51
|
Tooze RM. A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Front Immunol 2013; 4:460. [PMID: 24385976 PMCID: PMC3866514 DOI: 10.3389/fimmu.2013.00460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022] Open
Abstract
Plasma cells are heterogenous in terms of their origins, secretory products, and lifespan. A current paradigm is that cell cycle exit in plasma cell differentiation is irreversible, following a pattern familiar in short-lived effector populations in other hemopoietic lineages. This paradigm no doubt holds true for many plasma cells whose lifespan can be measured in days following the completion of differentiation. Whether this holds true for long-lived bone marrow plasma cells that are potentially maintained for the lifespan of the organism is less apparent. Added to this the mechanisms that establish and maintain cell cycle quiescence in plasma cells are incompletely defined. Gene expression profiling indicates that in the transition of human plasmablasts to long-lived plasma cells a range of cell cycle regulators are induced in a pattern that suggests a quiescence program with potential for cell cycle re-entry. Here a model of relative quiescence with the potential for replicative self-renewal amongst long-lived plasma cells is explored. The implications of such a mechanism would be diverse, and the argument is made here that current evidence is not sufficiently strong that the possibility should be disregarded.
Collapse
Affiliation(s)
- Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds , Leeds , UK ; Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust , Leeds , UK
| |
Collapse
|
52
|
Identification and expression profiles of prdm1 in medaka Oryzias latipes. Mol Biol Rep 2013; 41:617-26. [PMID: 24343424 DOI: 10.1007/s11033-013-2899-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Mouse Prdm1, also known as Blimp1, plays important roles in maturation and survival of lymphoid cells, as well as in organogenesis of muscle, limb, sensor organs and primordial germ cells. The homologues of mouse prdm1 have been identified in a diverse of animals including zebrafish and fugu. Here, we report the identification and expression profiles of two homologues of prdm1, namely prdm1a and prdm1b in medaka, Oryzias latipes. The transcripts of prdm1a and prdm1b were detectable in all the tissues including immune organs such as gill, spleen, kidney, liver and intestine that we have checked on. The transcripts of prdm1a could be detected in the embryonic shield at mid-gastrula stage and later in the somite, eye, otic vesicle, branchial arches, fin, intestine and cloaca during embryogenesis using in situ hybridization. Moreover, the expression of prdm1a in the liver of both medaka and zebrafish could be up-regulated by the immune stimuli including lipopolysaccharide, polyI:C and the grass carp reovirus, similarly to the up-regulation of IL1B. These results indicate that Prdm1a may play important roles in embryogenesis and also in immune response in fish.
Collapse
|
53
|
Tsai SY, Sennett R, Rezza A, Clavel C, Grisanti L, Zemla R, Najam S, Rendl M. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation. Dev Biol 2013; 385:179-88. [PMID: 24309208 DOI: 10.1016/j.ydbio.2013.11.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022]
Abstract
Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally; however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.
Collapse
Affiliation(s)
- Su-Yi Tsai
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Carlos Clavel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Roland Zemla
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Sara Najam
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA.
| |
Collapse
|
54
|
Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 2013; 140:3445-55. [PMID: 23900542 DOI: 10.1242/dev.096164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
55
|
Brzezinski JA, Uoon Park K, Reh TA. Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Dev Biol 2013; 384:194-204. [PMID: 24125957 DOI: 10.1016/j.ydbio.2013.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
Abstract
During retinal development, photoreceptors and bipolar cells express the transcription factor Otx2. Blimp1 is transiently expressed in Otx2+ cells. Blimp1 deletion results in excess bipolar cell formation at the expense of photoreceptors. In principle, Blimp1 could be expressed only in Otx2+ cells that are committed to photoreceptor fate. Alternatively, Blimp1 could be expressed broadly in Otx2+ cells and silenced to allow bipolar cell development. To distinguish between these alternatives, we followed the fate of Blimp1 expressing cells using Blimp1-Cre mice and Lox-Stop-Lox reporter strains. We observed that Blimp1+ cells gave rise to all photoreceptors, but also to one third of bipolar cells, consistent with the latter alternative: that Blimp1 inhibits bipolar competence in Otx2+ cells and must be silenced to allow bipolar cell generation. To further test this hypothesis, we looked for transitioning rod photoreceptors in Blimp1 conditional knock-out (CKO) mice carrying the NRL-GFP transgene, which specifically labels rods. Control animals lacked NRL-GFP+ bipolar cells. In contrast, about half of the precociously generated bipolar cells in Blimp1 CKO mice co-expressed GFP, suggesting that rods become re-specified as bipolar cells. Birthdating analyses in control and Blimp1 CKO mice showed that bipolar cells were birthdated as early as E13.5 in Blimp1 CKO mice, five days before this cell type was generated in the wild-type retina. Taken together, our data suggest that early Otx2+ cells upregulate photoreceptor and bipolar genes, existing in a bistable state. Blimp1 likely forms a cross-repressive network with pro-bipolar factors such that the winner of this interaction stabilizes the photoreceptor or bipolar state, respectively.
Collapse
Affiliation(s)
- Joseph A Brzezinski
- Department of Ophthalmology. University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
56
|
Bogani D, Morgan MAJ, Nelson AC, Costello I, McGouran JF, Kessler BM, Robertson EJ, Bikoff EK. The PR/SET domain zinc finger protein Prdm4 regulates gene expression in embryonic stem cells but plays a nonessential role in the developing mouse embryo. Mol Cell Biol 2013; 33:3936-50. [PMID: 23918801 PMCID: PMC3811882 DOI: 10.1128/mcb.00498-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/28/2013] [Indexed: 12/24/2022] Open
Abstract
Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal.
