51
|
Perez WD, Weller CR, Shou S, Stadler HS. Survival of Hoxa13 homozygous mutants reveals a novel role in digit patterning and appendicular skeletal development. Dev Dyn 2010; 239:446-57. [PMID: 20034107 PMCID: PMC2981150 DOI: 10.1002/dvdy.22183] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The loss of HOXA13 function severely disrupts embryonic limb development. However, because embryos lacking HOXA13 die by mid-gestation, the defects present in the mutant limb could arise as a secondary consequence of failing embryonic health. In our analysis of the mutant Hoxa13(GFP) allele, we identified a surviving cohort of homozygous mutants exhibiting severe limb defects including: missing phalanx elements, fusions of the carpal/tarsal elements, and significant reductions in metacarpal/metatarsal length. Characterization of prochondrogenic genes in the affected carpal/tarsal regions revealed significant reduction in Gdf5 expression, whereas Bmp2 expression was significantly elevated. Analysis of Gdf5 mRNA localization also revealed diffuse expression in the carpal/tarsal anlagen, suggesting a role for HOXA13 in the organization of the cells necessary to delineate individual carpal/tarsal elements. Together these results identify Gdf5 as a potential target gene of HOXA13 target gene and confirm a specific role for HOXA13 during appendicular skeletal development.
Collapse
Affiliation(s)
- Wilma D. Perez
- Shriners Hospital for Children Research Department, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Crystal R. Weller
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Siming Shou
- University of Chicago Microarray Core, Chicago, Illinois
| | - H. Scott Stadler
- Shriners Hospital for Children Research Department, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
52
|
The alpha/beta interferon receptor provides protection against influenza virus replication but is dispensable for inflammatory response signaling. J Virol 2009; 84:2027-37. [PMID: 19939913 DOI: 10.1128/jvi.01595-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response provides the first line of defense against foreign pathogens by responding to molecules that are a signature of a pathogenic infection. Certain RNA viruses, such as influenza virus, produce double-stranded RNA as an intermediate during the replication life cycle, which activates pathogen recognition receptors capable of inducing interferon production. By engaging interferon receptors, interferon activates the JAK-STAT pathway and results in the positive feedback of interferon production, amplifying the response to viral infection. To examine how deficiencies in interferon signaling affect the cellular response to infection, we performed influenza virus infections of mouse embryonic fibroblasts lacking the alpha/beta interferon receptor, the gamma interferon receptor, or both. In the absence of the alpha/beta interferon receptor, we observed increased viral replication but decreased activation of PKR, Stat1, and NF-kappaB; the presence or absence of the gamma interferon receptor did not exhibit discernible differences in these readouts. Analysis of gene expression profiles showed that while cells lacking the alpha/beta interferon receptor exhibited decreased levels of transcription of antiviral genes, genes related to inflammatory and apoptotic responses were transcribed to levels similar to those of cells containing the receptor. These results indicate that while the alpha/beta interferon receptor is needed to curb viral replication, it is dispensable for the induction of certain inflammatory and apoptotic genes. We have identified potential pathways, via interferon regulatory factor 3 (IRF3) activation or Hoxa13, Polr2a, Nr4a1, or Ing1 induction, that contribute to this redundancy. This study illustrates another way in which the host has evolved to establish several overlapping mechanisms to respond to viral infections.
Collapse
|
53
|
Ng PY, Tang Y, Knosp WM, Stadler HS, Shaw JT. Synthesis of diverse lactam carboxamides leading to the discovery of a new transcription-factor inhibitor. Angew Chem Int Ed Engl 2009; 46:5352-5. [PMID: 17568465 DOI: 10.1002/anie.200700762] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pui Yee Ng
- The Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
54
|
HOXD13 binds DNA replication origins to promote origin licensing and is inhibited by geminin. Mol Cell Biol 2009; 29:5775-88. [PMID: 19703996 DOI: 10.1128/mcb.00509-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HOX DNA-binding proteins control patterning during development by regulating processes such as cell aggregation and proliferation. Recently, a possible involvement of HOX proteins in replication origin activity was suggested by results showing that a number of HOX proteins interact with the DNA replication licensing regulator geminin and bind a characterized human origin of replication. The functional significance of these observations, however, remained unclear. We show that HOXD13, HOXD11, and HOXA13 bind in vivo all characterized human replication origins tested. We furthermore show that HOXD13 interacts with the CDC6 loading factor, promotes pre-replication complex (pre-RC) proteins assembly at origins, and stimulates DNA synthesis in an in vivo replication assay. HOXD13 expression in cultured cells accelerates DNA synthesis initiation in correlation with the earlier pre-RC recruitment onto origins during G(1) phase. Geminin, which interacts with HOXD13 as well, blocks HOXD13-mediated assembly of pre-RC proteins and inhibits HOXD13-induced DNA replication. Our results uncover a function for Hox proteins in the regulation of replication origin activity and reveal an unforeseen role for the inhibition of HOX protein activity by geminin in the context of replication origin licensing.
