51
|
Tanaka M. Molecular and evolutionary basis of limb field specification and limb initiation. Dev Growth Differ 2012; 55:149-63. [PMID: 23216351 DOI: 10.1111/dgd.12017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
Abstract
Specification of limb field and initiation of limb development involve multiple steps, each of which is tightly regulated both spatially and temporally. Recent developmental analyses on various vertebrates have provided insights into the molecular mechanisms that specify limb field and have revealed several genetic interactions of signals involved in limb initiation processes. Furthermore, new approaches to the study of the developmental mechanisms of the lateral plate mesoderm of amphioxus and lamprey embryos have given us clues to understand the evolutionary scenarios that led to the acquisition of paired appendages during evolution. This review highlights such recent findings and discusses the mechanisms of limb field specification and limb bud initiation during development and evolution.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan.
| |
Collapse
|
52
|
Gharbaran R, Aisemberg GO, Alvarado S. Segmental and regional differences in neuronal expression of the leech Hox genes Lox1 and Lox2 during embryogenesis. Cell Mol Neurobiol 2012; 32:1243-53. [PMID: 22569741 DOI: 10.1007/s10571-012-9849-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Using double immunofluorescence experiments, we described the expression of the leech Hox genes, Lox1 and Lox2 by central neurons that stained for either serotonin or the leech-specific neuronal marker, Laz1-1. The goal is to determine whether the segmental boundaries of Lox1 and Lox2 expression in identified neurons coincide with segmental and regional differences in the differentiation of these cells. A number of neurons described here have been previously identified. The anteromedial serotonergic neurons are restricted to rostral ganglion 1 (R1) to midbody ganglion 3 (M3), but only express Lox1 in M2 and M3. The posteromedial serotonergic neurons which are situated in all segments as bilateral pairs early in development, but later become unpaired starting at M3, expressed Lox1 only in M2 and M3, and Lox2 in M8 to M21, in all paired and unpaired stages. The Retzius neurons, which stain for serotonin, express Lox2 in M7 to M21 where they exhibit different morphologies from their segmental homologs of the sex ganglia in M5 and M6. The Laz1-1 immunoreactive (Laz1-1+) heart accessory-like neurons express Lox1 in M4 and Lox2 in M7 to M17, but not in their segmental homologs of the heart accessory (HA) neurons located exclusively in M5 and M6. Also, Laz1-1+ neurons, which we named Lz3 expressed Lox1 in M4 to M8 where they are unpaired, but express Lox2 in M9 to M16 where they are bilaterally paired. Other Laz1-1 cells show more restricted and isolated Lox1 and Lox2 expression patterns. These results suggest a role of Lox1 and/or Lox2 in defining the anteroposterior boundaries of segmentally iterated neurons.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Lehman College of The City University of New York, 250 Bedford Park Blvd., Bronx, NY 10468, USA.
| | | | | |
Collapse
|
53
|
Stelescu A, Sümegi J, Wéber I, Birinyi A, Wolf E. Somato-dendritic morphology and dendritic signal transfer properties differentiate between fore- and hindlimb innervating motoneurons in the frog Rana esculenta. BMC Neurosci 2012; 13:68. [PMID: 22708833 PMCID: PMC3472316 DOI: 10.1186/1471-2202-13-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 05/14/2012] [Indexed: 11/22/2022] Open
Abstract
Background The location specific motor pattern generation properties of the spinal cord along its rostro-caudal axis have been demonstrated. However, it is still unclear that these differences are due to the different spinal interneuronal networks underlying locomotions or there are also segmental differences in motoneurons innervating different limbs. Frogs use their fore- and hindlimbs differently during jumping and swimming. Therefore we hypothesized that limb innervating motoneurons, located in the cervical and lumbar spinal cord, are different in their morphology and dendritic signal transfer properties. The test of this hypothesis what we report here. Results Discriminant analysis classified segmental origin of the intracellularly labeled and three-dimensionally reconstructed motoneurons 100% correctly based on twelve morphological variables. Somata of lumbar motoneurons were rounder; the dendrites had bigger total length, more branches with higher branching orders and different spatial distributions of branch points. The ventro-medial extent of cervical dendrites was bigger than in lumbar motoneurons. Computational models of the motoneurons showed that dendritic signal transfer properties were also different in the two groups of motoneurons. Whether log attenuations were higher or lower in cervical than in lumbar motoneurons depended on the proximity of dendritic input to the soma. To investigate dendritic voltage and current transfer properties imposed by dendritic architecture rather than by neuronal size we used standardized distributions of transfer variables. We introduced a novel combination of cluster analysis and homogeneity indexes to quantify segmental segregation tendencies of motoneurons based on their dendritic transfer properties. A segregation tendency of cervical and lumbar motoneurons was detected by the rates of steady-state and transient voltage-amplitude transfers from dendrites to soma at all levels of synaptic background activities, modeled by varying the specific dendritic membrane resistance. On the other hand no segregation was observed by the steady-state current transfer except under high background activity. Conclusions We found size-dependent and size-independent differences in morphology and electrical structure of the limb moving motoneurons based on their spinal segmental location in frogs. Location specificity of locomotor networks is therefore partly due to segmental differences in motoneurons driving fore-, and hindlimbs.