Collapse
Affiliation(s)
- Debora Bogani
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marc A. J. Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew C. Nelson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Joanna F. McGouran
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
57
|
Lesko MH, Driskell RR, Kretzschmar K, Goldie SJ, Watt FM. Sox2 modulates the function of two distinct cell lineages in mouse skin. Dev Biol 2013; 382:15-26. [PMID: 23948231 PMCID: PMC3807655 DOI: 10.1016/j.ydbio.2013.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023]
Abstract
In postnatal skin the transcription factor Sox2 is expressed in the dermal papilla (DP) of guard/awl/auchene hair follicles and by mechanosensory Merkel cells in the touch domes of guard hairs. To investigate the consequences of Sox2 ablation in skin we deleted Sox2 in DP cells via Blimp1Cre and in Merkel cells via K14Cre. Loss of Sox2 from the DP did not inhibit hair follicle morphogenesis or establishment of the dermis and hypodermis. However, Sox2 expression in the DP was necessary for postnatal maintenance of awl/auchene hair follicles. Deletion of Sox2 via K14Cre resulted in a decreased number of Merkel cells but had no effect on other epithelial compartments or on the dermis. The reduced number of Merkel cells did not affect the number or patterning of guard hairs, nerve density or the interaction of nerve cells with the touch domes. We conclude that Sox2 is a marker of two distinct lineages in the skin and regulates the number of differentiated cells in the case of the Merkel cell lineage and hair follicle type in the case of the DP. Sox2 is a marker of two distinct lineages in the skin. Sox2 is required for postnatal maintenance of awl/auchene hair follicles. Loss of Sox2 results in a reduction in Merkel cells.
Collapse
Affiliation(s)
- Marta H Lesko
- Wellcome Trust - Medical Research Council Centre for Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Guy's Tower, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
58
|
Magnúsdóttir E, Dietmann S, Murakami K, Günesdogan U, Tang F, Bao S, Diamanti E, Lao K, Gottgens B, Surani MA. A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol 2013; 15:905-15. [PMID: 23851488 PMCID: PMC3796875 DOI: 10.1038/ncb2798] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 12/11/2022]
Abstract
Transitions in cell states are controlled by combinatorial actions of transcription factors. BLIMP1, the key regulator of primordial germ cell (PGC) specification, apparently acts together with PRDM14 and AP2γ. To investigate their individual and combinatorial functions, we first sought an in vitro system for transcriptional readouts and chromatin immunoprecipitation sequencing analysis. We then integrated this data with information from single-cell transcriptome analysis of normal and mutant PGCs. Here we show that BLIMP1 binds directly to repress somatic and cell proliferation genes. It also directly induces AP2γ, which together with PRDM14 initiates the PGC-specific fate. We determined the occupancy of critical genes by AP2γ-which, when computed altogether with those of BLIMP1 and PRDM14 (both individually and cooperatively), reveals a tripartite mutually interdependent transcriptional network for PGCs. We also demonstrate that, in principle, BLIMP1, AP2γ and PRDM14 are sufficient for PGC specification, and the unprecedented resetting of the epigenome towards a basal state.
Collapse
Affiliation(s)
- Erna Magnúsdóttir
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Sabine Dietmann
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Kazuhiro Murakami
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Fuchou Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Siqin Bao
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Evangelia Diamanti
- Cambridge Institute for Medical Research, Wellcome Trust–MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Kaiqin Lao
- Genetic Systems, Applied Biosystems, Part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Bertie Gottgens
- Cambridge Institute for Medical Research, Wellcome Trust–MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
59
|
Chittka A. Differential regulation of SC1/PRDM4 and PRMT5 mediated protein arginine methylation by the nerve growth factor and the epidermal growth factor in PC12 cells. Neurosci Lett 2013; 550:87-92. [PMID: 23831350 PMCID: PMC3776221 DOI: 10.1016/j.neulet.2013.06.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
During neuronal development, the neuroepithelial stem cells (NSCs) initially undergo proliferative divisions, later switching to neurogenic ones whereby one NSC and a post-mitotic neuron are generated. We recently showed that a member of the PRDM family of transcriptional regulators, PRDM4/SC1, recruits a type II protein arginine methyltransferase, PRMT5, to maintain the "stem-like" cellular state of the embryonic mouse cortical NSCs. However, little is known about the regulation of activity of this complex under proliferation- or differentiation-inducing growth conditions. In the present work I investigate the regulation of SC1/PRMT5-mediated methylation activity in PC12 cells treated with EGF or NGF. I present evidence that NGF down-regulates SC1/PRMT5 methyltransferase (MTase) activity and that the reduction in SC1/PRMT5 MTase activity occurs mainly in the nucleus. I suggest that high levels of SC1/PRMT5 activity are associated with the proliferative state of the cells.
Collapse
Affiliation(s)
- Alexandra Chittka
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
60
|
Stewart R, Rascón CA, Tian S, Nie J, Barry C, Chu LF, Ardalani H, Wagner RJ, Probasco MD, Bolin JM, Leng N, Sengupta S, Volkmer M, Habermann B, Tanaka EM, Thomson JA, Dewey CN. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 2013; 9:e1002936. [PMID: 23505351 PMCID: PMC3591270 DOI: 10.1371/journal.pcbi.1002936] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/08/2013] [Indexed: 01/09/2023] Open
Abstract
The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced. Using a novel comparative approach to analyzing RNA-seq data, we characterized the transcriptional dynamics of the regenerating axolotl limb with respect to the human gene set. This approach involved de novo assembly of axolotl transcripts, RNA-seq transcript quantification without a reference genome, and transformation of abundances from axolotl contigs to human genes. We found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days. In addition, we found that limb patterning genes, SALL genes, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development. Finally, we identified a category of genes with no prior literature support for limb regeneration that are candidates for further evaluation based on their expression pattern during the regenerative process.
Collapse
Affiliation(s)
- Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
One of the most important and evolutionarily conserved strategies to control gene expression in higher metazoa is posttranscriptional regulation via small regulatory RNAs such as microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs), and piwi-interacting RNAs (piRNAs). Primordial germ cells, which are defined by their totipotent potential and noted for their dependence on posttranscriptional regulation by RNA-binding proteins, rely on these small regulatory RNAs for virtually every aspect of their development, including specification, migration, and differentiation into competent gametes. Here, we review current knowledge of the roles miRNAs, endo-siRNAs, and piRNAs play at all stages of germline development in various organisms, focusing on studies in the mouse.