Collapse
|
55
|
|
56
|
Gu ZD, Shen LY, Wang H, Chen XM, Li Y, Ning T, Chen KN. HOXA13 promotes cancer cell growth and predicts poor survival of patients with esophageal squamous cell carcinoma. Cancer Res 2009; 69:4969-73. [PMID: 19491265 DOI: 10.1158/0008-5472.can-08-4546] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis. Here, we investigated whether inhibition of HOXA13, a member of the homeobox genes, was sufficient to affect the proliferation of esophageal cancer cells in vitro and in vivo, and studied the association between HOXA13 expression and survival of patients with esophageal squamous cell carcinoma (ESCC). HOXA13 expression was permanently knocked down using an RNA interference technique, and cell strain with stable knockdown of HOXA13 protein was established. Colony formation assay showed that the number of colonies in HOXA13 protein-deficient cells was significantly less than that of control cells (P < 0.01). Tumor growth in nude mice showed that the weight and volume of tumors from the HOXA13 knockdown cells was significantly less than that from the control cells (P < 0.01). Then, HOXA13 expression in ESCC specimens and paired noncancerous mucosa was detected by immunohistochemistry, and overexpression of HOXA13 was found to be more pronounced in ESCCs than paired noncancerous mucosa (P < 0.05). Furthermore, the association of HOXA13 expression and disease-free survival time was analyzed in 155 ESCC cases. The median survival time of patients expressing HOXA13 was significantly shorter than HOXA13-negative patients (P = 0.0006). Multivariate analysis indicated that tumor-node-metastasis (TNM) stage and HOXA13 expression were independent predictors of disease-free survival time of patients with ESCC. Our results showed that HOXA13 expression enhanced tumor growth in vitro and in vivo, and was a negative independent predictor of disease-free survival of patients with ESCC.
Collapse
Affiliation(s)
- Zhen-Dong Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
57
|
Huang C, Hales BF. Teratogen responsive signaling pathways in organogenesis stage mouse limbs. Reprod Toxicol 2009; 27:103-10. [PMID: 19429390 DOI: 10.1016/j.reprotox.2009.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/14/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
58
|
A Molecular Footprint of Limb Loss: Sequence Variation of the Autopodial Identity Gene Hoxa-13. J Mol Evol 2008; 67:581-93. [DOI: 10.1007/s00239-008-9156-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
59
|
|
60
|
Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 2008; 135:2845-54. [PMID: 18653558 DOI: 10.1242/dev.023788] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.
Collapse
Affiliation(s)
- Philipp Leucht
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
61
|
Shaut CAE, Keene DR, Sorensen LK, Li DY, Stadler HS. HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet 2008; 4:e1000073. [PMID: 18483557 PMCID: PMC2367452 DOI: 10.1371/journal.pgen.1000073] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 04/11/2008] [Indexed: 12/26/2022] Open
Abstract
In eutherian mammals, embryonic growth and survival is dependent on the formation of the placenta, an organ that facilitates the efficient exchange of oxygen, nutrients, and metabolic waste between the maternal and fetal blood supplies. Key to the placenta's function is the formation of its vascular labyrinth, a series of finely branched vessels whose molecular ontogeny remains largely undefined. In this report, we demonstrate that HOXA13 plays an essential role in labyrinth vessel formation. In the absence of HOXA13 function, placental endothelial cell morphology is altered, causing a loss in vessel wall integrity, edema of the embryonic blood vessels, and mid-gestational lethality. Microarray analysis of wild-type and mutant placentas revealed significant changes in endothelial gene expression profiles. Notably, pro-vascular genes, including Tie2 and Foxf1, exhibited reduced expression in the mutant endothelia, which also exhibited elevated expression of genes normally expressed in lymphatic or sinusoidal endothelia. ChIP analysis of HOXA13–DNA complexes in the placenta confirmed that HOXA13 binds the Tie2 and Foxf1 promoters in vivo. In vitro, HOXA13 binds sequences present in the Tie2 and Foxf1 promoters with high affinity (Kd = 27–42 nM) and HOXA13 can use these bound promoter regions to direct gene expression. Taken together, these findings demonstrate that HOXA13 directly regulates Tie2 and Foxf1 in the placental labyrinth endothelia, providing a functional explanation for the mid-gestational lethality exhibited by Hoxa13 mutant embryos as well as a novel transcriptional program necessary for the specification of the labyrinth vascular endothelia. Defects in placental development are a common cause of mid-gestational lethality. Key to the placenta's function is its vascular labyrinth, a series of finely branched vessels that facilitate the efficient exchange of gases, nutrients, and metabolic waste between the maternal and fetal blood supplies. In this study, we identify a novel role for the transcription factor HOXA13 in formation of the placental vascular labyrinth. In the absence of HOXA13 function, labyrinth vessel branching and endothelial specification is compromised, causing mid-gestational lethality due to placental insufficiency. Analysis of the genes affected by the loss of HOXA13 function revealed significant reductions in the expression of several pro-vascular genes, including Tie2 and Foxf1. Analysis of the Tie2 and Foxf1 promoters confirmed that HOXA13 binds sites present in each promoter with high affinity in the placenta, and in vitro, HOXA13 can use these bound sequences to regulate gene expression. These results suggest that Tie2 and Foxf1 are direct transcriptional targets of HOXA13 in the developing placental labyrinth, providing a novel transcriptional pathway to consider when examining pathologies of the placenta and placental insufficiency, as well as the evolutionary mechanisms required for the emergence of the vascular placenta in eutherian mammals.
