51
|
Tang Y, Su TY, Choi JY, Hu S, Wang X, Sakaie K, Murakami H, Alexopoulos A, Griswold M, Jones S, Najm I, Ma D, Wang ZI. Characterizing Thalamic and Basal Ganglia Nuclei in Medically Intractable Focal Epilepsy by MR Fingerprinting. Epilepsia 2022; 63:1998-2010. [PMID: 35661353 DOI: 10.1111/epi.17318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Magnetic resonance fingerprinting (MRF) is a novel, quantitative and noninvasive technique to measure brain tissue properties. We aim to use MRF for characterizing normal-appearing thalamic and basal ganglia nuclei in the epileptic brain. METHODS A 3D MRF protocol (1mm3 isotropic resolution) was acquired from 48 patients with unilateral medically refractory focal epilepsy and 39 healthy controls (HCs). Whole-brain T1 and T2 maps (containing T1 and T2 relaxation times) were reconstructed for each subject. Ten subcortical nuclei in the thalamus and basal ganglia were segmented as regions of interest (ROIs), within which the mean T1 and T2 values, as well as their coefficient of variation (CV) were compared between the patients and HCs at group level. Subgroup and correlation analyses were performed to examine the relationship between significant MRF measures and various clinical characteristics. Using significantly abnormal MRF measures from the group-level analyses, support vector machine (SVM) and logistic regression machine learning models were built and tested with 5-fold and 10-fold cross-validations, to separate patients from HCs, and to separate patients with left-sided and right-sided epilepsy, at individual level. RESULTS MRF revealed increased T1 mean value in the ipsilateral thalamus and nucleus accumbens; increased T1 CV in bilateral thalamus, bilateral pallidum, and ipsilateral caudate; and increased T2 CV in the ipsilateral thalamus in patients compared to HCs (P<0.05, FDR corrected). The SVM classifier produced 78.2% average accuracy to separate individual patients from HCs, with AUC of 0.83. The logistic regression classifier produced 67.4% average accuracy to separate patients with left-sided and right-sided epilepsy, with AUC of 0.72. SIGNIFICANCE MRF revealed bilateral tissue-property changes in the normal-appearing thalamus and basal ganglia, with ipsilateral predominance and thalamic preference, suggesting subcortical involvement/impairment in patients with medically intractable focal epilepsy. The individual-level performance of the MRF-based machine-learning models suggests potential opportunities for predicting lateralization.
Collapse
Affiliation(s)
- Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ting Yu Su
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Joon Yul Choi
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Siyuan Hu
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaofeng Wang
- Quantitative Health Science, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Mark Griswold
- Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen Jones
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Imad Najm
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Dan Ma
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zhong Irene Wang
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
52
|
Karakis I. Using stereo-electroencephalography to unlock the ictal secrets of the thalamus. Clin Neurophysiol 2022; 137:177-178. [DOI: 10.1016/j.clinph.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
|
53
|
Tung H, Pan SY, Lan TH, Lin YY, Peng SJ. Characterization of Hippocampal-Thalamic-Cortical Morphometric Reorganization in Temporal Lobe Epilepsy. Front Neurol 2022; 12:810186. [PMID: 35222230 PMCID: PMC8866816 DOI: 10.3389/fneur.2021.810186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionBrain cortico-subcortical connectivity has been investigated in epilepsy using the functional MRI (MRI). Although structural images cannot demonstrate dynamic changes, they provide higher spatial resolution, which allows exploration of the organization of brain in greater detail.MethodsWe used high-resolution brain MRI to study the hippocampal-thalamic-cortical networks in temporal lobe epilepsy (TLE) using a volume-based morphometric method. We enrolled 22 right-TLE, 33 left-TLE, and 28 age/gender-matched controls retrospectively. FreeSurfer software was used for the thalamus segmentation.ResultsAmong the 50 subfields, ipsilateral anterior, lateral, and parts of the intralaminar and medial nuclei, as well as the contralateral parts of lateral nuclei had significant volume loss in both TLE. The anteroventral nucleus was most vulnerable. Most thalamic subfields were susceptible to seizure burden, especially the left-TLE. SPM12 was used to conduct an analysis of the gray matter density (GMD) maps. Decreased extratemporal GMD occurred bilaterally. Both TLE demonstrated significant GMD loss over the ipsilateral inferior frontal gyrus, precentral gyrus, and medial orbital cortices.SignificanceThalamic subfield atrophy was related to the ipsilateral inferior frontal GMD changes, which presented positively in left-TLE and negatively in right-TLE. These findings suggest prefrontal-thalamo-hippocampal network disruption in TLE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yen Pan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Syu-Jyun Peng
| |
Collapse
|
54
|
Spike ripples in striatum correlate with seizure risk in two mouse models. Epilepsy Behav Rep 2022; 18:100529. [PMID: 35274094 PMCID: PMC8902602 DOI: 10.1016/j.ebr.2022.100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022] Open
Abstract
Epilepsy biomarkers from electroencephalogram recordings are routinely used to assess seizure risk and localization. Two widely adopted biomarkers include: (i) interictal spikes, and (ii) high frequency ripple oscillations. The combination of these two biomarkers, ripples co-occurring with spikes (spike ripples), has been proposed as an improved biomarker for the epileptogenic zone and epileptogenicity in humans and rodent models. Whether spike ripples translate to predict seizure risk in rodent seizure models is unknown. Further, recent evidence suggests ictal networks can include deep gray nuclei in humans. Whether pathologic spike ripples and seizures are also observed in the basal ganglia in rodent models has not been explored. We addressed these questions using local field potential recordings from mice with and without striatal seizures after carbachol or 6-hydroxydopamine infusions into the striatum. We found increased spike ripples in the interictal and ictal periods in mice with seizures compared to pre-infusion and post-infusion seizure-free recordings. These data provide evidence of electrographic seizures involving the striatum in mice and support the candidacy of spike ripples as a translational biomarker for seizure risk in mouse models.