Collapse
Affiliation(s)
- Matthew S Cook
- Department of Urology, University of California, San Francisco, California, USA.
| | | |
Collapse
|
62
|
Mould A, Morgan MAJ, Li L, Bikoff EK, Robertson EJ. Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes Dev 2012; 26:2063-74. [PMID: 22987638 DOI: 10.1101/gad.199828.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developmental arrest of Blimp1/Prdm1 mutant embryos at around embryonic day 10.5 (E10.5) has been attributed to placental disturbances. Here we investigate Blimp1/Prdm1 requirements in the trophoblast cell lineage. Loss of function disrupts specification of the invasive spiral artery-associated trophoblast giant cells (SpA-TGCs) surrounding maternal blood vessels and severely compromises the ability of the spongiotrophoblast layer to expand appropriately, secondarily causing collapse of the underlying labyrinth layer. Additionally, we identify a population of proliferating Blimp1(+) diploid cells present within the spongiotrophoblast layer. Lineage tracing experiments exploiting a novel Prdm1.Cre-LacZ allele demonstrate that these Blimp1(+) cells give rise to the mature SpA-TGCs, canal TGCs, and glycogen trophoblasts. In sum, the transcriptional repressor Blimp1/Prdm1 is required for terminal differentiation of SpA-TGCs and defines a lineage-restricted progenitor cell population contributing to placental growth and morphogenesis.
Collapse
Affiliation(s)
- Arne Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
63
|
Ding HL, Clouthier DE, Artinger KB. Redundant roles of PRDM family members in zebrafish craniofacial development. Dev Dyn 2012; 242:67-79. [PMID: 23109401 DOI: 10.1002/dvdy.23895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. RESULTS Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. CONCLUSIONS Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | |
Collapse
|
64
|
The germ cell determinant Blimp1 is not required for derivation of pluripotent stem cells. Cell Stem Cell 2012; 11:110-7. [PMID: 22770244 PMCID: PMC3391686 DOI: 10.1016/j.stem.2012.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/12/2012] [Accepted: 02/24/2012] [Indexed: 12/05/2022]
Abstract
Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.
Collapse
|
65
|
Chittka A, Nitarska J, Grazini U, Richardson WD. Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J Biol Chem 2012; 287:42995-3006. [PMID: 23048031 PMCID: PMC3522294 DOI: 10.1074/jbc.m112.392746] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During development of the cerebral cortex, neural stem cells (NSCs) undergo a temporal switch from proliferative (symmetric) to neuron-generating (asymmetric) divisions. We investigated the role of Schwann cell factor 1 (SC1/PRDM4), a member of the PRDM family of transcription factors, in this critical transition. We discovered that SC1 recruits the chromatin modifier PRMT5, an arginine methyltransferase that catalyzes symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) and that this modification is preferentially associated with undifferentiated cortical NSCs. Overexpressing SC1 in embryonic NSCs led to an increase in the number of Nestin-expressing precursors; mutational analysis of SC1 showed that this was dependent on recruitment of PRMT5. We found that SC1 protein levels are down-regulated at the onset of neurogenesis and that experimental knockdown of SC1 in primary NSCs triggers precocious neuronal differentiation. We propose that SC1 and PRMT5 are components of an epigenetic regulatory complex that maintains the “stem-like” cellular state of the NSC by preserving their proliferative capacity and modulating their cell cycle progression. Our findings provide evidence that histone arginine methylation regulates NSC differentiation.
Collapse
Affiliation(s)
- Alexandra Chittka
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
66
|
Morgan MAJ, Mould AW, Li L, Robertson EJ, Bikoff EK. Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol Cell Biol 2012; 32:3403-13. [PMID: 22733990 PMCID: PMC3422002 DOI: 10.1128/mcb.00174-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023] Open
Abstract
Prdm1/Blimp-1 is a master regulator of gene expression in diverse tissues of the developing embryo and adult organism. Its C-terminal zinc finger domain mediates nuclear import, DNA binding, and recruitment of the corepressors G9a and HDAC1/2. Alternatively spliced transcripts lacking exon 7 sequences encode a structurally divergent isoform (Blimp-1Δexon7) predicted to have distinct functions. Here we demonstrate that the short Blimp-1Δexon7 isoform lacks DNA binding activity and fails to bind G9a or HDAC1/2 but retains the ability to interact with PRMT5. To investigate functional roles of alternative splicing in vivo, we engineered novel mouse strains via embryonic stem (ES) cell technology. Like null mutants, embryos carrying a targeted deletion of exon 7 and exclusively expressing Blimp-1Δexon7 die at around embryonic day 10.5 (E10.5) due to placental defects. In heterozygous Δexon7 mice, there is no evidence of dominant-negative effects. Mice carrying a knock-in allele with an exon 6-exon 7 fusion express full-length Blimp-1 only, develop normally, are healthy and fertile as adults, and efficiently generate mature plasma cells. These findings strongly suggest that the short Blimp-1Δexon7 isoform is dispensable. We propose that developmentally regulated alternative splicing is influenced by chromatin structure at the locus and fine-tunes Blimp-1's functional capabilities.
Collapse
Affiliation(s)
- Marc A J Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
67
|
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139:2267-82. [PMID: 22669819 DOI: 10.1242/dev.070110] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
68
|
Miyauchi Y, Miyamoto H, Yoshida S, Mori T, Kanagawa H, Katsuyama E, Fujie A, Hao W, Hoshi H, Miyamoto K, Sato Y, Kobayashi T, Akiyama H, Morioka H, Matsumoto M, Toyama Y, Miyamoto T. Conditional inactivation of Blimp1 in adult mice promotes increased bone mass. J Biol Chem 2012; 287:28508-17. [PMID: 22761448 DOI: 10.1074/jbc.m112.356634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone resorption, which is regulated by osteoclasts, is excessively activated in bone destructive diseases such as osteoporosis. Thus, controlling osteoclasts would be an effective strategy to prevent pathological bone loss. Although several transcription factors that regulate osteoclast differentiation and function could serve as molecular targets to inhibit osteoclast formation, those factors have not yet been characterized using a loss of function approach in adults. Here we report such a study showing that inactivation of B-lymphocyte induced maturation protein 1 (Blimp1) in adult mice increases bone mass by suppressing osteoclast formation. Using an ex vivo assay, we show that osteoclast differentiation is significantly inhibited by Blimp1 inactivation at an early stage of osteoclastogenesis. Conditional inactivation of Blimp1 inhibited osteoclast formation and increased bone mass in both male and female adult mice. Bone resorption parameters were significantly reduced by Blimp1 inactivation in vivo. Blimp1 reportedly regulates immune cell differentiation and function, but we detected no immune cell failure following Blimp1 inactivation. These data suggest that Blimp1 is a potential target to promote increased bone mass and prevent osteoclastogenesis.