Collapse
Affiliation(s)
- András Stelescu
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen, H-4032, Hungary
| | | | | | | | | |
Collapse
|
54
|
Otaegi G, Pollock A, Sun T. An Optimized Sponge for microRNA miR-9 Affects Spinal Motor Neuron Development in vivo. Front Neurosci 2012; 5:146. [PMID: 22291613 PMCID: PMC3251795 DOI: 10.3389/fnins.2011.00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/19/2011] [Indexed: 12/17/2022] Open
Abstract
The specification of motor neuron (MN) subtypes and columnar organization in developing spinal cord is controlled by multiple transcription factors. FoxP1 drives specification of lateral motor neuron (LMN) subtypes, and we demonstrated in our previous work that FoxP1 expression levels are regulated by the microRNA miR-9. Here we show that ectopic FoxP1 expression in the chick spinal cord can rescue Lhx3 and Hb9 expression in MNs altered by miR-9 over-expression, demonstrating that FoxP1 is a critical functional interaction partner for miR-9 in LMN development. Moreover, we have optimized a technique called a miRNA sponge in vitro, to permit easy discovery of the role of individual miRNA in vivo using a loss-of-function approach. We here show that narrow spacing between binding sites, inclusion of a coding gene, and optimizing the number of miRNA binding sites can significantly increase the blocking ability of a sponge. We go on to show that a miR-9 sponge reduces detectable miR-9 in the ventral horn, preventing miR-9 silencing of FoxP1 in vivo, and in turn modifies MN subtypes in the spinal cord. Our designs for optimized sponges provide a knockdown tool that is ready to be used to study the function of miRNA in vivo, and in particular for generating transgenic animal models.
Collapse
Affiliation(s)
- Gaizka Otaegi
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University New York, NY, USA
| | | | | |
Collapse
|
55
|
Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG. Global gene expression analysis of murine limb development. PLoS One 2011; 6:e28358. [PMID: 22174793 PMCID: PMC3235105 DOI: 10.1371/journal.pone.0028358] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/07/2011] [Indexed: 01/11/2023] Open
Abstract
Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ∼30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis.
Collapse
Affiliation(s)
- Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Nicole M. Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Deepa Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Evan Maxwell
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Gabriela G. Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
56
|
Sabharwal P, Lee C, Park S, Rao M, Sockanathan S. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling. Neuron 2011; 71:1058-70. [PMID: 21943603 DOI: 10.1016/j.neuron.2011.07.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2011] [Indexed: 12/29/2022]
Abstract
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons.
Collapse
Affiliation(s)
- Priyanka Sabharwal
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
57
|
|
58
|
Murakami Y, Tanaka M. Evolution of motor innervation to vertebrate fins and limbs. Dev Biol 2011; 355:164-72. [DOI: 10.1016/j.ydbio.2011.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 04/08/2011] [Accepted: 04/13/2011] [Indexed: 01/04/2023]
|
59
|
Directed neural differentiation of mouse embryonic stem cells is a sensitive system for the identification of novel Hox gene effectors. PLoS One 2011; 6:e20197. [PMID: 21637844 PMCID: PMC3102681 DOI: 10.1371/journal.pone.0020197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/20/2011] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved Hox family of homeodomain transcription factors
plays fundamental roles in regulating cell specification along the anterior
posterior axis during development of all bilaterian animals by controlling cell
fate choices in a highly localized, extracellular signal and cell context
dependent manner. Some studies have established downstream target genes in
specific systems but their identification is insufficient to explain either the
ability of Hox genes to direct homeotic transformations or the
breadth of their patterning potential. To begin delineating Hox
gene function in neural development we used a mouse ES cell based system that
combines efficient neural differentiation with inducible Hoxb1 expression. Gene
expression profiling suggested that Hoxb1 acted as both
activator and repressor in the short term but predominantly as a repressor in
the long run. Activated and repressed genes segregated in distinct processes
suggesting that, in the context examined, Hoxb1 blocked
differentiation while activating genes related to early developmental processes,
wnt and cell surface receptor linked signal transduction and cell-to-cell
communication. To further elucidate aspects of Hoxb1 function
we used loss and gain of function approaches in the mouse and chick embryos. We
show that Hoxb1 acts as an activator to establish the full expression domain of
CRABPI and II in rhombomere 4 and as a
repressor to restrict expression of Lhx5 and
Lhx9. Thus the Hoxb1 patterning activity
includes the regulation of the cellular response to retinoic acid and the delay
of the expression of genes that commit cells to neural differentiation. The
results of this study show that ES neural differentiation and inducible
Hox gene expression can be used as a sensitive model system
to systematically identify Hox novel target genes, delineate
their interactions with signaling pathways in dictating cell fate and define the
extent of functional overlap among different Hox genes.