Collapse
Affiliation(s)
- Carley A. E. Shaut
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Heart Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Douglas R. Keene
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
| | - Lise K. Sorensen
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - H. Scott Stadler
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
62
|
Rinn JL, Wang JK, Allen N, Brugmann SA, Mikels AJ, Liu H, Ridky TW, Stadler HS, Nusse R, Helms JA, Chang HY. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev 2008; 22:303-7. [PMID: 18245445 DOI: 10.1101/gad.1610508] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reciprocal epithelial-mesenchymal interactions shape site-specific development of skin. Here we show that site-specific HOX expression in fibroblasts is cell-autonomous and epigenetically maintained. The distal-specific gene HOXA13 is continually required to maintain the distal-specific transcriptional program in adult fibroblasts, including expression of WNT5A, a morphogen required for distal development. The ability of distal fibroblasts to induce epidermal keratin 9, a distal-specific gene, is abrogated by depletion of HOXA13, but rescued by addition of WNT5A. Thus, maintenance of appropriate HOX transcriptional program in adult fibroblasts may serve as a source of positional memory to differentially pattern the epithelia during homeostasis and regeneration.
Collapse
Affiliation(s)
- John L Rinn
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Meyer F, Perez S, Jiang Y, Zhou Y, Henderson G, Jones C. Identification of a novel protein encoded by the latency-related gene of bovine herpesvirus 1. J Neurovirol 2008; 13:569-78. [PMID: 18097888 PMCID: PMC7095411 DOI: 10.1080/13550280701620754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BHV-1) is abundantly expressed and alternatively spliced in trigeminal ganglia. A mutant BHV-1 strain that contains three stop codons at the beginning of LR open reading frame (ORF)-2 (LR mutant virus) does not express ORF-2 or an adjacent reading frame that lacks an initiating ATG (RF-C). Calves latently infected with wild-type (wt) BHV-1, but not with the LR mutant virus, reactivate from latency, indicating that proteins encoded by the LR gene regulate the latency-reactivation cycle. The LR gene also contains another large ORF (ORF-1) that is approximately 200 bp downstream of stop codons inserted at the N-terminus of ORF-2. To test whether the LR mutant virus can expresses ORF-1, the authors developed antiserum directed against ORF-1. The ORF-1 antiserum recognizes specific proteins in bovine cells productively infected with wt BHV-1. ORF-1 protein expression is reduced, but not blocked, when bovine cells are infected with the LR mutant virus. Confocal microscopy demonstrated ORF-1 is present in the cytoplasm and nucleus of productively infected cells, whereas RF-C or a fusion protein containing RF-C localizes to the cytoplasm. Trigeminal ganglia from calves latently infected with wt BHV-1 contain neurons specifically stained with the ORF-1 antiserum. These studies suggest ORF-1 expression may be important for the BHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- Florencia Meyer
- Nebraska Center for Virology, University of Nebraska, Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
64
|
Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 2008; 317:497-507. [PMID: 18407260 DOI: 10.1016/j.ydbio.2008.02.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022]
Abstract
5' HoxD genes are required for the correct formation of limb skeletal elements. Hoxd13, the most 5'-located HoxD gene, is important for patterning the most distal limb region, and its mutation causes human limb malformation syndromes. The mechanisms underlying the control of developmental processes by Hoxd13, and by Hox genes in general, are still elusive, due to the limited knowledge on their direct downstream target genes. We identified by ChIP-on-chip 248 known gene loci bound invivo by Hoxd13. Genes relevant to limb patterning and skeletogenesis were further analysed. We found that Hoxd13 binds invivo, in developing limbs, the loci of Hand2, a gene crucial to limb AP axis patterning, of Meis1 and Meis2, involved in PD patterning, of the Sfrp1, Barx1, and Fbn1 genes, involved in skeletogenesis, and of the Dach1, Bmp2, Bmp4, andEmx2 genes. We show that Hoxd13 misexpression in developing chick limbs alters the expression of the majority of these genes, supporting the conclusion that Hoxd13 directly regulates their transcription. Our results indicate that 5' Hox proteins regulate directly both key genes for early limb AP and PD axis patterning and genes involved, at later stages, in skeletal patterning.