Collapse
Affiliation(s)
- Yoshiteru Miyauchi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|
70
|
Vincent SD, Mayeuf A, Niro C, Saitou M, Buckingham M. Non conservation of function for the evolutionarily conserved prdm1 protein in the control of the slow twitch myogenic program in the mouse embryo. Mol Biol Evol 2012; 29:3181-91. [PMID: 22522309 DOI: 10.1093/molbev/mss125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscles are composed of multinucleated muscle fibers with different contractile and physiological properties, which result from specific slow or fast gene expression programs in the differentiated muscle cells. In the zebra fish embryo, the slow program is under the control of Hedgehog signaling from the notochord and floor plate. This pathway activates the expression of the conserved transcriptional repressor, Prdm1 (Blimp1), which in turn represses the fast program and promotes the slow program in adaxial cells of the somite and their descendants. In the mouse embryo, myogenesis is also initiated in the myotomal compartment of the somite, but the slow muscle program is not confined to a specific subset of cells. We now show that Prdm1 is expressed in the first differentiated myocytes of the early myotome from embryonic day (E)9.5-E11.5. During this period, muscle formation depends on the myogenic regulatory factors, Myf5 and Mrf4. In their absence, Prdm1 is not activated, in apparent contrast to zebra fish where Prdm1 is expressed in the absence of Myf5 and MyoD that drive myogenesis in adaxial cells. However, as in zebra fish, Prdm1 expression in the mouse myotome does not occur in the absence of Hedgehog signaling. Analysis of the muscle phenotype of Prdm1 mutant embryos shows that myogenesis appears to proceed normally. Notably, there is no requirement for Prdm1 activation of the slow muscle program in the mouse myotome. Furthermore, the gene for the transcriptional repressor, Sox6, which is repressed by Prdm1 to permit slow muscle differentiation in zebra fish, is not expressed in the mouse myotome. We propose that the lack of functional conservation for mouse Prdm1, that can nevertheless partially rescue the adaxial cells of zebra fish Prdm1 mutants, reflects differences in the evolution of the role of key regulators such as Prdm1 or Sox6, in initiating the onset of the slow muscle program, between teleosts and mammals.
Collapse
Affiliation(s)
- Stéphane D Vincent
- Department of Developmental Biology, CNRS URA 2575, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
71
|
Itou J, Kawakami H, Quach T, Osterwalder M, Evans SM, Zeller R, Kawakami Y. Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development 2012; 139:1620-9. [PMID: 22438573 DOI: 10.1242/dev.073056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How divergent genetic systems regulate a common pathway during the development of two serial structures, forelimbs and hindlimbs, is not well understood. Specifically, HAND2 has been shown to regulate Shh directly to initiate its expression in the posterior margin of the limb mesenchyme. Although the Hand2-Shh morphoregulatory system operates in both the forelimb and hindlimb bud, a recent analysis suggested that its upstream regulation is different in the forelimb and hindlimb bud. A combination of all four Hox9 genes is required for Hand2 expression in the forelimb-forming region; however, it remains elusive what genetic system regulates the Hand2-Shh pathway in the hindlimb-forming region. By conditional inactivation of Islet1 in the hindlimb-forming region using the Hoxb6Cre transgene, we show that Islet1 is required for establishing the posterior hindlimb field, but not the forelimb field, upstream of the Hand2-Shh pathway. Inactivation of Islet1 caused the loss of posterior structures in the distal and proximal regions, specifically in the hindlimb. We found that Hand2 expression was downregulated in the hindlimb field and that Shh expression was severely impaired in the hindlimb bud. In the Hoxb6Cre; Islet1 mutant pelvis, the proximal element that is formed in a Shh-independent manner, displayed complementary defects in comparison with Pitx1(-/-) hindlimbs. This suggests that Islet1 and Pitx1 function in parallel during girdle development in hindlimbs, which is in contrast with the known requirement for Tbx5 in girdle development in forelimbs. Our studies have identified a role for Islet1 in hindlimb-specific development and have revealed Islet1 functions in two distinct processes: regulation upstream of the Hand2-Shh pathway and contributions to girdle development.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE. Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Abstract
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle, and endothelial cells. Research into the mechanisms of SHF development has contributed significantly to our understanding of the properties of cardiac progenitor cells and the origins of congenital heart defects. Here recent data concerning the regulation, clinically relevant subpopulations, evolution and lineage relationships of the SHF are reviewed. Proliferation and differentiation of SHF cells are controlled by multiple intercellular signaling pathways and a transcriptional regulatory network that is beginning to be elucidated. Perturbation of SHF development results in common forms of congenital heart defects and particular progenitor cell subpopulations are highly relevant clinically, including cells giving rise to myocardium at the base of the pulmonary trunk and the interatrial septum. A SHF has recently been identified in amphibian, fish, and agnathan embryos, highlighting the important contribution of these cells to the evolution of the vertebrate heart. Finally, SHF-derived parts of the heart share a lineage relationship with craniofacial skeletal muscles revealing that these progenitor cells belong to a broad cardiocraniofacial field of pharyngeal mesoderm. Investigation of the mechanisms underlying the dynamic process of SHF deployment is likely to yield further insights into cardiac development and pathology.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles-Luminy, Aix-Marseille Université, CNRS UMR 7288, Marseilles, France
| |
Collapse
|
74
|
Fantauzzo KA, Christiano AM. Trps1 activates a network of secreted Wnt inhibitors and transcription factors crucial to vibrissa follicle morphogenesis. Development 2011; 139:203-14. [PMID: 22115758 DOI: 10.1242/dev.069971] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in TRPS1 cause trichorhinophalangeal syndrome types I and III, which are characterized by sparse scalp hair in addition to craniofacial and skeletal abnormalities. Trps1 is a vertebrate transcription factor that contains nine zinc-finger domains, including a GATA-type zinc finger through which it binds DNA. Mice in which the GATA domain of Trps1 has been deleted (Trps1(Δgt/Δgt)) have a reduced number of pelage follicles and lack vibrissae follicles postnatally. To identify the transcriptional targets of Trps1 in the developing vibrissa follicle, we performed microarray hybridization analysis, comparing expression patterns in the whisker pads of wild-type versus Trps1(Δgt/Δgt) embryos. We identified a number of transcription factors and Wnt inhibitors among transcripts downregulated in the mutant embryos and several extracellular matrix proteins that were upregulated in the mutant samples, and demonstrated that target gene expression levels were altered in vivo in Trps1(Δgt/Δgt) vibrissae. Unexpectedly, we discovered that Trps1 can directly bind the promoters of its target genes to activate transcription, expanding upon its established role as a transcriptional repressor. Our findings identify Trps1 as a novel regulator of the Wnt signaling pathway and of early hair follicle progenitors in the developing vibrissa follicle.
