities. This study dealt with the isolation and physicochemical characterization of phyllanthin. Phyllanthin was isolated from P. amarus leaves by column chromatography and purified by recrystallization to obtain phyllanthin crystals with a purity of more than 98%. UV, IR, MS, (1)H NMR and (13)C NMR spectra were employed to identify phyllanthin. The physicochemical properties of phyllanthin were characterized using differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, pH-solubility, ionization property and lipophilicity. The results indicated that phyllanthin crystals had the melting point and melting enthalpy range of 96.67-97.03 °C and 109.61-116.34 J/g, respectively. Three kinds of phyllanthin crystals, recrystallized by petroleum ether, absolute ethanol and 25% ethanol solution, showed only one polymorph and no polymorphic impurity. Phyllanthin in a solid state was found to undergo significant thermal decomposition above 200 °C. The compound demonstrated good stability in aqueous solution over a pH range of 1.07-10.02 for at least 4 h. The solubility of phyllanthin appeared to be pH-independent of pH range from 1.07 to 10.26. Ionization property studied by absorbance spectroscopy method was in agreement with the result of pH-solubility study, showing that phyllanthin has no pKa over a pH range of 1.12-10.02. The log Pow value of phyllanthin was found to be 3.30 ± 0.05 at pH 7.48, suggesting that phyllanthin may have good permeability through biological membranes. The findings could be useful tools for the development of stable and bioavailable oral dosage forms of phyllanthin.
Collapse
Affiliation(s)
- Nguyen Duc Hanh
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University , Bangkok , Thailand
| | | | | |
Collapse
|
80
|
Incecayir T, Tsume Y, Amidon GL. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification. Mol Pharm 2013; 10:958-66. [PMID: 23327720 DOI: 10.1021/mp300410n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum) and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33 ± 0.11 × 10(-4) vs 0.38 ± 0.06 × 10(-4) and 0.57 ± 0.17 × 10(-4) vs 0.64 ± 0.30 × 10(-4) cm/s, respectively) and in the jejunum of mouse (0.55 ± 0.05 × 10(-4) vs 0.59 ± 0.13 × 10(-4) cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental-dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration-dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96 ± 1.96 × 10(-6) vs 9.44 ± 3.44 × 10(-6) and 15.9 ± 2.2 × 10(-6) vs 23.2 ± 7.1 × 10(-6) cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7 ± 6.5 × 10(-6) vs 14.2 ± 1.5 × 10(-6) cm/s). The P-gp inhibitor, verapamil, significantly increased AP-BL and decreased BL-AP direction transport of labetalol. Overall, labetalol showed high Peff in rat and mouse intestinal perfusion models similar to metoprolol at a concentration based on HDS. However, the concentration-dependent permeability of labetalol in mice due to P-gp and the inhibition study with verapamil in Caco-2 cells indicated that labetalol is not an ideal reference standard for BCS classification.
Collapse
Affiliation(s)
- Tuba Incecayir
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109-1065, USA
| | | | | |
Collapse
|
81
|
Lin SP, Hou YC, Liao TY, Tsai SY. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone. Drug Dev Ind Pharm 2013; 40:330-7. [PMID: 23369092 DOI: 10.3109/03639045.2012.760580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Preparation of magnolol-loaded amorphous solid dispersion was investigated for improving the bioavailability. MATERIALS AND METHODS A solid dispersion of magnolol was prepared with polyvinylpyrrolidone K-30 (PVP) by melting method, and the physical properties were characterized by using differential scanning calorimetry, powder X-ray diffractometry, Fourier transformation-infrared spectroscopy and scanning electron microscope. In addition, dissolution test was also performed. Subsequently, the bioavailability of magnolol pure compound, its physical mixture and solid dispersion were compared in rabbits. The blood samples withdrawn via marginal ear vein at specific time points were assayed by HPLC method. RESULTS Oral administration of the solid dispersion of magnolol with PVP significantly increased the systemic exposures of magnolol and magnolol sulfates/glucuronides by 80.1% and 142.8%, respectively, compared to those given with magnolol pure compound. CONCLUSION Magnolol-loaded amorphous solid dispersion with PVP has demonstrated enhanced bioavailability of magnolol in rabbits.