Collapse
|
65
|
Farnum CE, Tinsley M, Hermanson JW. Forelimb versus hindlimb skeletal development in the big brown bat, Eptesicus fuscus: functional divergence is reflected in chondrocytic performance in Autopodial growth plates. Cells Tissues Organs 2007; 187:35-47. [PMID: 18160801 DOI: 10.1159/000109962] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The morphology of the chiropteran forelimb demonstrates musculoskeletal specializations for powered flight essentially unique among mammals, including extreme elongation of the distal skeletal elements. Recent studies have focused primarily on the relative timing and levels of gene expression during early stages of endochondral ossification in the chiropteran embryo for clues to the molecular basis of the evolutionary origins of flight in these species. The goal of the current study was to examine how elongation of skeletal elements of the forelimb autopod is achieved through a combination of cellular proliferation, cellular enlargement and matrix synthesis during a period of rapid postnatal growth in Eptesicus fuscus. Quantitative analyses were done of multiple performance parameters of growth plate chondrocytes during all phases of the differentiation cascade. Fourteen autopodial growth plates from the forelimb and hindlimb of one individual, as well as the proximal tibial growth plate, were collected and analyzed. Significant differences were seen in all performance parameters examined. Particularly striking were the differences between growth plates of the manus and pes in the size of the pool of chondrocytes in all cellular zones and rates of turnover of terminal cells. The magnitude of hypertrophy of chondrocytes in growth plates of the manus in E. fuscus far exceeded what has been reported previously in any species, even in rapidly elongating rodent long bones. Volume changes approaching x70 and height changes of 50-60 mum/cell (paralleling the direction of growth) occurred after proliferation in the most rapidly growing growth plates. The data demonstrate that final differences in lengths of homologous skeletal elements in the autopod of the forelimb and hindlimb of this species result not just from an initiating factor early in development, but from continued quantitative differences in chondrocytic performance during postnatal bone elongation as measured by multiple kinetic-based parameters.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
66
|
Thorington RW, Santana EM. How to Make a Flying Squirrel:GlaucomysAnatomy in Phylogenetic Perspective. J Mammal 2007. [DOI: 10.1644/06-mamm-s-325r2.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
67
|
Zakany J, Duboule D. The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev 2007; 17:359-66. [PMID: 17644373 DOI: 10.1016/j.gde.2007.05.011] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 05/22/2007] [Accepted: 05/31/2007] [Indexed: 01/11/2023]
Abstract
The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed.
Collapse
Affiliation(s)
- Jozsef Zakany
- National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
68
|
Shaut CA, Saneyoshi C, Morgan EA, Knosp WM, Sexton DR, Stadler HS. HOXA13 directly regulates EphA6 and EphA7 expression in the genital tubercle vascular endothelia. Dev Dyn 2007; 236:951-60. [PMID: 17304517 DOI: 10.1002/dvdy.21077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypospadias, a common defect affecting the growth and closure of the external genitalia, is often accompanied by gross enlargements of the genital tubercle (GT) vasculature. Because Hoxa13 homozygous mutant mice also exhibit hypospadias and GT vessel expansion, we examined whether genes playing a role in angiogenesis exhibit reduced expression in the GT. From this analysis, reductions in EphA6 and EphA7 were detected. Characterization of EphA6 and EphA7 expression in the GT confirmed colocalization with HOXA13 in the GT vascular endothelia. Analysis of the EphA6 and EphA7 promoter regions revealed a series of highly conserved cis-regulatory elements bound by HOXA13 with high affinity. GT chromatin immunoprecipitation confirmed that HOXA13 binds these gene-regulatory elements in vivo. In vitro, HOXA13 activates gene expression through the EphA6 and EphA7 gene-regulatory elements. Together these findings indicate that HOXA13 directly regulates EphA6 and EphA7 in the developing GT and identifies the GT vascular endothelia as a novel site for HOXA13-dependent expression of EphA6 and EphA7.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genitalia/blood supply
- Genitalia/embryology
- Genitalia/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Mice
- Mice, Mutant Strains
- Molecular Sequence Data
- Promoter Regions, Genetic
- Receptor, EphA6/genetics
- Receptor, EphA6/metabolism
- Receptor, EphA7/genetics
- Receptor, EphA7/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Transfection
Collapse
Affiliation(s)
- Carley A Shaut
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | | | | | | | | | | |
Collapse
|
69
|
Ng P, Tang Y, Knosp W, Stadler H, Shaw J. Synthesis of Diverse Lactam Carboxamides Leading to the Discovery of a New Transcription-Factor Inhibitor. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
70
|
Knosp WM, Saneyoshi C, Shou S, Bächinger HP, Stadler HS. Elucidation, Quantitative Refinement, and in Vivo Utilization of the HOXA13 DNA Binding Site. J Biol Chem 2007; 282:6843-53. [PMID: 17200107 DOI: 10.1074/jbc.m610775200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in Hoxa13 cause malformations of the appendicular skeleton and genitourinary tract, including digit loss, syndactyly, and hypospadias. To determine the molecular basis for these defects, the DNA sequences bound by HOXA13 were empirically determined, revealing a novel high affinity binding site. Correlating the utilization of this high affinity binding site with genes exhibiting perturbed expression in Hoxa13 mutant limbs, we identified that HOXA13 suppresses the expression of the BMP antagonist, Sostdc1. In the absence of HOXA13 function, Sostdc1 is ectopically expressed in the distal limb, causing reduced expression of BMP-activated genes and decreased SMAD phosphorylation. Limb chromatin immunoprecipitation revealed HOXA13 binding at its high affinity site in two conserved Sostdc1 regulatory sites in vivo. In vitro, HOXA13 represses gene expression through the Sostdc1 high affinity binding sites in a dosage-dependent manner. Together, these findings confirm that the high affinity HOXA13 binding site deduced by quantitative analyses is used in vivo to facilitate HOXA13 target gene regulation, providing a critical advance toward understanding the molecular basis for defects associated with the loss of HOXA13 function.