Collapse
|
75
|
Chu LF, Surani MA, Jaenisch R, Zwaka TP. Blimp1 expression predicts embryonic stem cell development in vitro. Curr Biol 2011; 21:1759-65. [PMID: 22000107 DOI: 10.1016/j.cub.2011.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 11/17/2022]
Abstract
Despite recent critical insights into the pluripotent state of embryonic stem cells (ESCs), there is little agreement over the inaugural and subsequent steps leading to its generation [1-4]. Here we show that inner cell mass (ICM)-generated cells expressing Blimp1, a key transcriptional repressor of the somatic program during germ cell specification [5, 6], emerge on day 2 of blastocyst culture. Single-cell gene expression profiling indicated that many of these Blimp1-positive cells coexpress other genes typically associated with early germ cell specification. When genetically traced in vitro, these cells acquired properties normally associated with primordial germ cells. Importantly, fate-mapping experiments revealed that ESCs commonly arise from Blimp1-positive precursors; indeed, prospective sorting of such cells from ICM outgrowths increased the rate of ESC derivation more than 9-fold. Finally, using genetic ablation or distinct small molecules [7, 8], we show that epiblast cells can become ESCs without first acquiring Blimp1 positivity. Our findings suggest that the germ cell-like state is facultative for the stabilization of pluripotency in vitro. Thus, the association of Blimp1 expression with ESC development furthers understanding of how the pluripotent state of these cells is established in vitro and suggests a means to enhance the generation of new stem cell lines from blastocysts.
Collapse
Affiliation(s)
- Li-Fang Chu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
76
|
Nikitina N, Tong L, Bronner ME. Ancestral network module regulating prdm1 expression in the lamprey neural plate border. Dev Dyn 2011; 240:2265-71. [PMID: 21932309 DOI: 10.1002/dvdy.22720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2011] [Indexed: 01/25/2023] Open
Abstract
prdm1 is an important transcriptional regulator that plays diverse roles during development of a wide variety of vertebrate and invertebrate species. prdm1 is required for neural crest specification in zebrafish, but not in mouse embryos. The role of this gene in neural crest formation in other species has not been examined, and its regulation during embryonic development is poorly understood. Here, we investigate the expression pattern, function, and the upstream regulatory inputs into prdm1 during lamprey neural crest development. prdm1 is strongly expressed in the lamprey neural plate border, suggesting a conserved ancestral role of this gene in the neural crest formation. We found that lamprey neural plate border expression of prdm1 is activated by Ap-2 and Msx, but is independent of Pax3/7 and Zic.
Collapse
Affiliation(s)
- Natalya Nikitina
- Division of Biology, California Institute of Technology, Pasadena, California; School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
77
|
Hirota T, Ohta H, Shigeta M, Niwa H, Saitou M. Drug-Inducible Gene Recombination by the Dppa3-MER Cre MER Transgene in the Developmental Cycle of the Germ Cell Lineage in Mice1. Biol Reprod 2011; 85:367-77. [DOI: 10.1095/biolreprod.110.090662] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
78
|
Harper J, Mould A, Andrews RM, Bikoff EK, Robertson EJ. The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci U S A 2011; 108:10585-90. [PMID: 21670299 PMCID: PMC3127883 DOI: 10.1073/pnas.1105852108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female mammals produce milk to feed their newborn offspring before teeth develop and permit the consumption of solid food. Intestinal enterocytes dramatically alter their biochemical signature during the suckling-to-weaning transition. The transcriptional repressor Blimp1 is strongly expressed in immature enterocytes in utero, but these are gradually replaced by Blimp1(-) crypt-derived adult enterocytes. Here we used a conditional inactivation strategy to eliminate Blimp1 function in the developing intestinal epithelium. There was no noticeable effect on gross morphology or formation of mature cell types before birth. However, survival of mutant neonates was severely compromised. Transcriptional profiling experiments reveal global changes in gene expression patterns. Key components of the adult enterocyte biochemical signature were substantially and prematurely activated. In contrast, those required for processing maternal milk were markedly reduced. Thus, we conclude Blimp1 governs the developmental switch responsible for postnatal intestinal maturation.
Collapse
Affiliation(s)
- James Harper
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Arne Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Robert M. Andrews
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton-Cambridge CB10 1SA, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| |
Collapse
|
79
|
Hernandez-Lagunas L, Powell DR, Law J, Grant KA, Artinger KB. prdm1a and olig4 act downstream of Notch signaling to regulate cell fate at the neural plate border. Dev Biol 2011; 356:496-505. [PMID: 21689645 DOI: 10.1016/j.ydbio.2011.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 01/23/2023]
Abstract
The zinc finger domain transcription factor prdm1a plays an integral role in the development of the neural plate border cell fates, including neural crest cells and Rohon-Beard (RB) sensory neurons. However, the mechanisms underlying prdm1a function in cell fate specification is unknown. Here, we test more directly how prdm1a functions in this cell fate decision. Rather than affecting cell death or proliferation at the neural plate border, prdm1a acts explicitly on cell fate specification by counteracting olig4 expression in the neighboring interneuron domain. olig4 expression is expanded in prdm1a mutants and olig4 knockdown can rescue the reduced or abrogated neural crest and RB neuron phenotype in prdm1a mutants, suggesting a permissive role for prdm1a in neural plate border-derived cell fates. In addition, prdm1a expression is upregulated in the absence of Notch function, and inhibiting Notch signaling fails to rescue prdm1a mutants. This suggests that prdm1a functions downstream of Notch in the regulation of cell fate at the neural plate border and that Notch regulates the total number of progenitor cells at the neural plate border.