Collapse
|
55
|
Parasuram H, Gopinath S, Pillai A, Diwakar S, Kumar A. Quantification of Epileptogenic Network From Stereo EEG Recordings Using Epileptogenicity Ranking Method. Front Neurol 2021; 12:738111. [PMID: 34803883 PMCID: PMC8595106 DOI: 10.3389/fneur.2021.738111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Precise localization of the epileptogenic zone is very essential for the success of epilepsy surgery. Epileptogenicity index (EI) computationally estimates epileptogenicity of brain structures based on the temporal domain parameters and magnitude of ictal discharges. This method works well in cases of mesial temporal lobe epilepsy but it showed reduced accuracy in neocortical epilepsy. To overcome this scenario, in this study, we propose Epileptogenicity Rank (ER), a modified method of EI for quantifying epileptogenicity, that is based on spatio-temporal properties of Stereo EEG (SEEG). Methods: Energy ratio during ictal discharges, the time of involvement and Euclidean distance between brain structures were used to compute the ER. Retrospectively, we localized the EZ for 33 patients (9 for mesial-temporal lobe epilepsy and 24 for neocortical epilepsy) using post op MRI and Engel 1 surgical outcome at a mean of 40.9 months and then optimized the ER in this group. Results: Epileptic network estimation based on ER successfully differentiated brain regions involved in the seizure onset from the propagation network. ER was calculated at multiple thresholds leading to an optimum value that differentiated the seizure onset from the propagation network. We observed that ER < 7.1 could localize the EZ in neocortical epilepsy with a sensitivity of 94.6% and specificity of 98.3% and ER < 7.3 in mesial temporal lobe epilepsy with a sensitivity of 95% and specificity of 98%. In non-seizure-free patients, the EZ localization based on ER pointed to brain area beyond the cortical resections. Significance: Methods like ER can improve the accuracy of EZ localization for brain resection and increase the precision of minimally invasive surgery techniques (radio-frequency or laser ablation) by identifying the epileptic hubs where the lesion is extensive or in nonlesional cases. For inclusivity with other clinical applications, this ER method has to be studied in more patients.
Collapse
Affiliation(s)
- Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shyam Diwakar
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| |
Collapse
|
56
|
King-Stephens D. Cheers for SANTĖ: Long Term Safety and Efficacy of Anterior Nucleus of the Thalamus DBS. Epilepsy Curr 2021; 21:334-336. [PMID: 34924827 PMCID: PMC8655256 DOI: 10.1177/15357597211029169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
57
|
Silva AB, Khambhati AN, Speidel BA, Chang EF, Rao VR. Effects of anterior thalamic nuclei stimulation on hippocampal activity: Chronic recording in a patient with drug-resistant focal epilepsy. Epilepsy Behav Rep 2021; 16:100467. [PMID: 34458713 PMCID: PMC8379668 DOI: 10.1016/j.ebr.2021.100467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/12/2022] Open
Abstract
Devices for RNS and thalamic DBS were implanted in a single person with epilepsy. RNS electrocorticography enabled characterization of acute and chronic DBS effects. DBS caused acute, phasic, frequency-dependent responses in hippocampus and cortex. DBS modulated functional connectivity and suppressed epileptiform activity over time. Chronic electrocorticography elucidates progressive effects of thalamic stimulation.
