51
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 933] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
52
|
Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson's disease. Sci Rep 2019; 9:7567. [PMID: 31110191 PMCID: PMC6527855 DOI: 10.1038/s41598-019-43772-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. A characteristic pathological feature of PD is cytoplasmic accumulation of α-synuclein (SNCA) protein. Multiplication of the SNCA gene in familial PD and pathological accumulation of SNCA protein during progression of sporadic PD suggest that increased SNCA protein levels increase the risk of PD. Thus, reducing SNCA expression levels could delay PD onset or modify the disease course. For efficient knock down, we designed and synthesized an amido-bridged nucleic acids (AmNA)-modified antisense oligonucleotide (ASO) that targeted SNCA with improved stability and cellular uptake in vivo. AmNA-ASO efficiently downregulated SNCA at both the mRNA and protein level in vitro and in vivo. Notably, AmNA-ASO was efficiently delivered into the mouse brain by intracerebroventricular injection without the aid of additional chemicals. Furthermore, administration of AmNA-ASO ameliorated neurological defects in PD model mice expressing human wild type SNCA. Taken together, these findings suggest that AmNA-ASO is a promising therapeutic strategy for SNCA-associated pathology in PD.
Collapse
|
53
|
Pandya S, Zeighami Y, Freeze B, Dadar M, Collins DL, Dagher A, Raj A. Predictive model of spread of Parkinson's pathology using network diffusion. Neuroimage 2019; 192:178-194. [PMID: 30851444 PMCID: PMC7180066 DOI: 10.1016/j.neuroimage.2019.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/20/2019] [Accepted: 03/01/2019] [Indexed: 02/03/2023] Open
Abstract
Growing evidence suggests that a "prion-like" mechanism underlies the pathogenesis of many neurodegenerative disorders, including Parkinson's disease (PD). We extend and tailor previously developed quantitative and predictive network diffusion model (NDM) to PD, by specifically modeling the trans-neuronal spread of alpha-synuclein outward from the substantia nigra (SN). The model demonstrated the spatial and temporal patterns of PD from neuropathological and neuroimaging studies and was statistically validated using MRI deformation of 232 Parkinson's patients. After repeated seeding simulations, the SN was found to be the most likely seed region, supporting its unique lynchpin role in Parkinson's pathology spread. Other alternative spread models were also evaluated for comparison, specifically, random spread and distance-based spread; the latter tests for Braak's original caudorostral transmission theory. We showed that the distance-based spread model is not as well supported as the connectivity-based model. Intriguingly, the temporal sequencing of affected regions predicted by the model was in close agreement with Braak stages III-VI, providing what we consider a "computational Braak" staging system. Finally, we investigated whether the regional expression patterns of implicated genes contribute to regional atrophy. Despite robust evidence for genetic factors in PD pathogenesis, NDM outperformed regional genetic expression predictors, suggesting that network processes are far stronger mediators of regional vulnerability than innate or cell-autonomous factors. This is the first finding yet of the ramification of prion-like pathology propagation in Parkinson's, as gleaned from in vivo human imaging data. The NDM is potentially a promising robust and clinically useful tool for diagnosis, prognosis and staging of PD.
Collapse
Affiliation(s)
- S Pandya
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
| | - Y Zeighami
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - B Freeze
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - M Dadar
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - D L Collins
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - A Dagher
- Montreal Neurological Institute, Brain Imaging Centre, McGill University, Canada
| | - A Raj
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA; Department of Radiology, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
54
|
Durcan R, Donaghy P, Osborne C, Taylor JP, Thomas AJ. Imaging in prodromal dementia with Lewy bodies: Where do we stand? Int J Geriatr Psychiatry 2019; 34:635-646. [PMID: 30714199 DOI: 10.1002/gps.5071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/28/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The aim of this review was to provide an overview of the literature on imaging in prodromal dementia with Lewy bodies (DLB). DESIGN Systematic PubMed search and literature review. RESULTS Diagnostic classification of the prodromal DLB stage remains to be established but is likely to require imaging biomarkers to improve diagnostic accuracy. In subjects with mild cognitive impairment with Lewy body disease (MCI-LB) (here synonymous with prodromal DLB) and REM sleep behaviour disorder, a high risk condition for future conversion to a synucleinopathy, imaging modalities have assessed early structural brain changes, striatal dopaminergic integrity, metabolic brain, and cerebral perfusion alterations. It remains uncertain whether structural brain imaging can differentiate MCI-LB from mild cognitive impairment with Alzheimer disease (MCI-AD), but early right anterior insula thinning has been reported to occur in MCI-LB compared with MCI-AD. Dopaminergic deficits have been observed in a substantial proportion of MCI-LB subjects and have a high specificity for Lewy body disease at the pre-dementia stage. Cardiac sympathetic denervation, occipital hypometabolism, or hypoperfusion is less studied as this pre-dementia stage and it remains to be determined whether any imaging abnormalities antedate DLB. CONCLUSION Imaging studies in prodromal DLB are still in their infancy but offer great potential to study early in vivo structural and functional biological alterations. Future work should focus on longitudinal multimodal imaging studies with postmortem validation of diagnosis in order to develop and then validate criteria for prodromal DLB.
Collapse
Affiliation(s)
- Rory Durcan
- Campus for Ageing and Vitality, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Donaghy
- Campus for Ageing and Vitality, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Curtis Osborne
- Campus for Ageing and Vitality, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Campus for Ageing and Vitality, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Campus for Ageing and Vitality, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
55
|
Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front Mol Neurosci 2019; 12:107. [PMID: 31105524 PMCID: PMC6494944 DOI: 10.3389/fnmol.2019.00107] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
56
|
Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 2019; 14:5. [PMID: 30665447 PMCID: PMC6341685 DOI: 10.1186/s13024-019-0306-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson’s disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic concepts and definitions, based on our current understanding, that should guide the community to address open questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and other synucleinopathies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK. .,Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Daniel Erskine
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lauren Walker
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - David Burn
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul Donaghy
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Morris
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - John-Paul Taylor
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Alan Thomas
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Johannes Attems
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ian McKeith
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
57
|
Farrell K, Cosentino S, Iida MA, Chapman S, Bennett DA, Faust PL, Louis ED, Crary JF. Quantitative Assessment of Pathological Tau Burden in Essential Tremor: A Postmortem Study. J Neuropathol Exp Neurol 2019; 78:31-37. [PMID: 30476290 PMCID: PMC6289218 DOI: 10.1093/jnen/nly104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Essential tremor (ET) patients develop more cognitive impairment and dementia than controls, although there are surprisingly few data on the neuropathological basis for cognitive changes in ET. In this postmortem study, we assessed tau and other pathologies in 26 ET cases and 73 controls (non-ET) (1:3 matching). The mean age = 88.6 years; 55% were cognitively normal, 24% had mild cognitive impairment (MCI), and 20% had dementia. We found similar burdens of pathology using Braak, β-amyloid and Lewy body assessments in ET and controls. In contrast, among cognitively normal subjects, ET cases had a higher number of NFT-positive neurons in the neocortex than controls (p < 0.001); the number of NFT-positive neurons in the medial temporal lobe was similar in these 2 groups (p = 0.22). Among subjects with MCI, ET cases also had higher numbers of NFT-positive neurons in the neocortex than controls (p < 0.001) but again, not in the medial temporal lobe (p = 0.55). Among subjects with dementia, the number of NFT-positive neurons was similar in ET cases and controls. Cognitive function correlated with quantitative neurofibrillary tangle counts in ET cases and controls. In the context of ET, pre-dementia tau burden is higher than in the absence of ET, suggesting a predisposition to tau pathology.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology
- Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stephanie Cosentino
- Cognitive Neuroscience Division, Department of Neurology
- G.H. Sergievsky Center
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
- Department of Psychology, Goldsmiths College, University of London, New Cross, London, United Kingdom
| | - Megan A Iida
- Department of Pathology
- Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Silvia Chapman
- Cognitive Neuroscience Division, Department of Neurology
- G.H. Sergievsky Center
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
| | - David A Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, New York
| | - Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut
| | - John F Crary
- Department of Pathology
- Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
58
|
Usefulness of the combination of iodine-123-metaiodobenzylguanidine scintigraphy and iodine-123-ioflupane scintigraphy in new-onset Parkinson’s disease. Nucl Med Commun 2018; 39:983-988. [DOI: 10.1097/mnm.0000000000000898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
59
|
Buchman AS, Nag S, Leurgans SE, Miller J, VanderHorst VGJM, Bennett DA, Schneider JA. Spinal Lewy body pathology in older adults without an antemortem diagnosis of Parkinson's disease. Brain Pathol 2018; 28:560-568. [PMID: 28960595 PMCID: PMC5874164 DOI: 10.1111/bpa.12560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/20/2017] [Indexed: 01/05/2023] Open
Abstract
To test the hypothesis that Lewy body pathology (LBs) is present in the spinal cord of older community-dwelling adults without a clinical diagnosis of Parkinson's disease (PD). We studied 162 prospective autopsies from older adults with PD (N = 6) and without PD (N = 156). We documented the presence of LBs in cerebrum and brainstem structures from each of the six regions used for Braak PD staging and four spinal cord levels (C5/6, T7, L4/5 and S4/5). Parkinsonism proximate to death was based on a previously validated measure present if two or more of the four signs of parkinsonism were present based on a modified version of the Unified Parkinson's Disease Rating Scale (UPDRS). Fifty-three of 156 individuals without PD (34%) had LBs in a least one site within the CNS. About half of cases with LBs in the cerebrum or brainstem, (25/53, 47%) also had spinal LBs. Almost 90% (22/25, 88%) of cases with spinal LBs had LBs in the cerebrum (Braak stages 4-6) and about 10% (3/25, 12%) had only brainstem LBs (Braak stages 1-3). Four of six cases with PD showed LBs in cerebrum, brainstem and spinal cord. Individuals with LBs in the spinal cord were more likely to have clinical parkinsonism proximate to death compared to individuals with LBs in brainstem and cerebrum alone (52% vs. 32%; Chi-Square x2 = 5.368, d.f. = 1, P = 0.0.021) and more severe nigral neuronal loss (48% vs. 11%; Chi-Square x2 = 9.049, d.f. = 1, P = 0.003). These findings were unchanged when we included cases with a history of PD. Older community-dwelling adults without a clinical diagnosis of PD have evidence of LBs throughout the CNS including the spinal cord which is associated with parkinsonism and more severe nigral neuronal loss.