Collapse
|
60
|
Mocholí E, Ballester-Lurbe B, Arqué G, Poch E, Peris B, Guerri C, Dierssen M, Guasch RM, Terrado J, Pérez-Roger I. RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice. PLoS One 2011; 6:e19236. [PMID: 21552537 PMCID: PMC3084285 DOI: 10.1371/journal.pone.0019236] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/30/2011] [Indexed: 01/02/2023] Open
Abstract
Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt) are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD) 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.
Collapse
Affiliation(s)
- Enric Mocholí
- Department of Chemistry, Biochemistry and Molecular Biology, School of Health Sciences, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - Begoña Ballester-Lurbe
- Department of Animal Medicine and Surgery, School of Veterinary Sciences, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - Gloria Arqué
- Genes and Disease Program, Center for Genomic Regulation (CRG), Barcelona Biomedical Research Park (PRBB) and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Enric Poch
- Department of Chemistry, Biochemistry and Molecular Biology, School of Health Sciences, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
| | - Blanca Peris
- Laboratory of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Consuelo Guerri
- Laboratory of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation (CRG), Barcelona Biomedical Research Park (PRBB) and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Rosa M. Guasch
- Laboratory of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Terrado
- Department of Animal Medicine and Surgery, School of Veterinary Sciences, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
- * E-mail: (IP-R); (JT)
| | - Ignacio Pérez-Roger
- Department of Chemistry, Biochemistry and Molecular Biology, School of Health Sciences, Universidad CEU Cardenal Herrera, Moncada, Valencia, Spain
- * E-mail: (IP-R); (JT)
| |
Collapse
|
61
|
MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 2011; 31:809-18. [PMID: 21248104 DOI: 10.1523/jneurosci.4330-10.2011] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The precise organization of motor neuron subtypes in a columnar pattern in developing spinal cords is controlled by cross-interactions of multiple transcription factors and segmental expressions of Hox genes and their accessory proteins. Accurate expression levels and domains of these regulators are essential for organizing spinal motor neuron columns and axonal projections to target muscles. Here, we show that microRNA miR-9 is transiently expressed in a motor neuron subtype and displays overlapping expression with its target gene FoxP1. Overexpression or knockdown of miR-9 alters motor neuron subtypes, switches columnar identities, and changes axonal innervations in developing chick spinal cords. miR-9 modifies spinal columnar organization by specifically regulating FoxP1 protein levels, which in turn determine distinct motor neuron subtypes. Our findings demonstrate that miR-9 is an essential regulator of motor neuron specification and columnar formation. Moreover, the overlapping expression of miR-9 and its target FoxP1 further illuminates the importance of fine-tuning regulation by microRNAs in motor neuron development.
Collapse
|
62
|
Jung H, Lacombe J, Mazzoni EO, Liem KF, Grinstein J, Mahony S, Mukhopadhyay D, Gifford DK, Young RA, Anderson KV, Wichterle H, Dasen JS. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 2010; 67:781-96. [PMID: 20826310 DOI: 10.1016/j.neuron.2010.08.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb levels are, however, not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global repressive activities. Hoxc9 is required for the generation of thoracic motor columns, and in its absence, neurons acquire the fates of limb-innervating populations. Unexpectedly, multiple Hox genes are derepressed in Hoxc9 mutants, leading to motor pool disorganization and alterations in the connections by thoracic and forelimb-level subtypes. Genome-wide analysis of Hoxc9 binding suggests that this mode of repression is mediated by direct interactions with Hox regulatory elements, independent of chromatin marks typically associated with repressed Hox genes.
Collapse
Affiliation(s)
- Heekyung Jung
- Howard Hughes Medical Institute, Smilow Neuroscience Program, Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connections can be established with a relatively small number of factors. In the context of motor guidance, we highlight some of the temporal and spatial mechanisms used to optimize the fidelity of pathfinding and increase the functional diversity of the signaling proteins.