Collapse
Affiliation(s)
- Shiuan-Pey Lin
- School of Pharmacy, China Medical University , Taichung , Taiwan
| | | | | | | |
Collapse
|
82
|
|
83
|
Sigfridsson K, Lundqvist A, Strimfors M. Evaluation of exposure properties after injection of nanosuspensions and microsuspenions into the intraperitoneal space in rats. Drug Dev Ind Pharm 2012; 39:1832-9. [PMID: 23240709 DOI: 10.3109/03639045.2012.738684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present paper, BA99 and AC88 were used as model compounds for intraperitoneal (i.p.) administration to Sprague-Dawley rats. A major problem for the compounds, like many others newly developed pharmaceutical drugs, is the poor solubility in water. To solve solubility related problems, development of nanosuspensions is an attractive alternative. Both compounds are suitable for nanosuspensions, using the milling approach. After 2 weeks in freezer, the nanoparticles aggregated to form particles in the 400-2000 nm interval. However, following a 20 s ultrasonication step, the original particle sizes (about 200 nm) were obtained. Adding 5% mannitol before the samples were frozen abolished aggregation. It is also possible to freeze-dry the nanosuspension in the presence of 5% mannitol and re-disperse the formulation in water. Nanosuspensions of both compounds were injected i.p. to rats at 5 and 500 µmoL/kg. At the low dose, also a microsuspension was administered. I.p. administration resulted in overall improved C(max) for both AC88 and BA99 compared to s.c. and oral administration. I.p. is the preferred route of administration of tolerable drugs when a fast onset of action is desired and when a significant first passage metabolism occurs. The net charge of the active molecule appeared to affect the absorption kinetics. In the present work, the neutral molecule was favored over the negatively charged one.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Pharmaceutical Development, AstraZeneca R&D Mölndal , Mölndal , Sweden
| | | | | |
Collapse
|
84
|
Jeong HG, Kang MJ, Kim HG, Oh DG, Kim JS, Lee SK, Jeong TC. Role of intestinal microflora in xenobiotic-induced toxicity. Mol Nutr Food Res 2012; 57:84-99. [PMID: 23166009 DOI: 10.1002/mnfr.201200461] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 11/09/2022]
Abstract
In addition to its role in digestion of food in the gastrointestinal tract, the intestinal microflora is also capable of biotransforming numerous drugs. Likewise, the intestinal microflora may significantly modulate xenobiotic-induced toxicity by either activating or inactivating xenobiotics via metabolism. To date, most investigations of xenobiotic metabolism have focused not only on metabolism in host tissues, but the modulation of the pharmacological activity of drugs by the intestinal microflora. Despite its importance, the presumed role of intestinal microflora metabolism in xenobiotic-induced toxicity has been understudied. Therefore, it is appropriate to briefly review our current situation, and state which research in xenobiotic metabolism by intestinal microflora, particularly in the field of toxicology, is needed.
Collapse
Affiliation(s)
- Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
85
|
Li H, Jin HE, Shim WS, Shim CK. An improved prediction of the humanin vivointestinal permeability and BCS class of drugs using thein vitropermeability ratio obtained for rat intestine using an Ussing chamber system. Drug Dev Ind Pharm 2012; 39:1515-22. [DOI: 10.3109/03639045.2012.714787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Pillay V, Hibbins AR, Choonara YE, du Toit LC, Kumar P, Ndesendo VMK. Orally Administered Therapeutic Peptide Delivery: Enhanced Absorption Through the Small Intestine Using Permeation Enhancers. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9299-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Borde A, Karlsson E, Andersson K, Björhall K, Lennernäs H, Abrahamsson B. Assessment of enzymatic prodrug stability in human, dog and simulated intestinal fluids. Eur J Pharm Biopharm 2012; 80:630-7. [DOI: 10.1016/j.ejpb.2011.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
|
88
|
Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B. Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions. ACTA ACUST UNITED AC 2012; 64:1523-48. [PMID: 23058041 DOI: 10.1111/j.2042-7158.2012.01505.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations. KEY FINDINGS Current knowledge on the intestinal expression of the apical sodium-dependent bile acid transporter (ASBT), the breast cancer resistance protein (BCRP), the monocarboxylate transporters (MCT) 1, MCT3-5, the multidrug resistance associated proteins (MRP) 1-6, the organic anion transporting polypetides (OATP) 2B1, 1A2, 3A1 and 4A1, and the organic solute transporter α/β (OSTα/β) has been covered along with an overview of their substrates and inhibitors. Furthermore, the many challenges in predicting clinically relevant DDIs from in-vitro studies have been discussed with focus on intestinal transporters and the various methods for deducting in-vitro parameters for transporters (K(m) /K(i) /IC50, efflux ratio). The applicability of using a cut-off value (estimated based on the intestinal drug concentration divided by the K(i) or IC50) has also been considered. SUMMARY A re-evaluation of the current approaches for the prediction of DDIs is necessary when considering the involvement of other transporters than P-glycoprotein. Moreover, the interplay between various processes that a drug is subject to in-vivo such as translocation by several transporters and dissolution should be considered.