Collapse
Affiliation(s)
- Aron S. Buchman
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Sukriti Nag
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
| | - Sue E. Leurgans
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Jared Miller
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMA
| | - Veronique G. J. M. VanderHorst
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMA
- Department of Neurology, Harvard Medical SchoolBostonMA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Julie A. Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
| |
Collapse
|
60
|
Jellinger KA. Is Braak staging valid for all types of Parkinson's disease? J Neural Transm (Vienna) 2018; 126:423-431. [PMID: 29943229 DOI: 10.1007/s00702-018-1898-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 11/27/2022]
Abstract
Braak et al. proposed that cases with Lewy pathology in the peripheral nervous sytem, spinal cord and brain stem are prodromal Parkinson's disease (PD), suggesting a hypothesized progression of PD pathology. However, the putative potential of peripheral α-synuclein to promote brain pathology has been questioned recently. The Braak staging is a matter of vigorous debate, since < 100% of cases with Lewy pathology fitting the proposed PD staging scheme; however, most studies assessing typical PD cases show that the vast majority (80-100%) fit the Braak staging scheme. Incidental Lewy body disease and PD can show Lewy pathology in substantia nigra or other brain areas without involvement of dorsal motor nucleus of the vagus nerve. The Braak staging system is valid for PD patients with young onset, long duration with motor symptoms, but not for others, e.g., late onset and rapid course PD. The validity of Braak staging and its relationship to various subtypes of PD warrants further studies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
61
|
Hunter S, Smailagic N, Brayne C. Dementia Research: Populations, Progress, Problems, and Predictions. J Alzheimers Dis 2018; 64:S119-S143. [DOI: 10.3233/jad-179927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Nadja Smailagic
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
62
|
High norepinephrinergic orthostatic hypotension in early Parkinson's disease. Parkinsonism Relat Disord 2018; 55:97-102. [PMID: 29880316 DOI: 10.1016/j.parkreldis.2018.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Plasma norepinephrine concentration reflects lesions causing OH. We investigate whether patients with high norepinephrinergic orthostatic hypotension (OH) whose supine plasma norepinephrine concentration (NEsupine) is above the mean value in all patients with Parkinson's disease (PD) have central sympathetic denervation. METHODS We analyzed data from 110 non-demented patients with early de novo PD who underwent cardiovascular examinations. We divided the patients into three groups according to the presence or absence of orthostatic hypotension and NEsupine: patients without OH, patients with OH+high NEsupine, and patients with OH+low NEsupine. RESULTS The mean NEsupine in all patients was 251.6 pg/ml. Twelve patients (10.9%) had OH+high NEsupine (≥251.6 pg/ml), and 45 patients (40.9%) had OH+low NEsupine (<251.6 pg/ml). OH was more pronounced in patients with OH+high NEsupine than in those with OH+low NEsupine (p = 0.024). Vasopressin release and percent increase of NE after orthostatic stress were well preserved in patients with OH+low NEsupine, but not in patients with OH+high NEsupine. Cognition was lower in patients with OH+high NEsupine than in patients with OH+low NEsupine (p = 0.019) and was associated with vasopressin release during orthostatic stress on multiple regression analysis. The degree of cardiac sympathetic denervation did not differ between two groups with OH. CONCLUSIONS Patient with PD and high norepinephrinergic OH are a subset of patients who have early cognitive decline and impaired vasopressin release. Vasopressin release after orthostatic stress was closely related to global cognition in PD.
Collapse
|
63
|
Raunio A, Myllykangas L, Kero M, Polvikoski T, Paetau A, Oinas M. Amygdala α-Synuclein Pathology in the Population-Based Vantaa 85+ Study. J Alzheimers Dis 2018; 58:669-674. [PMID: 28482633 PMCID: PMC6218117 DOI: 10.3233/jad-170104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated the frequency of Lewy-related pathology (LRP) in the amygdala among the population-based Vantaa 85+ study. Data of amygdala samples (N = 304) immunostained with two α-synuclein antibodies (clone 42 and clone 5G4) was compared with the previously analyzed LRP and AD pathologies from other brain regions. The amygdala LRP was present in one third (33%) of subjects. Only 5% of pure AD subjects, but 85% of pure DLB subjects had LRP in the amygdala. The amygdala LRP was associated with dementia; however, the association was dependent on LRP on other brain regions, and thus was not an independent risk factor. The amygdala-predominant category was a rare (4%) and heterogeneous group.
Collapse
Affiliation(s)
- Anna Raunio
- Department of Pathology, University of Helsinkiand Helsinki University Hospital, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinkiand Helsinki University Hospital, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, University of Helsinkiand Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Polvikoski
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Anders Paetau
- Department of Pathology, University of Helsinkiand Helsinki University Hospital, Helsinki, Finland
| | - Minna Oinas
- Department of Pathology, University of Helsinkiand Helsinki University Hospital, Helsinki, Finland.,Department of Neurosurgery, University ofHelsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
64
|
Jellinger KA, Korczyn AD. Are dementia with Lewy bodies and Parkinson's disease dementia the same disease? BMC Med 2018; 16:34. [PMID: 29510692 PMCID: PMC5840831 DOI: 10.1186/s12916-018-1016-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which share many clinical, neurochemical, and morphological features, have been incorporated into DSM-5 as two separate entities of major neurocognitive disorders with Lewy bodies. Despite clinical overlap, their diagnosis is based on an arbitrary distinction concerning the time of onset of motor and cognitive symptoms, namely as early cognitive impairment in DLB and later onset following that of motor symptoms in PDD. Their morphological hallmarks - cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies - are similar, but clinical differences at onset suggest some dissimilar profiles. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is provided herein. DISCUSSION The clinical constellations of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and postmortem studies have revealed a more pronounced cortical atrophy, elevated cortical and limbic Lewy body pathologies, higher Aβ and tau loads in cortex and striatum in DLB compared to PDD, and earlier cognitive defects in DLB. Conversely, multitracer PET studies have shown no differences in cortical and striatal cholinergic and dopaminergic deficits. Clinical management of both DLB and PDD includes cholinesterase inhibitors and other pharmacologic and non-drug strategies, yet with only mild symptomatic effects. Currently, no disease-modifying therapies are available. CONCLUSION DLB and PDD are important dementia syndromes that overlap in many clinical features, genetics, neuropathology, and management. They are currently considered as subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), from incidental Lewy body disease and non-demented Parkinson's disease to PDD, DLB, and DLB with Alzheimer's disease at the most severe end. Cognitive impairment in these disorders is induced not only by α-synuclein-related neurodegeneration but by multiple regional pathological scores. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with Alzheimer's disease and other proteinopathies. While we prefer to view DLB and PDD as extremes on a continuum, there remains a pressing need to more clearly differentiate these syndromes and to understand the synucleinopathy processes leading to either one.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria.