Collapse
Affiliation(s)
- Dario Bonanomi
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
64
|
Murata Y, Tamura M, Aita Y, Fujimura K, Murakami Y, Okabe M, Okada N, Tanaka M. Allometric growth of the trunk leads to the rostral shift of the pelvic fin in teleost fishes. Dev Biol 2010; 347:236-45. [PMID: 20692249 DOI: 10.1016/j.ydbio.2010.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 07/09/2010] [Accepted: 07/30/2010] [Indexed: 01/16/2023]
Abstract
The pelvic fin position among teleost fishes has shifted rostrally during evolution, resulting in diversification of both behavior and habitat. We explored the developmental basis for the rostral shift in pelvic fin position in teleost fishes using zebrafish (abdominal pelvic fins) and Nile tilapia (thoracic pelvic fins). Cell fate mapping experiments revealed that changes in the distribution of lateral plate mesodermal cells accompany the trunk-tail protrusion. Presumptive pelvic fin cells are originally located at the body wall adjacent to the anterior limit of hoxc10a expression in the spinal cord, and their position shifts rostrally as the trunk grows. We then showed that the differences in pelvic fin position between zebrafish and Nile tilapia were not due to changes in expression or function of gdf11. We also found that hox-independent motoneurons located above the pelvic fins innervate into the pelvic musculature. Our results suggest that there is a common mechanism among teleosts and tetrapods that controls paired appendage positioning via gdf11, but in teleost fishes the position of prospective pelvic fin cells on the yolk surface shifts as the trunk grows. In addition, teleost motoneurons, which lack lateral motor columns, innervate the pelvic fins in a manner independent of the rostral-caudal patterns of hox expression in the spinal cord.
Collapse
Affiliation(s)
- Yumie Murata
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Ikuta T, Satoh N, Saiga H. Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Development 2010; 137:1505-13. [PMID: 20335361 DOI: 10.1242/dev.046938] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, region specific morphological characters along the anteroposterior axis are controlled by a number of developmental genes, including Hox genes encoding homeodomain transcription factors. Although Hox genes have been regarded to play a key role in the evolution of morphological diversity, as well as in the establishment of the body plan, little is known about the function of Hox genes in invertebrates, except for in insects and nematodes. The present study addresses the role of Hox genes in body patterning during the larval development of the ascidian Ciona intestinalis conducting knockdown experiments of the seven Hox genes expressed during embryogenesis. Experimental results have demonstrated that Ci-Hox12 plays an important role in tail development through the maintenance of expression of Ci-Fgf8/17/18 and Ci-Wnt5 in the tail tip epidermis. Additionally, it has been shown that Ci-Hox10 is involved in the development of GABAergic neurons in the dorsal visceral ganglion. Surprisingly, knockdown of Ci-Hox1, Ci-Hox2, Ci-Hox3, Ci-Hox4 and Ci-Hox5 did not give rise to any consistent morphological defects in the larvae. Furthermore, expression of neuronal marker genes was not affected in larvae injected with MOs against Ci-Hox1, Ci-Hox3 or Ci-Hox5. In conclusion, we suggest that the contribution of Hox genes to the larval development of the ascidian C. intestinalis might be limited, despite the fact that Ci-Hox10 and Ci-Hox12 play important roles in neuronal and tail development.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
66
|
Zhang D, Brinas IM, Binder BJ, Landman KA, Newgreen DF. Neural crest regionalisation for enteric nervous system formation: Implications for Hirschsprung's disease and stem cell therapy. Dev Biol 2010; 339:280-94. [DOI: 10.1016/j.ydbio.2009.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 01/21/2023]
|
67
|
Blackburn J, Rich M, Ghitani N, Liu JP. Generation of conditional Hoxc8 loss-of-function and Hoxc8-->Hoxc9 replacement alleles in mice. Genesis 2010; 47:680-7. [PMID: 19621436 DOI: 10.1002/dvg.20547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Hox family of transcription factors are expressed at different domains along the rostrocaudal (R-C) body axis during development. To examine the function of Hoxc8 and Hoxc9 in specific cell types and at different developmental times, we have generated and characterized loxP flanked (floxed) Hoxc8 and Hoxc8-->Hoxc9 replacement alleles of mice, with either GFP or LacZ reporters. Although all four alleles of mice behave like wild-type controls in motor behavioral testing, slight differences in endogenous Hox gene expression were observed among these alleles depending on the type of reporters used and the presence of Hoxc9 cDNA in the targeting constructs. The efficiency of Cre-mediated recombination was evaluated by crossing these mice with the Nestin-cre and Isl1-cre mice, and the loss of Hoxc8 expression with or without Hoxc9 misexpression was confirmed in embryonic spinal cord. In addition, an upregulation of reporter gene expression was observed after Cre-mediated recombination. These mice will be useful tools to analyze Hox gene function in a cell type-specific manner.