Collapse
Affiliation(s)
- Anne Sophie Grandvuinet
- Drug Transporters in ADME, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
89
|
Reppas C, Vertzoni M. Biorelevant in-vitro performance testing of orally administered dosage forms. J Pharm Pharmacol 2012; 64:919-30. [DOI: 10.1111/j.2042-7158.2012.01474.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
Objectives
This review focuses on the evolution and current status of biorelevant media and hydrodynamics, and discusses the usefulness of biorelevant performance testing in the evaluation of specific dosage form related lumenal processes.
Key findings
During the last 15 years our knowledge of the gastrointestinal environment (including the lower gut) has improved dramatically and biorelevant media composition and, to a lesser extent, biorelevant hydrodynamics, have been refined. Biorelevant dissolution/release testing is useful for the evaluation of formulation and food effects on plasma levels after administration of immediate release dosage forms containing low solubility compounds and after administration of extended release products. Lumenal disintegration times of immediate release dosage forms and the bile acid sequestering activity of resins in the lumen can also be successfully forecasted with biorelevant in vitro testing.
Summary
Biorelevant in-vitro performance testing is an important tool for evaluating intralumenal dosage form performance. Since the formulation of new active pharmaceutical ingredients for oral delivery is more challenging than ever before, efforts to improve the predictability of biorelevant tests are expected to continue.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
90
|
Li Y, McClements DJ. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. Eur J Pharm Biopharm 2011; 79:423-31. [DOI: 10.1016/j.ejpb.2011.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/14/2011] [Accepted: 03/19/2011] [Indexed: 12/19/2022]
|
91
|
Role of metabolism by intestinal bacteria in arbutin-induced toxicity in vitro. Arch Pharm Res 2011; 34:687-93. [DOI: 10.1007/s12272-011-0420-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 11/26/2022]
|
92
|
Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm 2011; 78:166-72. [DOI: 10.1016/j.ejpb.2010.12.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
93
|
Kleberg K, Jacobsen J, Müllertz A. Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies. J Pharm Pharmacol 2011; 62:1656-68. [PMID: 21039549 DOI: 10.1111/j.2042-7158.2010.01023.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Based on the knowledge of human intestinal fluids, compositions of biorelevant media and their impact on solubility, dissolution and permeability studies of poorly soluble drug compounds are discussed. KEY FINDINGS Human intestinal fluids show large variations with regard to composition and pH, which complicate the selection of biorelevant media. The influence of concentration and ratio of bile salts, phospholipids and hydrolysis products, such as monoglycerides and free fatty acids, in well characterised media, on the solubility, dissolution and permeability of a given drug provides valuable information on the behaviour of the drug in the intestine, thus enabling the prediction of the in-vivo absorption. SUMMARY This review discusses the implications of biorelevant media composition on the solubility, dissolution and permeability of poorly soluble drug compounds. Biorelevant media contain bile salts and phospholipids and when simulating the fed state also monoglycerides and free fatty acids. Solubility of some poorly soluble drugs increase independently of the type of surfactants included in the biorelevant media, while others have a higher solubility in monoglyceride- and fatty acid-containing media. This is independent of the log P (the octanol-water partition coefficient) of the drug. The use of biorelevant dissolution media improves the correlation to in-vivo data, compared with compendial media, and although the field of permeability studies is complex the use of biorelevant media in this setting shows promise with respect to a better prediction of absorption.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Pharmaceutics and Analytical Chemistry Bioneer:FARMA, Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
94
|
Chen ML, Amidon GL, Benet LZ, Lennernas H, Yu LX. The BCS, BDDCS, and regulatory guidances. Pharm Res 2011; 28:1774-8. [PMID: 21491148 DOI: 10.1007/s11095-011-0438-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Mei-Ling Chen
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002, USA.
| | | | | | | | | |
Collapse
|
95
|
Sigfridsson K, Ahlqvist M, Carlsson A, Fridström A. Early development evaluation of AZD8081: a substrate for the NK receptors. Drug Dev Ind Pharm 2011; 37:702-13. [PMID: 21417618 DOI: 10.3109/03639045.2010.535823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of the present study was to find out if AZD8081, a dual neurokinin (NK)1/2 receptor antagonist, was suitable for development of an oral, solid immediate release (IR) formulation and in a further perspective also as an oral extended release (ER) formulation. AZD8081 is a base with pK(a) values <2.5 and about 8.5. The measured intrinsic solubility is about 0.1 mg/mL and the solubility in FaSSIF (fasted simulated small intestinal fluid) is about 3.2 mg/mL. Aqueous buffer solutions are stable for at least 1 month between pH 1-7 up to 37°C. In the solid-state, a mixture of amorphous and crystalline substance showed significant chemical instability in the initial stress testing studies. No degradation was, however, observed for highly crystalline material at similar conditions. It is concluded that the impurity profile and/or the present solid-state of the batches affect the stability of the substance. The amorphous contribution of the substance is the main cause to the observed degradation in solid-state. Crystalline AZD8081 is polymorphic with two known monotropic forms, form A and form B. Both forms are only slightly hygroscopic ansolvates with melting points of approximately 108°C and 117°C, respectively. Form B is the more stable of the two forms and is therefore most suited for further development. The candidate is suitable for development of standard IR formulations since no specific limitations of significance for formulation development were identified. In addition, the good stability in human intestinal fluid and in colon slurry makes AZD8081 a suitable candidate for ER formulation.