| | - Amos D Korczyn
- Tel-Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel
| |
Collapse
|
65
|
Kasanuki K, Ross OA, DeTure MA, Walton RL, Sanchez-Contreras M, Koga S, Murray ME, Rademakers R, Dickson DW. Relationships between lewy and tau pathologies in 375 consecutive non-Alzheimer's olfactory bulbs. Mov Disord 2018; 33:333-334. [PMID: 29322556 DOI: 10.1002/mds.27250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/13/2017] [Accepted: 10/30/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael A DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
66
|
Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, Van Eldik LJ, Jicha GA, Gal Z, Nelson RS, Nelson BG, Gal J, Azam MT, Fardo DW, Cykowski MD. The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 2018; 77:2-20. [PMID: 29186501 DOI: 10.1093/jnen/nlx099] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Over the course of most common neurodegenerative diseases the amygdala accumulates pathologically misfolded proteins. Misfolding of 1 protein in aged brains often is accompanied by the misfolding of other proteins, suggesting synergistic mechanisms. The multiplicity of pathogenic processes in human amygdalae has potentially important implications for the pathogenesis of Alzheimer disease, Lewy body diseases, chronic traumatic encephalopathy, primary age-related tauopathy, and hippocampal sclerosis, and for the biomarkers used to diagnose those diseases. Converging data indicate that the amygdala may represent a preferential locus for a pivotal transition from a relatively benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded. Thus, understanding of amygdalar pathobiology may yield insights relevant to diagnoses and therapies; it is, however, a complex and imperfectly defined brain region. Here, we review aspects of amygdalar anatomy, connectivity, vasculature, and pathologic involvement in neurodegenerative diseases with supporting data from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Immunohistochemical staining of amygdalae for Aβ, Tau, α-synuclein, and TDP-43 highlight the often-coexisting pathologies. We suggest that the amygdala may represent an "incubator" for misfolded proteins and that it is possible that misfolded amygdalar protein species are yet to be discovered.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Erin L Abner
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ela Patel
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sonya Anderson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Donna M Wilcock
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Richard J Kryscio
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Linda J Van Eldik
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Gregory A Jicha
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Zsombor Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ruth S Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Bela G Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jozsef Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Md Tofial Azam
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - David W Fardo
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Matthew D Cykowski
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
67
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
68
|
Fields JA. Cognitive and Neuropsychiatric Features in Parkinson's and Lewy Body Dementias. Arch Clin Neuropsychol 2017; 32:786-801. [DOI: 10.1093/arclin/acx085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023] Open
|
69
|
Obeso J, Stamelou M, Goetz C, Poewe W, Lang A, Weintraub D, Burn D, Halliday G, Bezard E, Przedborski S, Lehericy S, Brooks D, Rothwell J, Hallett M, DeLong M, Marras C, Tanner C, Ross G, Langston J, Klein C, Bonifati V, Jankovic J, Lozano A, Deuschl G, Bergman H, Tolosa E, Rodriguez-Violante M, Fahn S, Postuma R, Berg D, Marek K, Standaert D, Surmeier D, Olanow C, Kordower J, Calabresi P, Schapira A, Stoessl A. Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 2017; 32:1264-1310. [PMID: 28887905 PMCID: PMC5685546 DOI: 10.1002/mds.27115] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
This article reviews and summarizes 200 years of Parkinson's disease. It comprises a relevant history of Dr. James Parkinson's himself and what he described accurately and what he missed from today's perspective. Parkinson's disease today is understood as a multietiological condition with uncertain etiopathogenesis. Many advances have occurred regarding pathophysiology and symptomatic treatments, but critically important issues are still pending resolution. Among the latter, the need to modify disease progression is undoubtedly a priority. In sum, this multiple-author article, prepared to commemorate the bicentenary of the shaking palsy, provides a historical state-of-the-art account of what has been achieved, the current situation, and how to progress toward resolving Parkinson's disease. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- J.A. Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain
- Universidad CEU San Pablo, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - M. Stamelou
- Department of Neurology, Philipps University, Marburg, Germany
- Parkinson’s Disease and Movement Disorders Department, HYGEIA Hospital and Attikon Hospital, University of Athens, Athens, Greece
| | - C.G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - W. Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - A.E. Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - D. Weintraub
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson’s Disease and Mental Illness Research, Education and Clinical Centers (PADRECC and MIRECC), Corporal Michael J. Crescenz Veteran’s Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - D. Burn
- Medical Sciences, Newcastle University, Newcastle, UK
| | - G.M. Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - E. Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
- China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China
| | - S. Przedborski
- Departments of Neurology, Pathology, and Cell Biology, the Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA
- Columbia Translational Neuroscience Initiative, Columbia University, New York, New York, USA
| | - S. Lehericy
- Institut du Cerveau et de la Moelle épinière – ICM, Centre de NeuroImagerie de Recherche – CENIR, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - D.J. Brooks
- Clinical Sciences Department, Newcastle University, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - J.C. Rothwell
- Human Neurophysiology, Sobell Department, UCL Institute of Neurology, London, UK
| | - M. Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - M.R. DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C. Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson’s disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - C.M. Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California–San Francisco, San Francisco, California, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - G.W. Ross
- Veterans Affairs Pacific Islands Health Care System, Honolulu, Hawaii, USA
| | | | - C. Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - V. Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J. Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - A.M. Lozano
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - G. Deuschl
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Christian Albrechts University Kiel, Kiel, Germany
| | - H. Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - E. Tolosa
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - M. Rodriguez-Violante
- Movement Disorders Clinic, Clinical Neurodegenerative Research Unit, Mexico City, Mexico
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - S. Fahn
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - R.B. Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - D. Berg
- Klinikfür Neurologie, UKSH, Campus Kiel, Christian-Albrechts-Universität, Kiel, Germany
| | - K. Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut, USA
| | - D.G. Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - D.J. Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C.W. Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - J.H. Kordower
- Research Center for Brain Repair, Rush University Medical Center, Chicago, Illinois, USA
- Neuroscience Graduate Program, Rush University Medical Center, Chicago, Illinois, USA
| | - P. Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - A.H.V. Schapira
- University Department of Clinical Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - A.J. Stoessl
- Pacific Parkinson’s Research Centre, Division of Neurology & Djavadf Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
- Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
70
|
Smith VD, Bachstetter AD, Ighodaro E, Roberts K, Abner EL, Fardo DW, Nelson PT. Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi. Brain Pathol 2017; 28:264-273. [PMID: 28281308 DOI: 10.1111/bpa.12505] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Intracellular proteinaceous aggregates (inclusion bodies) are almost always detectable at autopsy in brains of elderly individuals. Inclusion bodies composed of TDP-43 and tau proteins often coexist in the same brain, and each of these pathologic biomarkers is associated independently with cognitive impairment. However, uncertainties remain about how the presence and neuroanatomical distribution of inclusion bodies correlate with underlying diseases including Alzheimer's disease (AD). To address this knowledge gap, we analyzed data from the University of Kentucky AD Center autopsy series (n = 247); none of the brains had frontotemporal lobar degeneration. A specific question for this study was whether neurofibrillary tangle (NFT) pathology outside of the Braak NFT staging scheme is characteristic of brains with TDP-43 pathology but lacking AD, that is those with cerebral age-related TDP-43 with sclerosis (CARTS). We also tested whether TDP-43 pathology is associated with comorbid AD pathology, and whether argyrophilic grains are relatively likely to be present in cases with, vs. without, TDP-43 pathology. Consistent with prior studies, hippocampal TDP-43 pathology was associated with advanced AD - Braak NFT stages V/VI. However, argyrophilic grain pathology was not more common in cases with TDP-43 pathology in this data set. In brains with CARTS (TDP-43[+]/AD[-] cases), there were more NFTs in dentate granule neurons than were seen in TDP-43[-]/AD[-] cases. These dentate granule cell NFTs could provide a proxy indicator of CARTS pathology in cases lacking substantial AD pathology. Immunofluorescent experiments in a subsample of cases found that, in both advanced AD and CARTS, approximately 1% of dentate granule neurons were PHF-1 immunopositive, whereas ∼25% of TDP-43 positive cells showed colocalized PHF-1 immunoreactivity. We conclude that NFTs in hippocampal dentate granule neurons are often present in CARTS, and TDP-43 pathology may be secondary to or occurring in parallel with tauopathy.
Collapse
Affiliation(s)
- Vanessa D Smith
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY.,Department of Neuroscience, University of Kentucky, Lexington, KY
| | - Eseosa Ighodaro
- Department of Neuroscience, University of Kentucky, Lexington, KY.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Kelly Roberts
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Erin L Abner
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY.,Department of Epidemiology, University of Kentucky, Lexington, KY
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY.,Department of Neuroscience, University of Kentucky, Lexington, KY.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY
| |
Collapse
|
71
|
Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD. Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol 2017; 8:37. [PMID: 28243222 PMCID: PMC5304413 DOI: 10.3389/fneur.2017.00037] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder for which there is no cure. Most patients suffer from sporadic PD, which is likely caused by a combination of genetic and environmental factors. Braak’s hypothesis states that sporadic PD is caused by a pathogen that enters the body via the nasal cavity, and subsequently is swallowed and reaches the gut, initiating Lewy pathology (LP) in the nose and the digestive tract. A staging system describing the spread of LP from the peripheral to the central nervous system was also postulated by the same research group. There has been criticism to Braak’s hypothesis, in part because not all patients follow the proposed staging system. Here, we review literature that either supports or criticizes Braak’s hypothesis, focused on the enteric route, digestive problems in patients, the spread of LP on a tissue and a cellular level, and the toxicity of the protein αSynuclein (αSyn), which is the major constituent of LP. We conclude that Braak’s hypothesis is supported by in vitro, in vivo, and clinical evidence. However, we also conclude that the staging system of Braak only describes a specific subset of patients with young onset and long duration of the disease.