Implanted neurostimulation devices are gaining traction as palliative treatment options for certain forms of drug-resistant epilepsy, but clinical utility of these devices is hindered by incomplete mechanistic understanding of their therapeutic effects. Approved devices for anterior thalamic nuclei deep brain stimulation (ANT DBS) are thought to work at a network level, but limited sensing capability precludes characterization of neurophysiological effects outside the thalamus. Here, we describe a patient with drug-resistant temporal lobe epilepsy who was implanted with a responsive neurostimulation device (RNS System), involving hippocampal and ipsilateral temporal neocortical leads, and subsequently received ANT DBS. Over 1.5 years, RNS System electrocorticography enabled multiscale characterization of neurophysiological effects of thalamic stimulation. In brain regions sampled by the RNS System, ANT DBS produced acute, phasic, frequency-dependent responses, including suppression of hippocampal low frequency local field potentials. ANT DBS modulated functional connectivity between hippocampus and neocortex. Finally, ANT DBS progressively suppressed hippocampal epileptiform activity in relation to the extent of hippocampal theta suppression, which informs stimulation parameter selection for ANT DBS. Taken together, this unique clinical scenario, involving hippocampal recordings of unprecedented chronicity alongside ANT DBS, sheds light on the therapeutic mechanism of thalamic stimulation and highlights capabilities needed in next-generation devices.
Collapse
Affiliation(s)
- Alexander B Silva
- Medical Scientist Training Program, University of California, San Francisco, USA
| | - Ankit N Khambhati
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Benjamin A Speidel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Edward F Chang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| |
Collapse
|
58
|
McGonigal A, Bartolomei F, Chauvel P. On seizure semiology. Epilepsia 2021; 62:2019-2035. [PMID: 34247399 DOI: 10.1111/epi.16994] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
The clinical expression of seizures represents the main symptomatic burden of epilepsy. Neural mechanisms of semiologic production in epilepsy, especially for complex behaviors, remain poorly known. In a framework of epilepsy as a network rather than as a focal disorder, we can think of semiology as being dynamically produced by a set of interconnected structures, in which specific rhythmic interactions, and not just anatomical localization, are likely to play an important part in clinical expression. This requires a paradigm shift in how we think about seizure organization, including from a presurgical evaluation perspective. Semiology is a key data source, albeit with significant methodological challenges for its use in research, including observer bias and choice of semiologic categories. Better understanding of semiologic categorization and pathophysiological correlates is relevant to seizure classification systems. Advances in knowledge of neural mechanisms as well as anatomic correlates of different semiologic patterns could help improve knowledge of epilepsy networks and potentially contribute to therapeutic innovations.
Collapse
Affiliation(s)
- Aileen McGonigal
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France.,Clinical Neurophysiology, APHM, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France.,Clinical Neurophysiology, APHM, Timone Hospital, Marseille, France
| | - Patrick Chauvel
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Smith G, Stacey WC. The accuracy of quantitative EEG biomarker algorithms depends upon seizure onset dynamics. Epilepsy Res 2021; 176:106702. [PMID: 34229226 DOI: 10.1016/j.eplepsyres.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To compare the performance of different ictal quantitative biomarkers of the seizure onset zone (SOZ) across many seizures in a cohort of consecutive patients with a variety of seizure onset patterns. METHODS The Epileptogenicity Index (EI, a measure of fast activity) and Slow Polarizing Shift index (SPS, a measure of infraslow activity) were calculated for 212 seizures (22 patients). After stratification by onset pattern, median index values inside and outside the SOZ were compared in aggregate and for each of the onset patterns. Receiver Operating Characteristic (ROC) curves were constructed to compare the performance of each index. RESULTS Median values of EI (0.056 vs 0.0087), SPS (0.27 vs 0.19), and CI (0.21 vs 0.12) were significantly higher for contacts inside the SOZ, all p < 0.0001. Analysis of AUC showed variable performance of these indices across seizure types, although AUC for EI and SPS was generally greatest for seizures with fast activity at onset. CONCLUSIONS All indices were significantly higher for contacts inside the SOZ; however, the performance of these indices varied depending on the pattern of seizure onset. SIGNIFICANCE These findings suggest that future studies of quantitative biomarkers of the SOZ should account for seizure onset pattern.
Collapse
Affiliation(s)
- Garnett Smith
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan, 1540 E Hospital Drive, Box 4279, Ann Arbor, MI, 48109-4279, USA.
| | - William C Stacey
- Department of Neurology, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA; Department of Biomedical Engineering, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA; Biointerfaces Institute, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA.
| |
Collapse
|