Collapse
Affiliation(s)
- Jessica Blackburn
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
68
|
Ma LH, Punnamoottil B, Rinkwitz S, Baker R. Mosaic hoxb4a neuronal pleiotropism in zebrafish caudal hindbrain. PLoS One 2009; 4:e5944. [PMID: 19536294 PMCID: PMC2693931 DOI: 10.1371/journal.pone.0005944] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 05/12/2009] [Indexed: 12/26/2022] Open
Abstract
To better understand how individual genes and experience influence behavior, the role of a single homeotic unit, hoxb4a, was comprehensively analyzed in vivo by clonal and retrograde fluorescent labeling of caudal hindbrain neurons in a zebrafish enhancer-trap YFP line. A quantitative spatiotemporal neuronal atlas showed hoxb4a activity to be highly variable and mosaic in rhombomere 7–8 reticular, motoneuronal and precerebellar nuclei with expression decreasing differentially in all subgroups through juvenile stages. The extensive Hox mosaicism and widespread pleiotropism demonstrate that the same transcriptional protein plays a role in the development of circuits that drive behaviors from autonomic through motor function including cerebellar regulation. We propose that the continuous presence of hoxb4a positive neurons may provide a developmental plasticity for behavior-specific circuits to accommodate experience- and growth-related changes. Hence, the ubiquitous hoxb4a pleitropism and modularity likely offer an adaptable transcriptional element for circuit modification during both growth and evolution.
Collapse
Affiliation(s)
- Leung-Hang Ma
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, United States of America
| | - Beena Punnamoottil
- Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Silke Rinkwitz
- Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Robert Baker
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
69
|
Hostikka SL, Gong J, Carpenter EM. Axial and appendicular skeletal transformations, ligament alterations, and motor neuron loss in Hoxc10 mutants. Int J Biol Sci 2009; 5:397-410. [PMID: 19623272 PMCID: PMC2713654 DOI: 10.7150/ijbs.5.397] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 05/20/2009] [Indexed: 11/21/2022] Open
Abstract
Vertebrate Hox genes regulate many aspects of embryonic body plan development and patterning. In particular, Hox genes have been shown to regulate regional patterning of the axial and appendicular skeleton and of the central nervous system. We have identified patterning defects resulting from the targeted mutation of Hoxc10, a member of the Hox10 paralogous family. Hoxc10 mutant mice have skeletal transformations in thoracic, lumbar, and sacral vertebrae and in the pelvis, along with alterations in the bones and ligaments of the hindlimbs. These results suggest that Hoxc10, along with other members of the Hox10 paralogous gene family, regulates vertebral identity at the transition from thoracic to lumbar and lumbar to sacral regions. Our results also suggest a general role for Hoxc10 in regulating chondrogenesis and osteogenesis in the hindlimb, along with a specific role in shaping femoral architecture. In addition, mutant mice have a reduction in lumbar motor neurons and a change in locomotor behavior. These results suggest a role for Hoxc10 in generating or maintaining the normal complement of lumbar motor neurons.
Collapse
Affiliation(s)
| | | | - Ellen M. Carpenter
- Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
70
|
Bardine N, Donow C, Korte B, Durston AJ, Knöchel W, Wacker SA. Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis. Dev Dyn 2009; 238:755-65. [PMID: 19235717 DOI: 10.1002/dvdy.21889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hox genes are key players in defining positional information along the main body axis of vertebrate embryos. In Xenopus laevis, Hoxc6 was the first homeobox gene isolated. It encodes two isoforms. We analyzed in detail their spatial and temporal expression pattern during early development. One major expression domain of both isoforms is the spinal cord portion of the neural tube. Within the spinal cord and its populations of primary neurons, Hox genes have been found to play a crucial role for defining positional information. Here we report that a loss-of-function of either one of the Hoxc6 products does not affect neural induction, the expression of general neural markers is not modified. However, Hoxc6 does widely affect the formation of primary neurons within the developing neural tissue. Manipulations of Hoxc6 expression severly changes the expression of the neuronal markers N-tubulin and Islet-1. Formation of primary neurons and formation of cranial nerves are affected. Hence, Hoxc6 functions are not restricted to the expected role in anterior-posterior pattern formation, but they also regulate N-tubulin, thereby having an effect on the initial formation of primary neurons in Xenopus laevis embryos.