Collapse
Affiliation(s)
- Carmen D Rietdijk
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Nutricia Research, Utrecht, Netherlands
| | - Richard J A van Wezel
- Department of Biomedical Signals and Systems, MIRA, University of Twente, Enschede, Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
72
|
Klingelhoefer L, Reichmann H. Parkinson’s disease as a multisystem disorder. J Neural Transm (Vienna) 2017; 124:709-713. [DOI: 10.1007/s00702-017-1692-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 12/27/2022]
|
73
|
Epigenetics in Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:363-390. [DOI: 10.1007/978-3-319-53889-1_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Braak H, Del Tredici K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson's disease: Separating the Wheat from the Chaff. JOURNAL OF PARKINSON'S DISEASE 2017; 7:S71-S85. [PMID: 28282810 PMCID: PMC5345633 DOI: 10.3233/jpd-179001] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A relatively small number of especially susceptible nerve cell types within multiple neurotransmitter systems of the human central, peripheral, and enteric nervous systems (CNS, PNS, ENS) become involved in the degenerative process underlying sporadic Parkinson's disease (sPD). The six-stage model we proposed for brain pathology related to sPD (Neurobiol Aging 2003) was a retrospective study of incidental and clinically diagnosed cases performed on unconventionally thick tissue sections (100 μm) from a large number of brain regions.The staging model emphasized what we perceived to be a sequential development of increasing degrees of Lewy pathology in anatomically interconnected regions together with the loss of aminergic projection neurons in, but not limited to, the locus coeruleus and substantia nigra. The same weight was assigned to axonal and somatodendritic Lewy pathology, and the olfactory bulb was included for the first time in a sPD staging system. After years of research, it now appears that the earliest lesions could develop at nonnigral (dopamine agonist nonresponsive) sites, where the surrounding environment is potentially hostile: the olfactory bulb and, possibly, the ENS. The current lack of knowledge regarding the development of Lewy pathology within the peripheral autonomic nervous system, however, means that alternative extra-CNS sites of origin cannot be disregarded as possible candidates. The PD staging system not only caused controversy but contributed a framework for (1) assessing pathology in the spinal cord, ENS, and PNS in relationship to that evolving in the brain, (2) defining prodromal disease and cohorts of at-risk individuals, (3) developing potential prognostic biomarkers for very early disease, (4) testing novel hypotheses and experimental models of α-synuclein propagation and disease progression, and (5) finding causally-oriented therapies that intervene before the substantia nigra becomes involved. The identification of new disease mechanisms at the molecular and cellular levels indicates that physical contacts (transsynaptic) and transneuronal transmission between vulnerable nerve cells are somehow crucial to the pathogenesis of sPD.
Collapse
Affiliation(s)
- Heiko Braak
- Correspondence to: Prof. Heiko Braak, M.D., Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany. Tel.: +49 731 500 63111; Fax: +49 731 500 63133; E-mail:
| | | |
Collapse
|
75
|
Thomas AJ, Attems J, Colloby SJ, O'Brien JT, McKeith I, Walker R, Lee L, Burn D, Lett DJ, Walker Z. Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology 2016; 88:276-283. [PMID: 27940650 PMCID: PMC5272795 DOI: 10.1212/wnl.0000000000003512] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/13/2016] [Indexed: 11/27/2022] Open
Abstract
Objective: To conduct a validation study of 123I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT dopaminergic imaging in the clinical diagnosis of dementia with Lewy bodies (DLB) with autopsy as the gold standard. Methods: Patients >60 years of age with dementia who had undergone 123I-FP-CIT imaging in research studies and who had donated their brain tissue to the Newcastle Brain Tissue Resource were included. All had structured clinical research assessments, and clinical diagnoses were applied by consensus panels using international diagnostic criteria. All underwent 123I-FP-CIT imaging at baseline, and scans were rated as normal or abnormal by blinded raters. Patients were reviewed in prospective studies and after death underwent detailed autopsy assessment, and neuropathologic diagnoses were applied with the use of standard international criteria. Results: Fifty-five patients (33 with DLB and 22 with Alzheimer disease) were included. Against autopsy diagnosis, 123I-FP-CIT had a balanced diagnostic accuracy of 86% (sensitivity 80%, specificity 92%) compared with clinical diagnosis, which had an accuracy of 79% (sensitivity 87%, specificity 72%). Among patients with DLB, 10% (3 patients) met pathologic criteria for Lewy body disease but had normal 123I-FP-CIT imaging. Conclusions: This large autopsy analysis of 123I-FP-CIT imaging in dementia demonstrates that it is a valid and accurate biomarker for DLB, and the high specificity compared with clinical diagnosis (20% higher) is clinically important. The results need to be replicated with patients recruited from a wider range of settings, including movement disorder clinics and general practice. While an abnormal 123I-FP-CIT scan strongly supports Lewy body disease, a normal scan does not exclude DLB with minimal brainstem involvement. Classification of evidence: This study provides Class I evidence that 123I-FP-CIT dopaminergic neuroimaging accurately identifies patients with DLB.
Collapse
Affiliation(s)
- Alan J Thomas
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK.
| | - Johannes Attems
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - Sean J Colloby
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - John T O'Brien
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - Ian McKeith
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - Rodney Walker
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - Lean Lee
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - David Burn
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - Debra J Lett
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| | - Zuzana Walker
- From the Institute of Neuroscience (A.J.T., J.A., S.J.C., I.M., D.B., D.J.L.), Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne; Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine; Department of Neurology (R.W.), Barts Health NHS Trust, Royal London Hospital; North Essex Partnership University NHS Foundation Trust (L.L., Z.W.), Epping; and Division of Psychiatry (Z.W.), University College London, UK
| |
Collapse
|
76
|
Usman S, Oskouian RJ, Loukas M, Tubbs RS. Clinical anatomy of the most common dementias. Clin Anat 2016; 30:53-57. [PMID: 27588364 DOI: 10.1002/ca.22784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sameera Usman
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| | - Rod J Oskouian
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| | - Marios Loukas
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| | - R Shane Tubbs
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| |
Collapse
|
77
|
Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem 2016; 139 Suppl 1:275-289. [PMID: 26617280 PMCID: PMC4958606 DOI: 10.1111/jnc.13449] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a progressive neurological disorder that is characterized by the formation of intracellular protein inclusion bodies composed primarily of a misfolded and aggregated form of the protein α-synuclein. There is growing evidence that supports the prion-like hypothesis of α-synuclein progression. This hypothesis postulates that α-synuclein is a prion-like pathological agent and is responsible for the progression of Parkinson pathology in the brain. Potential misfolding or aggregation of α-synuclein that might occur in the peripheral nervous system as a result of some insult, environmental or genetic (or more likely a combination of both) that might spread into the midbrain, eventually causing degeneration of the neurons in the substantia nigra. As the disease progresses further, it is likely that α-synuclein pathology continues to spread throughout the brain, including the cortex, leading to deterioration of cognition and higher brain functions. While it is unknown why α-synuclein initially misfolds and aggregates, a great deal has been learned about how the cell handles aberrant α-synuclein assemblies. In this review, we focus on these mechanisms and discuss them in an attempt to define the role that they might play in the propagation of misfolded α-synuclein from cell-to-cell. The prion-like hypothesis of α-synuclein pathology suggests a method for the transmission of misfolded α-synuclein from one neuron to another. This hypothesis postulates that misfolded α-synuclein becomes aggregation prone and when released and taken up by neighboring cells, seeds further misfolding and aggregation. In this review we examine the cellular mechanisms that are involved in the processing of α-synuclein and how these may contribute to the prion-like propagation of α-synuclein pathology. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
78
|
McKeith I, Taylor JP, Thomas A, Donaghy P, Kane J. Revisiting DLB Diagnosis: A Consideration of Prodromal DLB and of the Diagnostic Overlap With Alzheimer Disease. J Geriatr Psychiatry Neurol 2016; 29:249-53. [PMID: 27502299 DOI: 10.1177/0891988716656083] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efforts to clinically diagnose cases having dementia with Lewy bodies (DLB) identify those with a characteristic clinical syndrome (probable DLB) at the expense of missing an equal, if not greater, number of cases who have atypical presentations thought to be associated with coexisting Alzheimer pathologies. This article argues that further efforts should now be made to characterize this atypical group that constitutes cases previously identified postmortem as the Lewy body variant of Alzheimer disease (AD) or as AD with Lewy bodies. Since such fine distinction is unlikely to be achieved on clinical grounds alone, this new diagnostic category will require robust biomarker validation. Turning to a consideration of early/prodromal diagnosis of both typical and atypical DLB cases, it is suggested that there will be at least 3 prototypical forms-a mild cognitive impairment variant, associated with early visuoperceptual and attentional deficits; a delirium onset DLB with provoked or spontaneous delirium as the presenting features; and a psychiatric disorder DLB with its primary presentation as a late-onset affective disorder or psychosis.
Collapse
Affiliation(s)
- Ian McKeith
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom of Great Britain and Northern Ireland
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom of Great Britain and Northern Ireland
| | - Alan Thomas
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom of Great Britain and Northern Ireland
| | - Paul Donaghy
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom of Great Britain and Northern Ireland
| | - Joseph Kane
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
79
|
Pathological α-synuclein distribution in subjects with coincident Alzheimer's and Lewy body pathology. Acta Neuropathol 2016; 131:393-409. [PMID: 26721587 DOI: 10.1007/s00401-015-1526-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/13/2015] [Accepted: 12/13/2015] [Indexed: 12/17/2022]
Abstract
We investigated the distribution patterns of Lewy body-related pathology (LRP) and the effect of coincident Alzheimer disease (AD) pathology using a data-driven clustering approach that identified groups with different LRP pathology distributions without any diagnostic or researcher's input in two cohorts including: Parkinson disease patients without (PD, n = 141) and with AD (PD-AD, n = 80), dementia with Lewy bodies subjects without AD (DLB, n = 13) and demented subjects with AD and LRP pathology (Dem-AD-LB, n = 308). The Dem-AD-LB group presented two LRP patterns, olfactory-amygdala and limbic LRP with negligible brainstem pathology, that were absent in the PD groups, which are not currently included in the DLB staging system and lacked extracranial LRP as opposed to the PD group. The Dem-AD-LB individuals showed relative preservation of substantia nigra cells and dopamine active transporter in putamen. PD cases with AD pathology showed increased LRP. The cluster with occipital LRP was associated with non-AD type dementia clinical diagnosis in the Dem-AD-LB group and a faster progression to dementia in the PD groups. We found that (1) LRP pathology in Dem-AD-LB shows a distribution that differs from PD, without significant brainstem or extracranial LRP in initial phases; (2) coincident AD pathology is associated with increased LRP in PD indicating an interaction; (3) LRP and coincident AD pathology independently predict progression to dementia in PD, and (4) evaluation of LRP needs to acknowledge different LRP spreading patterns and evaluate substantia nigra integrity in the neuropathological assessment and consider the implications of neuropathological heterogeneity for clinical and biomarker characterization.