Collapse
Affiliation(s)
- Laura Hernandez-Lagunas
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
80
|
Sarko DK, Rice FL, Reep RL. Mammalian tactile hair: divergence from a limited distribution. Ann N Y Acad Sci 2011; 1225:90-100. [DOI: 10.1111/j.1749-6632.2011.05979.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
Xin A, Nutt SL, Belz GT, Kallies A. Blimp1: driving terminal differentiation to a T. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:85-100. [PMID: 21842367 DOI: 10.1007/978-1-4419-5632-3_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B lymphocyte maturation-induced protein-1 (Blimp1) is a transcriptional repressor expressed in diverse cell types. In the adaptive immune system, Blimp1 is expressed in lymphocytes that have undergone effector differentiation. Blimp1 is a master regulator of plasma cell differentiation and plays important roles in controlling T cell homeostasis and effector differentiation. Blimp1 can be induced by a variety of cytokines including IL-2, IL-4, IL-12, and IL-21 in addition to TCR and co-stimulatory signals. Blimp1-deficient mice develop spontaneous inflammatory disease mediated by infiltration of activated T cells into tissues. During immune responses Blimp1 is required for the differentiation of plasma cells as well as short-lived CD8(+) cytotoxic T cells. Mounting evidence suggests that Blimp1 plays a common role in the terminal differentiation of multiple cell subsets.
Collapse
|
82
|
Ma Z, Swigut T, Valouev A, Rada-Iglesias A, Wysocka J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat Struct Mol Biol 2010; 18:120-7. [PMID: 21183938 DOI: 10.1038/nsmb.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/10/2010] [Indexed: 12/12/2022]
Abstract
Prdm14 is a PR-domain and zinc-finger protein whose expression is restricted to the pluripotent cells of the early embryo, embryonic stem cells (ESCs), and germ cells. Here, we show that Prdm14 safeguards mouse ESC (mESC) maintenance by preventing induction of extraembryonic endoderm (ExEn) fates. Conversely, Prdm14 overexpression impairs ExEn differentiation during embryoid body formation. Prdm14 occupies and represses genomic loci encoding ExEn differentiation factors, while also binding to and promoting expression of genes associated with mESC self-renewal. Prdm14-associated genomic regions substantially overlap those occupied by Nanog and Oct4, are enriched in a chromatin signature associated with distal regulatory elements and contain a unique DNA-sequence motif recognized by Prdm14 in vitro. Our work identifies a new member of the mESC transcriptional network, Prdm14, which plays a dual role as a context-dependent transcriptional repressor or activator.
Collapse
Affiliation(s)
- Ziyang Ma
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
83
|
Olesnicky E, Hernandez-Lagunas L, Artinger KB. prdm1a Regulates sox10 and islet1 in the development of neural crest and Rohon-Beard sensory neurons. Genesis 2010; 48:656-66. [PMID: 20836130 DOI: 10.1002/dvg.20673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/09/2023]
Abstract
The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Eugenia Olesnicky
- Department of Craniofacial Biology, University of Colorado, Denver School of Dental Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
84
|
Lee GS, Liao X, Shimizu H, Collins MD. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. ACTA ACUST UNITED AC 2010; 88:863-82. [DOI: 10.1002/bdra.20712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
85
|
Saitou M, Yamaji M. Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences. Reproduction 2010; 139:931-42. [DOI: 10.1530/rep-10-0043] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The specification of germ cell fate in development initiates mechanisms essential for the perpetuation of genetic information across the generations. Recent studies in mice have shown that germ cell specification requires at least three key molecular/cellular events: repression of the somatic program, re-acquisition of potential pluripotency, and an ensuing genome-wide epigenetic reprogramming. Moreover, a signaling and transcriptional principle governing these processes has been identified, raising the possibility of inducing the germ cell fate precisely from pluripotent stem cells in culture. These advances will in turn serve as a basis to explore the mechanism of germ cell specification in other mammals, including humans. The recapitulation of germ cell development in humans in culture will provide unprecedented opportunities to understand the basis of the propagation of our genome, both under normal and diseased conditions.
Collapse
|
86
|
Abstract
Ectomesenchymal dental stem cells could be feasible tools for dental tissue engineering. Dental follicle cells are a promising example, since they are capable of differentiation into various dental tissue cells, such as osteoblasts or cementoblasts. However, cellular mechanisms of cell proliferation and differentiation are not understood in detail. Basic knowledge of these molecular processes may shorten the time before ectomesenchymal dental stem cells can be exploited for bone augmentation in regenerative medicine. Recent developments in proteomics and transcriptomics have made information about genome-wide expression profiles accessible, which can aid in clarifying molecular mechanisms of cells. This review describes the transcriptomes and proteomes of dental follicle cells before and after differentiation, and compares them with differentially expressed populations from dental tissue or bone marrow.
Collapse
Affiliation(s)
- C. Morsczeck
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - G. Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
87
|
Beermann ML, Ardelt M, Girgenrath M, Miller JB. Prdm1 (Blimp-1) and the expression of fast and slow myosin heavy chain isoforms during avian myogenesis in vitro. PLoS One 2010; 5:e9951. [PMID: 20376350 PMCID: PMC2848592 DOI: 10.1371/journal.pone.0009951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/09/2010] [Indexed: 01/07/2023] Open
Abstract
Background Multiple types of fast and slow skeletal muscle fibers form during early embryogenesis in vertebrates. In zebrafish, formation of the earliest slow myofibers in fin muscles requires expression of the zinc-finger transcriptional repressor Prdm1 (also known as Blimp1). To further understand how the role of Prdm1 in early myogenesis may vary through evolution and during development, we have now analyzed Prdm1 expression in the diverse types of myotubes that form in culture from somitic, embryonic, and fetal chicken myoblasts. Principal Findings In cultures of somitic, embryonic limb, and fetal limb chicken cells, we found that Prdm1 was expressed in all of the differentiated muscle cells that formed, including those that expressed only fast myosin heavy chain isoforms, as well as those that co-expressed both fast and slow myosin heavy chain isoforms. Prdm1 was also expressed in Pax7-positive myoblasts, as well as in non-myogenic cells in the cultures. Furthermore, though all differentiated cells in control somite cultures co-expressed fast and slow myosin heavy chains, antisense knockdown of Prdm1 expression inhibited the formation of these co-expressing cells in somite cultures. Conclusions In chicken myogenic cell cultures, Prdm1 was expressed in most Pax7-positive myoblasts and in all differentiated muscle cells, irrespective of the developmental stage of cell donor or the pattern of fast and slow myosin heavy chains expressed in the differentiated cells that were formed. Thus, Prdm1 was expressed in myogenic cells prior to terminal differentiation; and, after differentiation, Prdm1 expression was not limited to cells that expressed slow myosin heavy chain isoforms. In addition, Prdm1 appeared to be required for differentiation of the somitic myocytes, which are the earliest myocytes to form in the avian embryo.