Collapse
Affiliation(s)
- Nabila Bardine
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Agalliu D, Takada S, Agalliu I, McMahon AP, Jessell TM. Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 2009; 61:708-20. [PMID: 19285468 PMCID: PMC2741579 DOI: 10.1016/j.neuron.2008.12.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/15/2008] [Accepted: 12/22/2008] [Indexed: 12/11/2022]
Abstract
Axial muscles are innervated by motor neurons of the median motor column (MMC). In contrast to the segmentally restricted motor columns that innervate limb, body wall, and neuronal targets, MMC neurons are generated along the entire length of the spinal cord. We show that the specification of MMC fate involves a dorsoventral signaling program mediated by three Wnt proteins (Wnt4, Wnt5a, and Wnt5b) expressed in and around the floor plate. These Wnts appear to establish a ventralhigh to dorsallow signaling gradient and promote MMC identity and connectivity by maintaining expression of the LIM homeodomain proteins Lhx3/4 in spinal motor neurons. Elevation of Wnt4/5 activity generates additional MMC neurons at the expense of other motor neuron columnar subtypes, whereas depletion of Wnt4/5 activity inhibits the production of MMC neurons. Thus, two dorsoventral signaling pathways, mediated by Shh and Wnt4/5, are required to establish an early binary divergence in motor neuron columnar identity.
Collapse
Affiliation(s)
- Dritan Agalliu
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Shinji Takada
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew P. McMahon
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Thomas M. Jessell
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
- Corresponding author
| |
Collapse
|
72
|
Restricted patterns of Hoxd10 and Hoxd11 set segmental differences in motoneuron subtype complement in the lumbosacral spinal cord. Dev Biol 2009; 330:54-72. [PMID: 19306865 DOI: 10.1016/j.ydbio.2009.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
During normal vertebrate development, Hoxd10 and Hoxd11 are expressed by differentiating motoneurons in restricted patterns along the rostrocaudal axis of the lumbosacral (LS) spinal cord. To assess the roles of these genes in the attainment of motoneuron subtypes characteristic of LS subdomains, we examined subtype complement after overexpression of Hoxd10 or Hoxd11 in the embryonic chick LS cord and in a Hoxd10 loss-of-function mouse embryo. Data presented here provide evidence that Hoxd10 defines the position of the lateral motor column (LMC) as a whole and, in rostral LS segments, specifically promotes the development of motoneurons of the lateral subdivision of the lateral motor column (LMCl). In contrast, Hoxd11 appears to impart a caudal and medial LMC (LMCm) identity to some motoneurons and molecular profiles suggestive of a suppression of LMC development in others. We also provide evidence that Hoxd11 suppresses the expression of Hoxd10 and the retinoic acid synthetic enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In a normal chick embryo, Hoxd10 and RALDH2 are expressed throughout the LS region at early stages of motoneuron differentiation but their levels decline in Hoxd11-expressing caudal LS segments that ultimately contain few LMCl motoneurons. We hypothesize that one of the roles played by Hoxd11 is to modulate Hoxd10 and local retinoic acid levels and thus, perhaps define the caudal boundaries of the LMC and its subtype complement.
Collapse
|
73
|
Chambers D, Wilson LJ, Alfonsi F, Hunter E, Saxena U, Blanc E, Lumsden A. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev 2009; 4:6. [PMID: 19208226 PMCID: PMC2649922 DOI: 10.1186/1749-8104-4-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 02/10/2009] [Indexed: 11/24/2022] Open
Abstract
Background The Hox family of homeodomain transcription factors comprises pivotal regulators of cell specification and identity during animal development. However, despite their well-defined roles in the establishment of anteroposterior pattern and considerable research into their mechanism of action, relatively few target genes have been identified in the downstream regulatory network. We have sought to investigate this issue, focussing on the developing hindbrain and the cranial motor neurons that arise from this region. The reiterated anteroposterior compartments of the developing hindbrain (rhombomeres (r)) are normally patterned by the combinatorial action of distinct Hox genes. Alteration in the normal pattern of Hox cues in this region results in a transformation of cellular identity to match the remaining Hox profile, similar to that observed in Drosophila homeotic transformations. Results To define the repertoire of genes regulated in each rhombomere, we have analysed the transcriptome of each rhombomere from wild-type mouse embryos and not those where pattern is perturbed by gain or loss of Hox gene function. Using microarray and bioinformatic methodologies in conjunction with other confirmatory techniques, we report here a detailed and comprehensive set of potential Hox target genes in r2, r3, r4 and r5. We have demonstrated that the data produced are both fully reflective and predictive of rhombomere identity and, thus, may represent some the of Hox targets. These data have been interrogated to generate a list of candidate genes whose function may contribute to the generation of neuronal subtypes characteristic of each rhombomere. Interestingly, the data can also be classified into genetic motifs that are predicted by the specific combinations of Hox genes and other regulators of hindbrain anteroposterior identity. The sets of genes described in each or combinations of rhombomeres span a wide functional range and suggest that the Hox genes, as well as other regulatory inputs, exert their influence across the full spectrum of molecular machinery. Conclusion We have performed a systematic survey of the transcriptional status of individual segments of the developing mouse hindbrain and identified hundreds of previously undescribed genes expressed in this region. The functional range of the potential candidate effectors or upstream modulators of Hox activity suggest multiple unexplored mechanisms. In particular, we present evidence of a potential new retinoic acid signalling system in ventral r4 and propose a model for the refinement of identity in this region. Furthermore, the rhombomeres demonstrate a molecular relationship to each other that is consistent with known observations about neurogenesis in the hindbrain. These findings give the first genome-wide insight into the complexity of gene expression during patterning of the developing hindbrain.