Collapse
|
80
|
van der Zande JJ, Booij J, Scheltens P, Raijmakers PGHM, Lemstra AW. [(123)]FP-CIT SPECT scans initially rated as normal became abnormal over time in patients with probable dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2016; 43:1060-6. [PMID: 26830298 PMCID: PMC4844648 DOI: 10.1007/s00259-016-3312-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Purpose Decreased striatal dopamine transporter (DAT) binding on SPECT imaging is a strong biomarker for the diagnosis of dementia with Lewy bodies (DLB). There is still a lot of uncertainty about patients meeting the clinical criteria for probable DLB who have a normal DAT SPECT scan (DLB/S−). The aim of this study was to describe the clinical and imaging follow-up in these patients, and compare them to DLB patients with abnormal baseline scans (DLB/S+). Methods DLB patients who underwent DAT imaging ([123I]FP-CIT SPECT) were selected from the Amsterdam Dementia Cohort. All [123I]FP-CIT SPECT scans were evaluated independently by two nuclear medicine physicians and in patients with normal scans follow-up imaging was obtained. We matched DLB/S-− patients for age and disease duration to DLB/S+ patients and compared their clinical characteristics. Results Of 67 [123I]FP-CIT SPECT scans, 7 (10.4 %) were rated as normal. In five DLB/S− patients, a second [123I]FP-CIT SPECT was performed (after on average 1.5 years) and these scans were all abnormal. No significant differences in clinical characteristics were found at baseline. DLB/S− patients could be expected to have a better MMSE score after 1 year. Conclusion This study was the first to investigate DLB patients with the initial [123I]FP-CIT SPECT scan rated as normal and subsequent scans during disease progression rated as abnormal. We hypothesize that DLB/S− scans could represent a relatively rare DLB subtype with possibly a different severity or spread of alpha-synuclein pathology (“neocortical predominant subtype”). In clinical practice, if an alternative diagnosis is not imminent in a DLB/S− patient, repeating [123I]FP-CIT SPECT should be considered.
Collapse
Affiliation(s)
- J J van der Zande
- VU Medical Center Alzheimer Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
| | - J Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - P Scheltens
- VU Medical Center Alzheimer Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - P G H M Raijmakers
- Department of Nuclear Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - A W Lemstra
- VU Medical Center Alzheimer Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
81
|
Foster CM, Addis DR, Ford JH, Kaufer DI, Burke JR, Browndyke JN, Welsh-Bohmer KA, Giovanello KS. Prefrontal contributions to relational encoding in amnestic mild cognitive impairment. NEUROIMAGE-CLINICAL 2016; 11:158-166. [PMID: 26937384 PMCID: PMC4753805 DOI: 10.1016/j.nicl.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 01/22/2023]
Abstract
Relational memory declines are well documented as an early marker for amnestic mild cognitive impairment (aMCI). Episodic memory formation relies on relational processing supported by two mnemonic mechanisms, generation and binding. Neuroimaging studies using functional magnetic resonance imaging (fMRI) have primarily focused on binding deficits which are thought to be mediated by medial temporal lobe dysfunction. In this study, prefrontal contributions to relational encoding were also investigated using fMRI by parametrically manipulating generation demands during the encoding of word triads. Participants diagnosed with aMCI and healthy control subjects encoded word triads consisting of a category word with either, zero, one, or two semantically related exemplars. As the need to generate increased (i.e., two- to one- to zero-link triads), both groups recruited a core set of regions associated with the encoding of word triads including the parahippocampal gyrus, superior temporal gyrus, and superior parietal lobule. Participants diagnosed with aMCI also parametrically recruited several frontal regions including the inferior frontal gyrus and middle frontal gyrus as the need to generate increased, whereas the control participants did not show this modulation. While there is some functional overlap in regions recruited by generation demands between the groups, the recruitment of frontal regions in the aMCI participants coincides with worse memory performance, likely representing a form of neural inefficiency associated with Alzheimer's disease. This study investigated prefrontal contributions to relational encoding in aMCI. Subjects encoded word triads that were varied by semantic relatedness. aMCI participants modulated activity in frontal regions during encoding. Healthy controls showed no such modulation in frontal regions. Modulation in the aMCI group correlated with worse memory performance.
Collapse
Affiliation(s)
- Chris M Foster
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, United States
| | - Donna Rose Addis
- Department of Psychology and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Jaclyn H Ford
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, United States
| | - Daniel I Kaufer
- Department of Neurology, The University of North Carolina, Chapel Hill, NC, United States
| | - James R Burke
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, United States; Division of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey N Browndyke
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, United States; Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Kathleen A Welsh-Bohmer
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, United States; Division of Neurology, Duke University Medical Center, Durham, NC, United States; Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Kelly S Giovanello
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, United States; Biomedical Research Imaging Center, The University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
82
|
|
83
|
Sumikura H, Takao M, Hatsuta H, Ito S, Nakano Y, Uchino A, Nogami A, Saito Y, Mochizuki H, Murayama S. Distribution of α-synuclein in the spinal cord and dorsal root ganglia in an autopsy cohort of elderly persons. Acta Neuropathol Commun 2015; 3:57. [PMID: 26374630 PMCID: PMC4571135 DOI: 10.1186/s40478-015-0236-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
Background Lewy body–related α-synucleinopathy (LBAS, the abnormal accumulation of pathologic α-synuclein) is found in the central and peripheral nervous systems, including the spinal cord, dorsal root ganglia, and sympathetic ganglia, of Parkinson’s disease patients. However, few studies have focused on the distribution of LBAS in the spinal cord, primary sensory neurons, and preganglionic sympathetic nerves. Results We analyzed 265 consecutive subjects with LBAS who underwent autopsy at a general geriatric hospital. LBAS in the spinal cord was significantly associated with that in the lower brainstem regions that are directly connected to the spinal cord (i.e., the medullary reticular formation and locus ceruleus), but it was not associated with the olfactory bulb–amygdala system, which is not directly connected to the spinal cord, suggesting that the lower brainstem is a key structure regarding the spread of LBAS to the spinal cord. In the primary sensory neurons, most subjects with LBAS in the dorsal root ganglia had LBAS in the dorsal root, and all subjects with LBAS in the dorsal root also had LBAS in the dorsal horn, suggesting that LBAS spreads retrogradely from the axonal terminals of the dorsal horn to the somata of the dorsal root ganglia via the dorsal root. In the preganglionic sympathetic nerves, the LBAS in the sympathetic ganglia preceded that in the nucleus of the intermediolateral column of the thoracic cord, suggesting that LBAS spreads retrogradely through the preganglionic sympathetic nerves. Conclusions LBAS in the spinal cord was associated with the lower regions of the brainstem, but not with the olfactory bulb or amygdala. LBAS may spread centrifugally along the primary sensory neurons, whereas it may spread centripetally along the preganglionic sympathetic nerves. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0236-9) contains supplementary material, which is available to authorized users.
Collapse
|
84
|
Takahashi M, Ikemura M, Oka T, Uchihara T, Wakabayashi K, Kakita A, Takahashi H, Yoshida M, Toru S, Kobayashi T, Orimo S. Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J Neurol Neurosurg Psychiatry 2015; 86:939-44. [PMID: 25935891 DOI: 10.1136/jnnp-2015-310686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/12/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Reduced cardiac meta-iodobenzylguanidine (MIBG) uptake and loss of cardiac sympathetic axons, as its possible anatomical substrate, were both recognised in Lewy body disease (LBD), while their direct correlation has so far remained speculative. Increasing availability of autopsy-confirmed cases of LBD prompted us to quantify residual cardiac sympathetic axons to establish their relationship to cardiac MIBG uptake. METHODS We collected cardiac tissue samples from 23 patients with autopsy-confirmed LBD and two non-LBD control patients who underwent (123)I-MIBG cardiac scintigraphy in life. Samples of the left ventricular anterior wall were stained with anti-tyrosine hydroxylase (TH) and anti-neurofilament (NF) antibodies as markers of cardiac nerve axons. We quantified the immunolabelled areas and assessed their correlation to standardised heart to mediastinum (H/M) ratios of (123)I-MIBG cardiac scintigraphy. RESULTS Cardiac MIBG uptake in the early and delayed phases was reduced in 90.9% and 95.7% of patients with LBD, respectively. The area of TH-immunoreactive axons correlated significantly with the H/M ratio in the early (p=0.036) as well as in the delayed (p=0.018) phases. The area of NF-immunoreactive axons also correlated with the H/M ratio in the early (p=0.003) as well as in the delayed (p=0.001) phases. CONCLUSIONS Tight quantitative correlation between cardiac (123)I-MIBG uptake and corresponding loss of sympathetic axons in LBD, as established for the first time by this study, provides a scientific basis to confirm the reliability of MIBG cardiac scintigraphy as a powerful clinical tool to detect loss of these axons as a biomarker for the presence of Lewy body disease.