Collapse
Affiliation(s)
- K Sigfridsson
- Pharmaceutical Development, AstraZeneca R&D Mölndal, Mölndal, Sweden.
| | | | | | | |
Collapse
|
96
|
Sigfridsson K, Ahlqvist M, Lindsjö M, Paulsson S. Early development evaluation of AZD2738, a substrate for the NK receptors. Drug Dev Ind Pharm 2011; 37:719-26. [PMID: 21323487 DOI: 10.3109/03639045.2010.538060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate whether AZD2738, a dual neurokinin NK1/2 receptor antagonist, is a suitable candidate for further development with an oral immediate release solid dosage form as a possible final product. The neutral form of AZD2738 has only been isolated as amorphous material. In order to search for a solid material with improved physical and chemical stability and more suitable solid-state properties, a salt screen was performed. Mostly crystalline material of fumarate, maleate and chloride salt of AZD2738 were obtained. X-ray powder diffractometry, thermogravimetric analysis, differential scanning calorimetry and dynamic vapor sorption were used to investigate the physicochemical characteristics of the salts. Based on the physicochemical properties, the chloride salt is preferred for continued product development. The chloride salt of AZD2738 is an anhydrate, the crystallization is reproducible, the hygroscopicity is acceptable and just one polymorph was obtained. Notably is that the two obtained polymorphs of the fumarate salt of AZD2738 are monotropically related, whereas the two identified polymorphs for the maleate salt of the compound are enantiotropic. The dissolution behavior and the stability (in aqueous solutions, formulations and solid state) of the salts were also studied and found to be satisfactory, at least at pH >3. Liquid formulations should preferable be stored frozen at pH >3.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Pharmaceutical Development, AstraZeneca R&D Mölndal, Mölndal, Sweden.
| | | | | | | |
Collapse
|
97
|
Corá LA, Américo MF, Oliveira RB, Serra CHR, Baffa O, Evangelista RC, Oliveira GF, Miranda JRA. Biomagnetic Methods: Technologies Applied to Pharmaceutical Research. Pharm Res 2010; 28:438-55. [DOI: 10.1007/s11095-010-0285-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/14/2010] [Indexed: 02/06/2023]
|
98
|
Ganta S, Deshpande D, Korde A, Amiji M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 2010; 27:260-73. [PMID: 20929336 DOI: 10.3109/09687688.2010.497971] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The oral and central nervous systems (CNS) present a unique set of barriers to the delivery of important diagnostic and therapeutic agents. Extensive research over the past few years has enabled a better understanding of these physical and biological barriers based on tight cellular junctions and expression of active transporters and metabolizing enzymes at the luminal surfaces of the gastrointestinal (GI) tract and the blood-brain barrier (BBB). This review focuses on the recent understanding of transport across the GI tract and BBB and the development of nanotechnology-based delivery strategies that can enhance bioavailability of drugs. Multifunctional lipid nanosystems, such as oil-in-water nanoemulsions, that integrate enhancement in permeability, tissue and cell targeting, imaging, and therapeutic functions are especially promising. Based on strategic choice of edible oils, surfactants and additional surface modifiers, and different types of payloads, rationale design of multifunctional nanoemulsions can serve as a safe and effective delivery vehicle across oral and CNS barriers.
Collapse
Affiliation(s)
- Srinivas Ganta
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 110 Mugar Life Sciences Building, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
99
|
Christiansen A, Backensfeld T, Weitschies W. Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes. Eur J Pharm Sci 2010; 41:376-82. [DOI: 10.1016/j.ejps.2010.07.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|
100
|
Fang JB, Robertson VK, Rawat A, Flick T, Tang ZJ, Cauchon NS, McElvain JS. Development and Application of a Biorelevant Dissolution Method Using USP Apparatus 4 in Early Phase Formulation Development. Mol Pharm 2010; 7:1466-77. [DOI: 10.1021/mp100125b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiang B. Fang
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | | | - Archana Rawat
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | - Tawnya Flick
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | - Zhe J. Tang
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | - Nina S. Cauchon
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320
| | | |
Collapse
|