Collapse
Affiliation(s)
- Mary Lou Beermann
- Neuromuscular Biology & Disease Group, Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Magdalena Ardelt
- Neuromuscular Biology & Disease Group, Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Mahasweta Girgenrath
- Department of Health Science, Boston University, Boston, Massachusetts, United States of America
| | - Jeffrey Boone Miller
- Neuromuscular Biology & Disease Group, Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
88
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
89
|
Birkholz DA, Olesnicky Killian EC, George KM, Artinger KB. Prdm1a is necessary for posterior pharyngeal arch development in zebrafish. Dev Dyn 2010; 238:2575-87. [PMID: 19777590 DOI: 10.1002/dvdy.22090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple tissue interactions and signaling within the pharyngeal arches are required for development of the craniofacial skeleton. Here, we focus on the role of the transcription factor prdm1a in the differentiation of the posterior skeleton. prdm1a is expressed in the presumptive pharyngeal arch region and later in an endodermal pouch, the otic vesicle, and pharyngeal teeth. prdm1a mutants display a reduction in pharyngeal arch markers, a loss of posterior ceratobranchial cartilages, and a reduction in most neural crest-derived dermal bones. This is likely caused by a decrease in the number of proliferating cells but not an increase in cell death. Finally, a reduction in two key developmental signaling pathways, Fgf and retinoic acid, alters prdm1a expression, suggesting that prdm1a expression is mediated by these signaling pathways to pattern the posterior craniofacial skeleton. Together, these results indicate an essential role for prdm1a in the development of the zebrafish craniofacial skeleton.
Collapse
Affiliation(s)
- Denise A Birkholz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Center for Structural and Functional Neuroscience, Missoula, Montana, USA
| | | | | | | |
Collapse
|
90
|
Morsczeck C, Schmalz G, Reichert TE, Völlner F, Saugspier M, Viale-Bouroncle S, Driemel O. Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin Oral Investig 2009; 13:383-91. [PMID: 19252934 DOI: 10.1007/s00784-009-0260-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/11/2009] [Indexed: 12/11/2022]
Abstract
Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast-like cells under in vitro conditions after the induction with dexamethasone or insulin. However, mechanisms for osteogenic differentiation are not understood in detail. In a previous study, real-time RT-PCR results demonstrated molecular mechanisms in dental follicle cells (DFCs) during osteogenic differentiation that are different from those in bone-marrow-derived mesenchymal stem cells. We analysed gene expression profiles in DFCs before and after osteogenic differentiation with the Affymetrix GeneChip(R) Human Gene 1.0 ST Array. Transcripts of 98 genes were up-regulated after differentiation. These genes could be clustered into subcategories such as cell differentiation, cell morphogenesis, and skeletal development. Osteoblast-specific transcription factors like osterix and runx2 were constitutively expressed in differentiated DFCs. In contrast, the transcription factor ZBTB16, which promotes the osteoblastic differentiation of mesenchymal stem cells as an up-stream regulator of runx2, was differentially expressed after differentiation. Transcription factors NR4A3, KLF9 and TSC22D3, involved in the regulation of cellular development, were up-regulated as well. In conclusion, we present the first transcriptome of human DFCs before and after osteogenic differentiation. This study sheds new light on the complex mechanism of osteogenic differentiation in DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Operative Dentistry and Periodontology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
91
|
Chan YH, Chiang MF, Tsai YC, Su ST, Chen MH, Hou MS, Lin KI. Absence of the transcriptional repressor Blimp-1 in hematopoietic lineages reveals its role in dendritic cell homeostatic development and function. THE JOURNAL OF IMMUNOLOGY 2009; 183:7039-46. [PMID: 19915049 DOI: 10.4049/jimmunol.0901543] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are important for the initiation and regulation of immune responses. In this study, we demonstrate that DC homeostatic development in peripheral lymphoid organs is negatively regulated by the transcriptional repressor, Blimp-1, which is critical for regulation of plasma cell differentiation and T cell homeostasis and function. Deletion of Prdm1, the gene encoding Blimp-1, in mouse hematopoietic lineages resulted in an increase in the steady-state number of conventional DCs (cDCs). Specifically, Prdm1 deletion increased immediate CD8(-) cDC precursors in peripheral lymphoid organs, causing selective expansion of the CD8(-) cDC population. Upon stimulus-induced maturation, Blimp-1 was up-regulated in bone marrow-derived DCs via the p38 MAPK and NF-kappaB pathways. Notably, Blimp-1-deficient DCs matured poorly upon stimulation in vitro and in vivo. Blimp-1 binds to the proinflammatory cytokine/chemokine genes, Il-6 and Ccl2, and negatively regulates their expression. Collectively, our findings reveal two new roles for Blimp-1: negative regulation of a select subset of cDCs during homeostatic development, and enhancement of DC maturation.
Collapse
Affiliation(s)
- Yueh-Hsuan Chan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
92
|
Morgan MAJ, Magnusdottir E, Kuo TC, Tunyaplin C, Harper J, Arnold SJ, Calame K, Robertson EJ, Bikoff EK. Blimp-1/Prdm1 alternative promoter usage during mouse development and plasma cell differentiation. Mol Cell Biol 2009; 29:5813-27. [PMID: 19737919 PMCID: PMC2772737 DOI: 10.1128/mcb.00670-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 07/11/2009] [Accepted: 08/22/2009] [Indexed: 12/14/2022] Open
Abstract
The zinc-finger PR domain transcriptional repressor Blimp-1/Prdm1 plays essential roles in primordial germ cell specification, placental, heart, and forelimb development, plasma cell differentiation, and T-cell homeostasis. The present experiments demonstrate that the mouse Prdm1 gene has three alternative promoter regions. All three alternative first exons splice directly to exon 3, containing the translational start codon. To examine possible cell-type-specific functional activities in vivo, we generated targeted deletions that selectively eliminate two of these transcriptional start sites. Remarkably, mice lacking the previously described first exon develop normally and are fertile. However, this region contains NF-kappaB binding sites, and as shown here, NF-kappaB signaling is required for Prdm1 induction. Thus, mutant B cells fail to express Prdm1 in response to lipopolysaccharide stimulation and lack the ability to become antibody-secreting cells. An alternative distal promoter located approximately 70 kb upstream, giving rise to transcripts strongly expressed in the yolk sac, is dispensable. Thus, the deletion of exon 1B has no noticeable effect on expression levels in the embryo or adult tissues. Collectively, these experiments provide insight into the organization of the Prdm1 gene and demonstrate that NF-kappaB is a key mediator of Prdm1 expression.