Collapse
Affiliation(s)
| | - Masako Ikemura
- Division of Pathology, Kanto Central Hospital, Tokyo, Japan
| | - Teruaki Oka
- Division of Pathology, Kanto Central Hospital, Tokyo, Japan
| | - Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Shuta Toru
- Department of Neurology, Nakano General Hospital, Tokyo, Japan
| | | | - Satoshi Orimo
- Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| |
Collapse
|
85
|
Peuralinna T, Myllykangas L, Oinas M, Nalls MA, Keage HAD, Isoviita VM, Valori M, Polvikoski T, Paetau A, Sulkava R, Ince PG, Zaccai J, Brayne C, Traynor BJ, Hardy J, Singleton AB, Tienari PJ. Genome-wide association study of neocortical Lewy-related pathology. Ann Clin Transl Neurol 2015; 2:920-31. [PMID: 26401513 PMCID: PMC4574809 DOI: 10.1002/acn3.231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/22/2015] [Indexed: 02/04/2023] Open
Abstract
Objective Dementia with Lewy bodies is an α-synucleinopathy characterized by neocortical Lewy-related pathology (LRP). We carried out a genome-wide association study (GWAS) on neocortical LRP in a population-based sample of subjects aged 85 or over. Methods LRP was analyzed in 304 subjects in the Vantaa 85+ sample from Southern Finland. The GWAS included 41 cases with midbrain, hippocampal, and neocortical LRP and 177 controls without midbrain and hippocampal LRP. The Medical Research Council Cognitive Function and Ageing Study (CFAS) material was used for replication (51 cases and 131 controls). Results By analyzing 327,010 markers the top signal was obtained at the HLA-DPA1/DPB1 locus (P = 1.29 × 10−7); five other loci on chromosomes 15q14, 2p21, 2q31, 18p11, and 5q23 were associated with neocortical LRP at P < 10−5. Two loci were marked by multiple markers, 2p21 (P = 3.9 × 10−6, upstream of the SPTBN1 gene), and HLA-DPA1/DPB1; these were tested in the CFAS material. Single marker (P = 0.0035) and haplotype (P = 0.04) associations on 2p21 were replicated in CFAS, whereas HLA-DPA1/DPB1 association was not. Bioinformatic analyses suggest functional effects for the HLA-DPA1/DPB1 markers as well as the 15q14 marker rs8037309. Interpretation We identified suggestive novel risk factors for neocortical LRP. SPTBN1 is the candidate on 2p21, it encodes beta-spectrin, an α-synuclein binding protein and a component of Lewy bodies. The HLA-DPA1/DPB1 association suggests a role for antigen presentation or alternatively, cis-regulatory effects, one of the regulated neighboring genes identified here (vacuolar protein sorting 52) plays a role in vesicular trafficking and has been shown to interact with α-synuclein in a yeast model.
Collapse
Affiliation(s)
- Terhi Peuralinna
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki, Finland ; Folkhalsan Institute of Genetics Helsinki, Finland
| | - Minna Oinas
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki, Finland ; Department of Neurosurgery, Helsinki University Central Hospital Helsinki, Finland
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH Bethesda, Maryland
| | - Hannah A D Keage
- School of Psychology, Social Work and Social Policy, University of South Australia Adelaide, Australia ; Department of Public Health and Primary Care, University of Cambridge Cambridge, United Kingdom
| | - Veli-Matti Isoviita
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland
| | - Miko Valori
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland
| | - Tuomo Polvikoski
- Institute for Ageing and Health, Newcastle University Newcastle, United Kingdom
| | - Anders Paetau
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki, Finland
| | - Raimo Sulkava
- School of Public Health and Clinical Nutrition, University of Eastern Finland Kuopio, Finland
| | - Paul G Ince
- Department of Neuroscience, University of Sheffield Sheffield, United Kingdom
| | - Julia Zaccai
- Department of Public Health and Primary Care, University of Cambridge Cambridge, United Kingdom
| | - Carol Brayne
- Department of Public Health and Primary Care, University of Cambridge Cambridge, United Kingdom
| | - Bryan J Traynor
- Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH Bethesda, Maryland
| | - John Hardy
- Reta Lila Weston Research Laboratories, Departments of Molecular Neuroscience and of Clinical Neuroscience, UCL Institute of Neurology Queen Square, London, United Kingdom
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH Bethesda, Maryland
| | - Pentti J Tienari
- Molecular Neurology, Research Program Unit, Biomedicum, University of Helsinki Helsinki, Finland ; Department of Neurology, Helsinki University Central Hospital Helsinki, Finland
| |
Collapse
|
86
|
Dijkstra AA, Ingrassia A, de Menezes RX, van Kesteren RE, Rozemuller AJM, Heutink P, van de Berg WDJ. Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson's Disease. PLoS One 2015; 10:e0128651. [PMID: 26087293 PMCID: PMC4472235 DOI: 10.1371/journal.pone.0128651] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/29/2015] [Indexed: 11/24/2022] Open
Abstract
Subjects with incidental Lewy body disease (iLBD) may represent the premotor stage of Parkinson’s disease (PD). To elucidate molecular mechanisms underlying neuronal dysfunction and alpha-synuclein pathology in the premotor phase of PD, we investigated the transcriptome of the substantia nigra (SN) of well-characterized iLBD, PD donors and age-matched controls with Braak alpha-synuclein stage ranging from 0–6. In Braak alpha-synuclein stages 1 and 2, we observed deregulation of pathways linked to axonal degeneration, immune response and endocytosis, including axonal guidance signaling, mTOR signaling, EIF2 signaling and clathrin-mediated endocytosis in the SN. In Braak stages 3 and 4, we observed deregulation of pathways involved in protein translation and cell survival, including mTOR and EIF2 signaling. In Braak stages 5 and 6, we observed deregulation of dopaminergic signaling, axonal guidance signaling and thrombin signaling. Throughout the progression of PD pathology, we observed a deregulation of mTOR, EIF2 and regulation of eIF4 and p70S6K signaling in the SN. Our results indicate that molecular mechanisms related to axonal dysfunction, endocytosis and immune response are an early event in PD pathology, whereas mTOR and EIF2 signaling are impaired throughout disease progression. These pathways may hold the key to altering the disease progression in PD.
Collapse
Affiliation(s)
- Anke A. Dijkstra
- Department of Anatomy and Neurosciences, section Quantitative Morphology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- Department of Medical genomics, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Angela Ingrassia
- Department of Anatomy and Neurosciences, section Quantitative Morphology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Renee X. de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Ronald E. van Kesteren
- Center for Neurogenomics and Cognitive Research, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J. M. Rozemuller
- Department of Pathology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Peter Heutink
- Department of Medical genomics, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- German Center for Neurodegenerative diseases (DZNE), Tübingen, Germany
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, section Quantitative Morphology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
87
|
Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm (Vienna) 2015; 122:1429-40. [PMID: 25976432 DOI: 10.1007/s00702-015-1405-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/30/2015] [Indexed: 01/23/2023]
Abstract
Parkinson disease (PD) is a multisystem disorder associated with α-synuclein aggregates throughout the central, autonomic, and peripheral nervous system, clinically characterized by motor and non-motor (NM) symptoms. The NMS in PD, many of which antedating motor dysfunction and representing a preclinical phase spanning 20 or more years, are linked to widespread distribution of α-synuclein pathology not restricted to the dopaminergic nigrostriatal system that is responsible for core motor features of PD. The pathologic substrate of NM manifestations such as olfactory, autonomic (gastrointestinal, urogenital, cardia, respiratory), sensory, skin, sleep, visual, neuropsychiatric dysfunctions (cognitive, mood, dementia), and others are critically reviewed. In addition to non-nigral brainstem nuclei, α-synuclein pathology involves sympathetic and parasympathetic, enteric, cardiac and pelvic plexuses, and many other organs indicating a topographical and chronological spread, particularly in the prodromal stages of the disease. Few animal models recapitulate NMS in PD. The relationship between regional α-synuclein/Lewy pathology, neurodegeneration and the corresponding clinical deficits awaits further elucidation. Controlled clinicopathologic studies will refine the correlations between presymptomatic and late-developing NM features of PD and neuropathology, and new premotor biomarkers will facilitate early diagnosis of PD as a basis for more effective preventive and therapeutic options of this devastating disease.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070, Vienna, Austria.