Collapse
Affiliation(s)
- David Chambers
- MRC Centre for Developmental Neurobiology, King's College London, UK.
| | | | | | | | | | | | | |
Collapse
|
74
|
Agalliu D, Schieren I. Heterogeneity in the developmental potential of motor neuron progenitors revealed by clonal analysis of single cells in vitro. Neural Dev 2009; 4:2. [PMID: 19123929 PMCID: PMC2657897 DOI: 10.1186/1749-8104-4-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/05/2009] [Indexed: 01/01/2023] Open
Abstract
Background The differentiation of neural progenitors into distinct classes within the central nervous system occurs over an extended period during which cells become progressively restricted in their fates. In the developing spinal cord, Sonic Hedgehog (Shh) controls neural fates in a concentration-dependent manner by establishing discrete ventral progenitor domains characterized by specific combinations of transcription factors. It is unclear whether motor neuron progenitors can maintain their identities when expanded in vitro and whether their developmental potentials are restricted when exposed to defined extracellular signals. Results We have generated mice expressing the enhanced green fluorescent protein under the control of the Nkx6.1 promoter, enabling fluorescence-activated cell sorting (FACS), purification and culture of individual spinal progenitors at clonal density, and analysis of their progeny. We demonstrate that cells isolated after progenitor domains are established are heterogeneous with respect to maintaining their identity after in vitro expansion. Most Nkx6.1+ progenitors lose their ventral identity following several divisions in culture, whereas a small subset is able to maintain its identity. Thus, subtype-restricted progenitors from the Nkx6.1+ region are present in the ventral spinal cord, although at a lower frequency than expected. Clones that maintain a motor neuron identity assume a transcriptional profile characteristic of thoracic motor neurons, despite some having been isolated from non-thoracic regions initially. Exposure of progenitors to Bone Morphogenetic Protein-4 induces some dorsal cell type characteristics in their progeny, revealing that lineage-restricted progenitor subtypes are not fully committed to their fates. Conclusion These findings support a model whereby continuous Shh signaling is required to maintain the identity of ventral progenitors isolated from the spinal cord, including motor neuron progenitors, after in vitro expansion. They also demonstrate that pre-patterned neural progenitors isolated from the central nervous system can change their regional identity in vitro to acquire a broader developmental potential.
Collapse
Affiliation(s)
- Dritan Agalliu
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
75
|
Abstract
The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.
Collapse
|
76
|
Abstract
Cdx and Hox gene families descend from the same ProtoHox cluster, already present in the common ancestors of bilaterians and cnidarians, and thought to act by providing anteroposterior (A-P) positional identity to axial tissues in all bilaterians. Mouse Cdx and Hox genes still exhibit common features in their early expression and function. The initiation and early shaping of Hox and Cdx transcriptional domains in mouse embryos are very similar, in keeping with their common involvement in conveying A-P information to the nascent tissues during embryonic axial elongation. Considerations of the impact on axial patterning of the early expression phase of these genes that correlates with the temporally collinear expression of 3'-5'Hox genes suggest that it is concerned with the acquisition of A-P information by the three germ layers as the axis extends. This early A-P information acquired by all cells emerging from the primitive streak or tailbud and their neighbors in the caudal neural plate gets further modulated by the second phase of gene expression occurring later as the tissues mature and differentiate along the growing axis. We discuss the possibility that regulatory phase 1, common to all Cdx and Hox genes, is inherent to the concerted mechanism sequentially turning on 3'-5'Hox genes at early stages, and keeping expression of the initiated genes subsequently in the new materials added posteriorly at the axis extends. The posterior Hox gene expression domain would be subsequently complemented by Hox regulatory phase 2, consisting in a variety of gene-specific, region-specific, and/or tissue-specific gene expression controls. We also touch on the unanswered question whether vertebrate Cdx gene expression delivers A-P positional information in its own right, as Caudal does in Drosophila, or whether it does so exclusively by upregulating Hox genes.