Collapse
Affiliation(s)
- Wendy M Knosp
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
71
|
Hersh BM, Nelson CE, Stoll SJ, Norton JE, Albert TJ, Carroll SB. The UBX-regulated network in the haltere imaginal disc of D. melanogaster. Dev Biol 2006; 302:717-27. [PMID: 17174297 PMCID: PMC1892158 DOI: 10.1016/j.ydbio.2006.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/20/2006] [Accepted: 11/03/2006] [Indexed: 11/27/2022]
Abstract
Hox proteins have been proposed to act at multiple levels within regulatory hierarchies and to directly control the expression of a plethora of target genes. However, for any specific Hox protein or tissue, very few direct in vivo-regulated target genes have been identified. Here, we have identified target genes of the Hox protein Ultrabithorax (UBX), which modifies the genetic regulatory network of the wing to generate the haltere, a modified hindwing. We used whole-genome microarrays and custom arrays including all predicted transcription factors and signaling molecules in the Drosophila melanogaster genome to identify differentially expressed genes in wing and haltere imaginal discs. To elucidate the regulation of selected genes in more detail, we isolated cis-regulatory elements (CREs) for genes that were specifically expressed in either the wing disc or haltere disc. We demonstrate that UBX binds directly to sites in one element, and these sites are critical for activation in the haltere disc. These results indicate that haltere and metathoracic segment morphology is not achieved merely by turning off the wing and mesothoracic development programs, but rather specific genes must also be activated to form these structures. The evolution of haltere morphology involved changes in UBX-regulated target genes, both positive and negative, throughout the wing genetic regulatory network.
Collapse
Affiliation(s)
- Bradley M Hersh
- Howard Hughes Medical Institute and University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53703, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Yamada G, Suzuki K, Haraguchi R, Miyagawa S, Satoh Y, Kamimura M, Nakagata N, Kataoka H, Kuroiwa A, Chen Y. Molecular genetic cascades for external genitalia formation: an emerging organogenesis program. Dev Dyn 2006; 235:1738-52. [PMID: 16598715 DOI: 10.1002/dvdy.20807] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
External genitalia are anatomical structures located at the posterior embryonic region as part of several urogenital/reproductive organs. The embryonic anlage of the external genitalia, the genital tubercle (GT) develops as a bud-shaped structure with an initial urethral plate and later urethra. Embryonic external genitalia are considered to be one of the appendages. Recent experiments suggest that essential regulatory genes possess similar functions for the outgrowth regulation of the GT and limb appendages. The transient embryonic epithelia located in the distal GT are called the distal urethral epithelium (DUE) regulating, at least in part, the (distal) GT development. This review covers the available data about early patterning of GT and discusses the molecular developmental similarities and points of divergence between the different appendages. Development of the male and female external genitalia is also reviewed.
Collapse
Affiliation(s)
- G Yamada
- Center for Animal Resources and Development (CARD), Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Francis JC, Radtke F, Logan MPO. Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn 2006; 234:1006-15. [PMID: 16245338 DOI: 10.1002/dvdy.20590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Notch family of receptors is involved in a wide variety of developmental processes, including cell fate specification, cell proliferation, and cell survival decisions during cell differentiation and tissue morphogenesis. Notch1 and Notch ligands are expressed in the developing limbs, and Notch signalling has been implicated in the formation of a variety of tissues that comprise the limb, such as the skeleton, musculature, and vasculature. Notch signalling has also been implicated in regulating overall limb size. We have used a conditional allele of Notch1 in combination with two different Cre transgenic lines to delete Notch1 function either in the limb mesenchyme or in the apical ectodermal ridge (AER) and limb ectoderm. We demonstrate that Notch signalling, involving Notch1 and Jagged2, is required to regulate the number of Fgf8-expressing cells that comprise the AER and that regulation of the levels of fibroblast growth factor signalling is important for the freeing of the digits during normal limb formation. Regulation of the extent of the AER is achieved by Notch signalling positively regulating apoptosis in the AER. We also demonstrate that Notch1 is not required for proper formation of all the derivatives of the limb mesenchyme.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
74
|
Mohit P, Makhijani K, Madhavi MB, Bharathi V, Lal A, Sirdesai G, Reddy VR, Ramesh P, Kannan R, Dhawan J, Shashidhara LS. Modulation of AP and DV signaling pathways by the homeotic gene Ultrabithorax during haltere development in Drosophila. Dev Biol 2006; 291:356-67. [PMID: 16414040 DOI: 10.1016/j.ydbio.2005.12.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 11/24/2022]
Abstract
Suppression of wing fate and specification of haltere fate in Drosophila by the homeotic gene Ultrabithorax is a classical example of Hox regulation of serial homology (Lewis, E.B. 1978. Nature 276, 565-570) and has served as a paradigm for understanding homeotic gene function. We have used DNA microarray analyses to identify potential targets of Ultrabithorax function during haltere specification. Expression patterns of 18 validated target genes and functional analyses of a subset of these genes suggest that down-regulation of both anterior-posterior and dorso-ventral signaling is critical for haltere fate specification. This is further confirmed by the observation that combined over-expression of Decapentaplegic and Vestigial is sufficient to override the effect of Ubx and cause dramatic haltere-to-wing transformations. Our results also demonstrate that analysis of the differential development of wing and haltere is a good assay system to identify novel regulators of key signaling pathways.