Collapse
Affiliation(s)
- Marc A. J. Morgan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Erna Magnusdottir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Tracy C. Kuo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Chai Tunyaplin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - James Harper
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Sebastian J. Arnold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Kathryn Calame
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom, Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
93
|
Abstract
Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.
Collapse
Affiliation(s)
- Mark A Edson
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
94
|
Sellheyer K, Krahl D. Blimp-1: a marker of terminal differentiation but not of sebocytic progenitor cells. J Cutan Pathol 2009; 37:362-70. [PMID: 19788443 DOI: 10.1111/j.1600-0560.2009.01434.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role of stem cells in maintaining the sebaceous gland throughout the various stages of life is not satisfactorily resolved. In a recent article, the transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) was proposed as a marker of a population of unipotent progenitor cells that reside in the sebaceous gland, regulating its size and activity. METHODS We used standard immunohistochemical methods to examine Blimp-1 expression in samples from embryonic, fetal and adult human skin and in 119 sebaceous lesions comprising all major categories of sebocytic lineage, including hamartomas, cysts and benign and malignant neoplasms. RESULTS Blimp-1 is expressed late in embryonic development and is restricted to the evolving sebaceous gland, the terminally differentiating components of the hair follicle and nail organ and the granular layer. This pattern is preserved into adult life. In all sebaceous lesions, Blimp-1 labels only the most mature cellular constituents. CONCLUSIONS The reported expression pattern is difficult to reconcile with a function of Blimp-1 as a marker for sebocytic progenitor cells but indicates a major role in terminal differentiation. Within the interfollicular epidermis, its exclusive localization to the granular layer suggests a central function in skin barrier homeostasis in the human.
Collapse
Affiliation(s)
- Klaus Sellheyer
- Department of Dermatology, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | |
Collapse
|
95
|
|
96
|
Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 2009; 31:283-95. [PMID: 19664942 DOI: 10.1016/j.immuni.2009.06.021] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/08/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
In response to viral infection, naive CD8(+) T cells proliferate and differentiate into cytotoxic and cytokine-producing effector cells. Here we showed that the transcription factor Blimp-1, a crucial regulator of plasma cell differentiation, was required for CD8(+) T cells to differentiate into functional killer T cells in response to influenza virus. Blimp-1 was not essential for the generation of memory T cells but was crucial for their efficient recall response upon reinfection. Antigen-specific Blimp-1-deficient CD8(+) T cells failed to appropriately regulate the transcriptional program essential for killer T cell responses and showed impaired migration to the site of infection. This study identifies Blimp-1 as a master regulator of the terminal differentiation of CD8(+) effector T cells and uncovers a conservation of the pathways that regulate the terminal differentiation of T and B cells.
Collapse
Affiliation(s)
- Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | |
Collapse
|
97
|
Saitou M. Germ cell specification in mice. Curr Opin Genet Dev 2009; 19:386-95. [DOI: 10.1016/j.gde.2009.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 01/16/2023]
|
98
|
Bikoff EK, Morgan MA, Robertson EJ. An expanding job description for Blimp-1/PRDM1. Curr Opin Genet Dev 2009; 19:379-85. [PMID: 19592232 DOI: 10.1016/j.gde.2009.05.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 12/13/2022]
Abstract
The master transcriptional regulator Blimp-1/PRDM1 contains an N-terminal PR/SET domain and five C2H2 zinc fingers located near its C-terminus that mediate DNA binding, nuclear import and recruitment of histone modifying enzymes. These activities account for its ability to control cell-fate decisions in the embryo and govern tissue homeostasis in multiple cell types in the adult organism. New experiments demonstrate an increasing degree of complexity associated with Blimp-1/PRDM1 target site selection and its associations with epigenetic modifiers. Our current understanding of how this single unique species within the family of structurally similar PRDM proteins regulates gene expression patterns and governs developmental programmes in different cell lineages is discussed.
Collapse
Affiliation(s)
- Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
99
|
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 2009; 10:91-103. [PMID: 19129791 DOI: 10.1038/nrm2618] [Citation(s) in RCA: 572] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic studies have identified the key signalling pathways and developmentally regulated transcription factors that govern cell lineage allocation and axis patterning in the early mammalian embryo. Recent advances have uncovered details of the molecular circuits that tightly control cell growth and differentiation in the mammalian embryo from the blastocyst stage, through the establishment of initial anterior-posterior polarity, to gastrulation, when the germ cells are set aside and the three primary germ layers are specified. Relevant studies in lower vertebrates indicate the conservation and divergence of regulatory mechanisms for cell lineage allocation and axis patterning.
Collapse
Affiliation(s)
- Sebastian J Arnold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
100
|
John SA, Garrett-Sinha LA. Blimp1: a conserved transcriptional repressor critical for differentiation of many tissues. Exp Cell Res 2008; 315:1077-84. [PMID: 19073176 DOI: 10.1016/j.yexcr.2008.11.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/21/2008] [Accepted: 11/23/2008] [Indexed: 02/03/2023]
Abstract
B lymphocyte induced maturation protein 1 (Blimp1) is a zinc finger transcriptional repressor whose function as a master regulator of terminal differentiation of B cells into plasma cells has long been studied and is well established. Recent studies have identified novel roles for Blimp1 including homeostasis of effector T cells, specification of primordial germ cells in mouse, specification of muscle fiber type in zebrafish and as a tumor suppressor gene in germinal center derived B cells. Blimp1 associates with a multitude of chromatin modifying enzymes inducing epigenetic changes at specific targets to regulate these diverse cell fates. In this review, we focus on the novel and emerging roles of Blimp1 in multiple tissues, on mechanisms of transcriptional repression by Blimp1 and on the activity of Blimp1 as a tumor suppressor.
Collapse
Affiliation(s)
- Shinu A John
- Department of Biochemistry, Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | |
Collapse
|