| |
Collapse
|
88
|
Zaccai J, Brayne C, Matthews FE, Ince PG. Alpha-synucleinopathy and neuropsychological symptoms in a population-based cohort of the elderly. ALZHEIMERS RESEARCH & THERAPY 2015; 7:19. [PMID: 25870655 PMCID: PMC4394405 DOI: 10.1186/s13195-015-0101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022]
Abstract
Introduction Studies with strong selection biases propose that alpha-synucleinopathy (AS) spreads upwards and downwards in the neuraxis from the medulla, that amygdala-dominant AS is strongly associated with Alzheimer’s disease (AD), and that a more severe involvement of the cerebral cortex is correlated with increasing risk of dementia. This study examines the association of AS patterns and observed neuropsychological symptoms in brains of a population-representative donor cohort. Methods Brains donated in 2 out of 6 cognitive function and ageing study cohorts (Cambridgeshire and Nottingham) were examined. Over 80% were >80 years old at death. The respondents were evaluated prospectively in life for cognitive decline and dementia. Immunocytochemistry for tau and alpha-synuclein (using LB509 by Zymed Laboratories) was carried out in 208 brains to establish Braak stage and the pattern and severity of AS following the dementia with Lewy bodies (DLB) consensus recommendations. Dementia, specific neuropsychological measures as measured using the Cambridge cognitive examination, the presence of hallucinations and Parkinson’s disease were investigated. Results Four patterns of AS were observed: no AS pathology (n = 92), AS pathology following the DLB consensus guidelines (n = 33, of which five were ‘neocortical’), amygdala-predominant AS (n = 18), and other AS patterns (n = 33). Each group was subdivided according to high/low neurofibrillary tangles (NFT) Braak stage. Results showed no association between dementia and these patterns of AS, adjusting for the presence of NFT or not. The risk of visual hallucinations shows a weak association with AS in the substantia nigra (odds ratio (OR) = 3.2; 95% confidence interval (CI) 0.5 to 15.5; P = 0.09) and amygdala (OR = 3.0; 95% CI 0.7 to 12.3; P = 0.07). The analysis is similar for auditory hallucinations in subcortical regions. Conclusions Among the whole population of older people, AS does not increase the risks for dementia, irrespective of Braak stage of NFT pathology. There was no evidence that the pattern of AS pathology in cortical areas was relevant to the risk of hallucination. In general, the hypothesis that AS as measured using these methods per se is a key determinant of cognitive clinical phenotypes is not supported.
Collapse
Affiliation(s)
- Julia Zaccai
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Fiona E Matthews
- MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, 385A Glossop Road, Sheffield, S10 2HQ UK
| | | |
Collapse
|
89
|
Fujishiro H, Nakamura S, Sato K, Iseki E. Prodromal dementia with Lewy bodies. Geriatr Gerontol Int 2015; 15:817-26. [PMID: 25690399 DOI: 10.1111/ggi.12466] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 11/26/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementing disorder after Alzheimer's disease (AD), but there is limited information regarding the prodromal DLB state compared with that of AD. Parkinson's disease (PD) and DLB share common prodromal symptoms with Lewy body disease (LBD), allowing us to use a common strategy for identifying the individuals with an underlying pathophysiology of LBD. Dysautonomia, olfactory dysfunction, rapid eye movement sleep behavior disorder (RBD) and psychiatric symptoms antedate the onset of dementia by years or even decades in patients with DLB. Although RBD is the most potentially accurate prodromal predictor of DLB, disease progression before the onset of dementia could differ between the prodromal DLB state with and without RBD. Experts who specialize in idiopathic RBD and DLB might need communication in order to clarify the clinical relevance of RBD with the disease progression of DLB. The presence of prodromal LBD symptoms or findings of occipital hypoperfusion/hypometabolism helps us to predict the possible pathophysiological process of LBD in non-demented patients. This approach might provide the opportunity for additional neuroimaging, including cardiac (123) I-metaiodobenzylguanidine scintigraphy and dopamine transporter imaging. Although limited radiological findings in patients with prodromal DLB states have been reported, there is now a need for larger clinical multisite studies with pathological verification. The long prodromal phase of DLB provides a critical opportunity for potential intervention with disease-modifying therapy, but only if we are able to clearly identify the diversity in the clinical courses of DLB. In the present article, we reviewed the limited literature regarding the clinical profiles of prodromal DLB.
Collapse
Affiliation(s)
- Hiroshige Fujishiro
- Department of Sleep Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kiyoshi Sato
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Koto, Japan
| | - Eizo Iseki
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Koto, Japan
| |
Collapse
|
90
|
Cortical Metabolic and Nigrostriatal Abnormalities Associated With Clinical Stage-Specific Dementia With Lewy Bodies. Clin Nucl Med 2015; 40:26-31. [DOI: 10.1097/rlu.0000000000000620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
91
|
Abstract
The spectrum of mixed brain pathologies expands beyond accompanying vascular pathology in brains with Alzheimer's disease-related pathology. Co-occurrence of neurodegenerative non-Alzheimer's disease-type proteinopathies is increasingly recognized to be a frequent event in the brains of symptomatic and asymptomatic patients, particularly in older people. Owing to the evolving concept of neurodegenerative diseases, clinical and neuropathological diagnostic criteria have changed during the last decades. Autopsy-based studies differ in the selection criteria and also in the applied staining methods used. The present review summarizes the prevalence of mixed brain pathologies reported in recent community-based studies. In these cohorts, irrespective of the clinical symptoms, the frequency of Alzheimer's disease-related pathology is between 19 and 67%, of Lewy body pathology is between 6 and 39%, of vascular pathologies is between 28 and 70%, of TDP-43 proteinopathy is between 13 and 46%, of hippocampal sclerosis is between 3 and 13% and, finally, of mixed pathologies is between 10 and 74%. Some studies also mention tauopathies. White-matter pathologies are not discussed specifically in all studies, although these lesions may be present in more than 80% of the aging brains. In summary, community-based neuropathology studies have shown that complex constellations of underlying pathologies may lead to cognitive decline, and that the number of possible combinations increases in the aging brain. These observations have implications for the prediction of the prognosis, for the development of biomarkers or therapy targets, or for the stratification of patient cohorts for genome-wide studies or, eventually, for therapy trials.
Collapse
Affiliation(s)
- Jasmin Rahimi
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
92
|
Shoji Y, Nishio Y, Baba T, Uchiyama M, Yokoi K, Ishioka T, Hosokai Y, Hirayama K, Fukuda H, Aoki M, Hasegawa T, Takeda A, Mori E. Neural substrates of cognitive subtypes in Parkinson's disease: a 3-year longitudinal study. PLoS One 2014; 9:e110547. [PMID: 25330390 PMCID: PMC4203806 DOI: 10.1371/journal.pone.0110547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The neuropsychological features and neuropathological progression patterns associated with rapidly evolving cognitive decline or dementia in Parkinson's disease (PD) remain to be elucidated. METHODS Fifty-three PD patients without dementia were recruited to participate in a 3-year longitudinal cohort study. The patients were grouped according to the Clinical Dementia Rating (CDR). Group-wise comparisons were made with regard to demographic characteristics, motor symptoms, neuropsychological performances and 18F-fluorodeoxyglucose positron emission tomography. RESULTS Patients who had memory-plus cognitive impairment (patients whose CDR was 0 at baseline and 0.5 in memory and other domains at follow-up, and those whose baseline CDR was 0.5 in memory and other domains) exhibited higher age at onset, visuoperceptual impairment, non-tremor-dominant motor disturbance, rapid symptomatic progression and posterior neocortical hypometabolism. In patients who were cognitively unimpaired and those who had memory-dominant cognitive impairment (patients whose CDR was 0 at baseline and 0.5 only in memory domain at follow-up, and those whose baseline CDR was 0.5 only in memory domain), the posterior neocortex was relatively unaffected until a later stage of the disease. CONCLUSIONS These results suggest that visuoperceptual impairment and the early involvement of the posterior neocortex may be risk factors for rapid symptomatic progression and dementia in PD.
Collapse
Affiliation(s)
- Yumiko Shoji
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Yoshiyuki Nishio
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
- * E-mail:
| | - Toru Baba
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Makoto Uchiyama
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
- Department of Speech, Language and Hearing Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kayoko Yokoi
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Toshiyuki Ishioka
- Department of Occupational Therapy, Saitama Prefectural University, Koshigaya, Japan
| | - Yoshiyuki Hosokai
- Department of Diagnostic Image Analysis, Tohoku University School of Medicine, Sendai, Japan
| | - Kazumi Hirayama
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
- Department of Occupational Therapy, Yamagata Prefectural University of Health Science, Yamagata, Japan
| | - Hiroshi Fukuda
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, Sendai Nishitaga Hospital, Sendai, Japan
| | - Etsuro Mori
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
93
|
Jellinger KA, Attems J. Challenges of multimorbidity of the aging brain: a critical update. J Neural Transm (Vienna) 2014; 122:505-21. [DOI: 10.1007/s00702-014-1288-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022]
|
94
|
Boelmans K, Spies L, Sedlacik J, Fiehler J, Jahn H, Gerloff C, Münchau A. A novel computerized algorithm to detect microstructural brainstem pathology in Parkinson's disease using standard 3 Tesla MR imaging. J Neurol 2014; 261:1968-75. [PMID: 25063366 DOI: 10.1007/s00415-014-7440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Increased deposition of α-synuclein in Parkinson's disease (PD) is known to be prominent in the brainstem and discussed to be clinically relevant for motor and non-motor features. Whether structural magnetic resonance imaging is capable to detect degraded tissue microstructure caused by increased deposition of α-synuclein at this predilection site in PD remains unclear. We hypothesize that microstructural degradation in the brainstem leads to a reduced T1 contrast provoking standard tissue segmentation engines to misclassify tissue as additional grey matter in regions predominantly composed of white matter. High-resolution T1-weighted three-dimensional magnetization prepared rapid gradient echo (MPRAGE) imaging at 3 Tesla in fifty-two PD patients with mild-to-moderate disease severity and in forty age- and gender-matched healthy controls was performed. A dedicated computerized algorithm that comprises standard tissue segmentation in combination with a statistical test was set up that evaluates grey matter composition on voxel level. The algorithm detected a single significant cluster of voxels with enhanced grey matter (cluster volume is 1,368 mm(3), p < 0.05 corrected for false discovery rate) in the pontomedullary junction of the brainstem in PD patients as compared to healthy controls. Furthermore, absolute grey matter volume was significantly higher in the brainstem of the PD group compared to healthy controls. We conclude that this cluster may reflect α-synuclein induced microstructural brainstem pathology in PD.