Collapse
Affiliation(s)
- Prasad Mohit
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Salsi V, Zappavigna V. Hoxd13 and Hoxa13 Directly Control the Expression of the EphA7 Ephrin Tyrosine Kinase Receptor in Developing Limbs. J Biol Chem 2006; 281:1992-9. [PMID: 16314414 DOI: 10.1074/jbc.m510900200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hoxa and Hoxd genes, related to the Drosophila Abd-B gene, display regionally restricted expression patterns and are necessary for the formation of the limb skeletal elements. Hox genes encode transcription factors, which are supposed to control the expression of a series of downstream target genes, whose nature has remained largely elusive. Several genes were identified that are differentially expressed in relation to Hox gene activity; few studies, however, explored their direct regulation by Hox proteins. Ephrin tyrosine kinase receptors and ephrins have been proposed as Hox targets, and recently, evidence was gained for their role in limb development. The expression of the EphA7 gene in developing limbs was shown to correlate with the expression of Hoxa13 and Hoxd13; however, its direct regulation by these genes has never been assessed. We have characterized the EphA7 promoter region and show that it contains multiple binding sites for paralog group 13 Hox proteins. We found that one of these sites is bound in vivo by HOXA13 and HOXD13 and by endogenous Hoxd13 in developing mouse limbs. Moreover, we show that HOXD13 and HOXA13 activate transcription from the EphA7 promoter and that a mutation of the HOXA13/HOXD13 binding site was sufficient to abolish activation. Conversely, the HOXD13(147L) mutation, identified in patients displaying a novel brachydactyly-polydactyly syndrome, does not bind to in vivo, and fails to transactivate the EphA7 promoter. These results establish that EphA7 is a direct downstream target of Hoxd13 and Hoxa13 during limb development, thus providing further insight into the regulatory networks that control limb patterning.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via G. Campi 213/d, Modena 41100, Italy
| | | |
Collapse
|
76
|
McCabe CD, Innis JW. A genomic approach to the identification and characterization of HOXA13 functional binding elements. Nucleic Acids Res 2005; 33:6782-94. [PMID: 16321965 PMCID: PMC1301594 DOI: 10.1093/nar/gki979] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
HOX proteins are important transcriptional regulators in mammalian embryonic development and are dysregulated in human cancers. However, there are few known direct HOX target genes and their mechanisms of regulation are incompletely understood. To isolate and characterize gene segments through which HOX proteins regulate transcription we used cesium chloride centrifugation-based chromatin purification and immunoprecipitation (ChIP). From NIH 3T3-derived HOXA13-FLAG expressing cells, 33% of randomly selected, ChIP clones were reproducibly enriched. Hox-enriched fragments (HEFs) were more AT-rich compared with cloned fragments that failed reproducible ChIP. All HEFs augmented transcription of a heterologous promoter upon coexpression with HOXA13. One HEF was from intron 2 of Enpp2, a gene highly upregulated in these cells and has been implicated in cell motility. Using Enpp2 as a candidate direct target, we identified three additional HEFs upstream of the transcription start site. HOXA13 upregulated transcription from an Enpp2 promoter construct containing these sites, and each site was necessary for full HOXA13-induced expression. Lastly, given that HOX proteins have been demonstrated to interact with histone deacetylases and/or CBP, we explored whether histone acetylation changed at Enpp2 upon HOXA13-induced activation. No change in the general histone acetylation state was observed. Our results support models in which occupation of multiple HOX binding sites is associated with highly activated genes.
Collapse
Affiliation(s)
- Colleen D. McCabe
- Department of Human Genetics, University of MichiganAnn Arbor, MI 48109, USA
| | - Jeffrey W. Innis
- Department of Human Genetics, University of MichiganAnn Arbor, MI 48109, USA
- Department of Pediatrics, University of MichiganAnn Arbor, MI 48109, USA
- To whom correspondence should be addressed. Tel: +1 734 647-3817; Fax: +1 734 763 3784;
| |
Collapse
|
77
|
Santagati F, Minoux M, Ren SY, Rijli FM. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development 2005; 132:4927-36. [PMID: 16221728 DOI: 10.1242/dev.02078] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Little is known about the spatiotemporal requirement of Hox gene patterning activity in vertebrates. In Hoxa2 mouse mutants, the hyoid skeleton is replaced by a duplicated set of mandibular and middle ear structures. Here,we show that Hoxa2 is selectively required in cranial neural crest cells (NCCs). Moreover, we used a Cre-ERT2 recombinase system to induce a temporally controlled Hoxa2 deletion in the mouse. Hoxa2inactivation after cranial NCC migration into branchial arches resulted in homeotic transformation of hyoid into mandibular arch skeletal derivatives,reproducing the conventional Hoxa2 knockout phenotype, and induced rapid changes in Alx4, Bapx1, Six2 and Msx1 expression patterns. Thus, hyoid NCCs retain a remarkable degree of plasticity even after their migration in the arch, and require Hoxa2 as an integral component of their morphogenetic program. Moreover, subpopulations of postmigratory NCCs required Hoxa2 at discrete time points to pattern distinct derivatives. This study provides the first temporal inactivation of a vertebrate Hox gene and illustrates Hox requirement during late morphogenetic processes.