Collapse
Affiliation(s)
- Teddy Young
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan, Utrecht, The Netherlands
| | | |
Collapse
|
77
|
Ji SJ, Periz G, Sockanathan S. Nolz1 is induced by retinoid signals and controls motoneuron subtype identity through distinct repressor activities. Development 2008; 136:231-40. [PMID: 19056829 DOI: 10.1242/dev.028043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The acquisition and maintenance of final neuronal identity depends in part upon the implementation of fate-specification programs in postmitotic neurons; however, the mechanisms involved remain unclear. In the developing spinal cord, retinoic acid (RA) signaling pathways specify the columnar and divisional identities of postmitotic motoneurons (MNs). Here we show that RA signals induce expression of the NET transcriptional regulator Nolz1 in differentiated chick MNs, where it regulates the progressive specification of prospective Lim3-negative motor columns. Nolz1 controls the initial formation of forelimb and thoracic Lim3-negative motor columns by downregulating Lim3 expression and maintaining the expression of key homeodomain proteins necessary for MN identity and survival. At forelimb levels, Nolz1 specifies lateral motor column (LMC) identity by inducing the expression of the postmitotic LMC determinant Hoxc6, and implements the partial specification of lateral LMC identity through Lim1 induction. The specificity of Nolz1 function depends upon distinct repressor activities that require, in part, the modulatory activity of Grg5, an atypical member of the Gro-TLE family of co-repressors. Thus, RA signals regulate diverse events in MN subtype specification by inducing the expression of a key transcriptional regulator that controls multiple developmental pathways via functionally distinct repressor complexes.
Collapse
Affiliation(s)
- Sheng-Jian Ji
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
78
|
|
79
|
A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat Protoc 2008; 3:1056-76. [PMID: 18546598 DOI: 10.1038/nprot.2008.70] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe here a streamlined procedure for targeting vector construction, which often is a limiting factor for gene targeting (knockout) technology. This procedure combines various highly efficient recombination-based cloning methods in bacteria, consisting of three steps. First step is the use of Red-pathway-mediated recombination (recombineering) to capture a genomic fragment into a Gateway-compatible vector. Second, the vector is modified by recombineering to include a positive selection gene neo, from a variety of modular reagents. Finally, through a simple in vitro Gateway recombination, the modified genomic fragment is switched into a vector that contains negative selection cassettes, as well as unique sites for linearization. To demonstrate the usefulness of this protocol, we report targeted disruptions of members of the cadherin gene family, focusing on those that have not been previously studied at the molecular genetic level. This protocol needs 2 weeks to construct a targeting vector, and several vectors can be easily handled simultaneously using common laboratory setup.
Collapse
|
80
|
Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 2008; 59:226-40. [PMID: 18667151 DOI: 10.1016/j.neuron.2008.06.025] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/16/2008] [Accepted: 06/27/2008] [Indexed: 12/14/2022]
Abstract
The formation of locomotor circuits depends on the spatially organized generation of motor columns that innervate distinct muscle and autonomic nervous system targets along the body axis. Within each spinal segment, multiple motor neuron classes arise from a common progenitor population; however, the mechanisms underlying their diversification remain poorly understood. Here, we show that the Forkhead domain transcription factor Foxp1 plays a critical role in defining the columnar identity of motor neurons at each axial position. Using genetic manipulations, we demonstrate that Foxp1 establishes the pattern of LIM-HD protein expression and accordingly organizes motor axon projections, their connectivity with peripheral targets, and the establishment of motor pools. These functions of Foxp1 act in accordance with the rostrocaudal pattern provided by Hox proteins along the length of the spinal cord, suggesting a model by which motor neuron diversity is achieved through the coordinated actions of Foxp1 and Hox proteins.
Collapse
|
81
|
Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM. Hox Repertoires for Motor Neuron Diversity and Connectivity Gated by a Single Accessory Factor, FoxP1. Cell 2008; 134:304-16. [PMID: 18662545 DOI: 10.1016/j.cell.2008.06.019] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/06/2008] [Accepted: 06/12/2008] [Indexed: 12/28/2022]
Affiliation(s)
- Jeremy S Dasen
- Smilow Neuroscience Program, Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
82
|
Dalla Torre di Sanguinetto SA, Dasen JS, Arber S. Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr Opin Neurobiol 2008; 18:36-43. [PMID: 18524570 DOI: 10.1016/j.conb.2008.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 04/22/2008] [Accepted: 04/25/2008] [Indexed: 01/28/2023]
Abstract
The control of movement relies on the precision with which motor circuits are assembled during development. Spinal motor neurons (MNs) provide the trigger to signal the appropriate sequence of muscle contractions and initiate movement. This task is accommodated by the diversification of MNs into discrete subpopulations, each of which acquires precise axonal trajectories and central connectivity patterns. An upstream Hox factor-based regulatory network in MNs defines their competence to deploy downstream programs including the expression of Nkx and ETS transcription factors. These interactive transcriptional programs coordinate MN differentiation and connectivity, defining a sophisticated roadmap of motor circuit assembly in the spinal cord. Similar principles using modular interaction of transcriptional programs to control neuronal diversification and circuit connectivity are likely to act in other CNS circuits.
Collapse
|