Collapse
Affiliation(s)
- Kai Boelmans
- Department of Psychiatry, Memory Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany,
| | | | | | | | | | | | | |
Collapse
|
95
|
Donaghy PC, McKeith IG. The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis. ALZHEIMERS RESEARCH & THERAPY 2014; 6:46. [PMID: 25484925 PMCID: PMC4255387 DOI: 10.1186/alzrt274] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common type of degenerative dementia following Alzheimer’s disease (AD). DLB is clinically and pathologically related to Parkinson's disease (PD) and PD dementia, and the three disorders can be viewed as existing on a spectrum of Lewy body disease. In recent years there has been a concerted effort to establish the phenotypes of AD and PD in the prodromal phase (before the respective syndromes of cognitive and motor impairment are expressed). Evidence for the prodromal presentation of DLB is also emerging. This paper briefly reviews what is known about the clinical presentation of prodromal DLB before discussing the pathology of Lewy body disease and how this relates to potential biomarkers of prodromal DLB. The presenting features of DLB can be broadly placed in three categories: cognitive impairment (particularly nonamnestic cognitive impairments), behavioural/psychiatric phenomena (for example, hallucinations, rapid eye movement sleep behaviour disorder (RBD)) and physical symptoms (for example, parkinsonism, decreased sense of smell, autonomic dysfunction). Some noncognitive symptoms such as constipation, RBD, hyposmia and postural dizziness can predate the onset of memory impairment by several years in DLB. Pathological studies of Lewy body disease have found that the earliest sites of involvement are the olfactory bulb, the dorsal motor nucleus of the vagal nerve, the peripheral autonomic nervous system, including the enteric nervous system, and the brainstem. Some of the most promising early markers for DLB include the presence of RBD, autonomic dysfunction or hyposmia, 123I-metaiodobenzylguanidine cardiac scintigraphy, measures of substantia nigra pathology and skin biopsy for α-synuclein in peripheral autonomic nerves. In the absence of disease-modifying therapies, the diagnosis of prodromal DLB is of limited use in the clinic. That said, knowledge of the prodromal development of DLB could help clinicians identify cases of DLB where the diagnosis is uncertain. Prodromal diagnosis is of great importance in research, where identifying Lewy body disease at an earlier stage may allow researchers to investigate the initial phases of dementia pathophysiology, develop treatments designed to interrupt the development of the dementia syndrome and accurately identify the patients most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Paul C Donaghy
- Level 3, Biomedical Research Building, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle NE4 5PL, UK
| | - Ian G McKeith
- Level 3, Biomedical Research Building, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle NE4 5PL, UK
| |
Collapse
|
96
|
Dijkstra AA, Voorn P, Berendse HW, Groenewegen HJ, Rozemuller AJM, van de Berg WDJ. Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson's disease. Mov Disord 2014; 29:1244-51. [PMID: 24996051 DOI: 10.1002/mds.25952] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/19/2014] [Accepted: 06/02/2014] [Indexed: 11/07/2022] Open
Abstract
To gain a better understanding of the significance of α-synuclein pathological conditions during disease progression in Parkinson's disease, we investigated whether 1) nigral neuronal loss in incidental Lewy body disease and Parkinson's disease donors is associated with the local burden α-synuclein pathological conditions during progression of pathological conditions; 2) the burden and distribution of α-synuclein pathological conditions are related to clinical measures of disease progression. Post-mortem tissue and medical records of 24 Parkinson's disease patients, 20 incidental Lewy body disease donors, and 12 age-matched controls were obtained from the Netherlands Brain Bank for morphometric analysis. We observed a 20% decrease in nigral neuronal cell density in incidental Lewy body disease compared with controls. Nigral neuronal loss (12%) was already observed before the appearance α-synuclein aggregates. The progression from Braak α-synuclein stage 3 to 4 was associated with a significant decline in neuronal cell density (46%). Nigral neuronal loss increased with later Braak α-synuclein stages but did not vary across consecutive Braak α-synuclein stages. We observed a negative correlation between neuronal density and local α-synuclein burden in the substantia nigra of Parkinson's disease patients (ρ = -0.54), but no relationship with Hoehn & Yahr stage or disease duration. In conclusion, our findings cast doubt on the pathogenic role of α-synuclein aggregates in elderly, but do suggest that the severity of neurodegeneration and local burden of α-synuclein pathological conditions are closely coupled during disease progression in Parkinson's disease.
Collapse
Affiliation(s)
- Anke A Dijkstra
- Department of Anatomy and Neurosciences, section of Functional Neuroanatomy, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
97
|
Goldman JG, Williams-Gray C, Barker RA, Duda JE, Galvin JE. The spectrum of cognitive impairment in Lewy body diseases. Mov Disord 2014; 29:608-21. [PMID: 24757110 PMCID: PMC4126402 DOI: 10.1002/mds.25866] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022] Open
Abstract
Cognitive impairment represents an important and often defining component of the clinical syndromes of Lewy body disorders: Parkinson's disease and dementia with Lewy bodies. The spectrum of cognitive deficits in these Lewy body diseases encompasses a broad range of clinical features, severity of impairment, and timing of presentation. It is now recognized that cognitive dysfunction occurs not only in more advanced Parkinson's disease but also in early, untreated patients and even in those patients with pre-motor syndromes, such as rapid eye movement behavior disorder and hyposmia. In recent years, the concept of mild cognitive impairment as a transitional or pre-dementia state in Parkinson's disease has emerged. This has led to much research regarding the diagnosis, prognosis, and underlying neurobiology of mild cognitive impairment in Parkinson's disease, but has also raised questions regarding the usefulness of this concept and its application in clinical and research settings. In addition, the conundrum of whether Parkinson's disease dementia and dementia with Lewy bodies represent the same or different entities remains unresolved. Although these disorders overlap in many aspects of their presentations and pathophysiology, they differ in other elements, such as timing of cognitive, behavioral, and motor symptoms; medication responses; and neuropathological contributions. This article examines the spectrum and evolution of cognitive impairment in Lewy body disorders and debates these controversial issues in the field using point-counterpoint approaches.
Collapse
Affiliation(s)
| | - Caroline Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John E. Duda
- Department of Neurology, University of Pennsylvania Perelman School of Medicine and the Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
| | - James E. Galvin
- Departments of Neurology, Psychiatry and Population Health, New York University School of Medicine, New York, NY
| |
Collapse
|
98
|
Siderowf A, Pontecorvo MJ, Shill HA, Mintun MA, Arora A, Joshi AD, Lu M, Adler CH, Galasko D, Liebsack C, Skovronsky DM, Sabbagh MN. PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer's disease and Lewy body disorders. BMC Neurol 2014; 14:79. [PMID: 24716655 PMCID: PMC4027995 DOI: 10.1186/1471-2377-14-79] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biomarkers based on the underlying pathology of Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB) have the potential to improve diagnosis and understanding of the substrate for cognitive impairment in these disorders. The objective of this study was to compare the patterns of amyloid and dopamine PET imaging in patients with AD, DLB and Parkinson's disease (PD) using the amyloid imaging agent florbetapir F 18 and 18F-AV-133 (florbenazine), a marker for vesicular monamine type 2 transporters (VMAT2). METHODS Patients with DLB and AD, Parkinson's disease (PD) and healthy controls (HC) were recruited for this study. On separate days, subjects received intravenous injections of florbetapir, and florbenazine. Amyloid burden and VMAT2 density were assessed quantitatively and by binary clinical interpretation. Imaging results for both tracers were compared across the four individual diagnostic groups and for combined groups based on underlying pathology (AD/DLB vs. PD/HC for amyloid burden and PD/DLB vs. AD/HC for VMAT binding) and correlated with measures of cognition and parkinsonism. RESULTS 11 DLB, 10 AD, 5 PD, and 5 controls participated in the study. Amyloid binding was significantly higher in the combined AD/DLB patient group (n = 21) compared to the PD/HC groups (n = 10, mean SUVr: 1.42 vs. 1.07; p = 0.0006). VMAT2 density was significantly lower in the PD/DLB group (n = 16) compared to the AD/ HC group (n = 15; 1.83 vs. 2.97; p < 0.0001). Within the DLB group, there was a significant correlation between cognitive performance and striatal florbenazine binding (r = 0.73; p = 0.011). CONCLUSIONS The results of this study show significant differences in both florbetapir and florbenazine imaging that are consistent with expected pathology. In addition, VMAT density correlated significantly with cognitive impairment in DLB patients (ClinicalTrials.gov identifier: NCT00857506, registered March 5, 2009).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Marwan N Sabbagh
- Banner Sun Health Research Institute, Sun City, AZ 10515W Santa Fe Dr, USA.
| |
Collapse
|
99
|
Abstract
There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, Division of Nuclear Medicine, University of Michigan, 24 Frank Lloyd Wright Dr, Box #362, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
100
|
|