Collapse
Affiliation(s)
- Fabio Santagati
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, BP 10142, CU de Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
78
|
Stopper GF, Wagner GP. Of chicken wings and frog legs: a smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev Biol 2005; 288:21-39. [PMID: 16246321 DOI: 10.1016/j.ydbio.2005.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/06/2005] [Accepted: 09/06/2005] [Indexed: 01/24/2023]
Abstract
The tetrapod limb, which has served as a paradigm for the study of development and morphological evolution, is becoming a paradigm for developmental evolution as well. In its origin and diversification, the tetrapod limb has undergone a great deal of remodeling. These morphological changes and other evolutionary phenomena have produced variation in mechanisms of tetrapod limb development. Here, we review that variation in the four major clades of limbed tetrapods. Comparisons in a phylogenetic context reveal details of development and evolution that otherwise may have been unclear. Such details include apparent differences in the mechanisms of dorsal-ventral patterning and limb identity specification between mouse and chick and mechanistic novelties in amniotes, anurans, and urodeles. As we gain a better understanding of the details of limb development, further differences among taxa will be revealed. The use of appropriate comparative techniques in a phylogenetic context thus sheds light on evolutionary transitions in limb morphology and the generality of developmental models across species and is therefore important to both evolutionary and developmental biologists.
Collapse
Affiliation(s)
- Geffrey F Stopper
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA.
| | | |
Collapse
|
79
|
Williams TM, Williams ME, Heaton JH, Gelehrter TD, Innis JW. Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability. Nucleic Acids Res 2005; 33:4475-84. [PMID: 16087734 PMCID: PMC1183491 DOI: 10.1093/nar/gki761] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions with co-factors provide a means by which HOX proteins exert specificity. To identify candidate protein interactors of HOXA13, we created and screened an E11.5–E12.5, distal limb bud yeast two-hybrid prey library. Among the interactors, we isolated the BMP-signaling effector Smad5, which interacted with the paralogous HOXD13 but not with HOXA11 or HOXA9, revealing unique interaction capabilities of the AbdB-like HOX proteins. Using deletion mutants, we determined that the MH2 domain of Smad5 is necessary for HOXA13 interaction. This is the first report demonstrating an interaction between HOX proteins and the MH2 domain of Smad proteins. HOXA13 and HOXD13 also bind to other BMP and TGF-β/Activin-regulated Smad proteins including Smad1 and Smad2, but not Smad4. Furthermore, HOXD13 could be co-immunoprecipitated with Smad1 from cells. Expression of HOXA13, HOXD13 or a HOXD13 homeodomain mutant (HOXD13IQN>AAA) antagonized TGF-β-stimulated transcriptional activation of the pAdtrack-3TP-Lux reporter vector in Mv1Lu cells as well as the Smad3/Smad4-activated pTRS6-E1b promoter in Hep3B cells. Finally, using mammalian one-hybrid assay, we show that transcriptional activation by a GAL4/Smad3-C-terminus fusion protein is specifically inhibited by HOXA13. Our results identify a new co-factor for HOX group 13 proteins and suggest that HOX proteins may modulate Smad-mediated transcriptional activity through protein–protein interactions without the requirement for HOX monomeric DNA-binding capability.
Collapse
Affiliation(s)
| | | | - Joanne H. Heaton
- Department of Human Genetics, University of MichiganAnn Arbor, MI, USA
| | | | - Jeffrey W. Innis
- Department of Human Genetics, University of MichiganAnn Arbor, MI, USA
- Department of Pediatrics, University of MichiganAnn Arbor, MI, USA
- To whom correspondence should be addressed. Tel: +1 734 647 3817; Fax: +1 734 763 3784;
| |
Collapse
|
80
|
Merabet S, Hombria JCG, Hu N, Pradel J, Graba Y. Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis. Development 2005; 132:3093-102. [PMID: 15930099 DOI: 10.1242/dev.01889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophilaposterior spiracle morphogenesis, a segment-specific structure that forms under Abdominal-B (AbdB) Hox control in the eighth abdominal segment (A8). We show that the Hedgehog (Hh), Wingless (Wg) and Epidermal Growth Factor Receptor (Egfr) pathways provide specific inputs for posterior spiracle morphogenesis and act in a genetic network made of multiple and rapidly evolving Hox/signalling interplays. A major function of AbdB during posterior spiracle organogenesis is to reset A8 intrasegmental patterning cues, first by reshaping wg and rhomboid expression patterns, then by reallocating the Hh signal and later by initiating de novo expression of the posterior compartment gene engrailed in anterior compartment cells. These changes in expression patterns confer axial specificity to otherwise reiteratively used segmental patterning cues, linking intrasegmental polarity and acquisition of segment identity.
Collapse
Affiliation(s)
- Samir Merabet
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS, Université de la méditerranée, Parc Scientifique de Luminy, Case 907, 13288, Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
81
|
Cobb J, Duboule D. Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia. Development 2005; 132:3055-67. [PMID: 15944189 DOI: 10.1242/dev.01885] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian Hox genes encode transcription factors that are crucial for proper morphogenesis along the various body axes. Despite their extensive structural and functional characterization, the nature of their target genes remains elusive. We have addressed this question by using DNA microarrays to screen for genes whose expression in developing distal forelimbs and genital eminences was significantly modified in the absence of the full Hoxd gene complement. This comparative approach not only identified specific candidate genes, but also allowed the examination of whether a similar Hox expression pattern in distinct tissues leads to the modulation of the same or different downstream genes. We report here a set of potential target genes, most of which were not previously known to play a role in the early stages of either limb or genital bud development. Interestingly, we find that the majority of these candidate genes are differentially expressed in both structures,although often at different times. This supports the idea that both appendices involve similar genetic controls, both upstream and downstream of the Hox gene family. These results highlight the surprising mechanistic relationship between these rather different body parts and suggest a common developmental strategy to build up the most distal appendicular structures of the body, i.e. the digits and the penis/clitoris.
Collapse
Affiliation(s)
- John Cobb
- National Research Center (NCCR Zoology and Animal Biology, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
82
|
Abstract
In the United States, Japan, United Kingdom, and Sweden, birth defects affecting the growth and development of the genitourinary (GU) regions are becoming increasingly prevalent, with incidences ranging as high as 1 in 125 live births. To understand the basis for these malformations, scientists have begun to examine the function of developmental genes in GU tissues. At the forefront of these investigations are studies examining the role of the 5' HOX proteins during the formation of the GU region. In this report we discuss what is known about HOXA13 and HOXD13 function during GU development, highlighting some of the cellular and molecular mechanisms controlled by these proteins during the GU formation. Finally, the translational benefits of identifying HOX target genes are discussed; first to explain the prevalence of some GU defects as well as a mechanism to facilitate their prevention in the birth population.
Collapse
Affiliation(s)
- Virginia Scott
- Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
83
|
von Bubnoff A, Peiffer DA, Blitz IL, Hayata T, Ogata S, Zeng Q, Trunnell M, Cho KWY. Phylogenetic footprinting and genome scanning identify vertebrate BMP response elements and new target genes. Dev Biol 2005; 281:210-26. [PMID: 15893974 DOI: 10.1016/j.ydbio.2005.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/08/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
The complex gene regulatory networks governed by growth factor signaling are still poorly understood. In order to accelerate the rate of progress in uncovering these networks, we explored the usefulness of interspecies sequence comparison (phylogenetic footprinting) to identify conserved growth factor response elements. The promoter regions of two direct target genes of Bone Morphogenetic Protein (BMP) signaling in Xenopus, Xvent2 and XId3, were compared with the corresponding human and/or mouse counterparts to identify conserved sequences. A comparison between the Xenopus and human Vent2 promoter sequences revealed a highly conserved 21 bp sequence that overlaps the previously reported Xvent2 BMP response element (BRE). Reporter gene assays using Xenopus animal pole ectodermal explants (animal caps) revealed that this conserved 21 bp BRE is both necessary and sufficient for BMP responsiveness. We combine the same phylogenetic footprinting approach with luciferase assays to identify a highly conserved 49 bp BMP responsive region in the Xenopus Id3 promoter. GFP reporters containing multimers of either the Xvent2 or XId3 BREs appear to recapitulate endogenous BMP signaling activity in transgenic Xenopus embryos. Comparison of the Xvent2 and the XId3 BRE revealed core sequence features that are both necessary and sufficient for BMP responsiveness: a Smad binding element (SBE) and a GC-rich element resembling an OAZ binding site. Based on these findings, we have implemented genome scanning to identify over 100 additional putative target genes containing 2 or more BRE-like sequences which are conserved between human and mouse. RT-PCR and in situ analyses revealed that this in silico approach can effectively be used to identify potential BMP target genes.
Collapse
Affiliation(s)
- Andreas von Bubnoff
- Department of Developmental and Cell Biology, Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Hersh BM, Carroll SB. Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 2005; 132:1567-77. [PMID: 15753212 DOI: 10.1242/dev.01737] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of development by Hox proteins is important in the evolution of animal morphology, but how the regulatory sequences of Hox-regulated target genes function and evolve is unclear. To understand the regulatory organization and evolution of a Hox target gene, we have identified a wing-specific cis-regulatory element controlling the knot gene, which is expressed in the developing Drosophila wing but not the haltere. This regulatory element contains a single binding site that is crucial for activation by the transcription factor Cubitus interruptus (Ci), and a cluster of binding sites for repression by the Hox protein Ultrabithorax (UBX). The negative and positive control regions are physically separable, demonstrating that UBX does not repress by competing for occupancy of Ci-binding sites. Although knot expression is conserved among Drosophilaspecies, this cluster of UBX binding sites is not. We isolated the knot wing cis-regulatory element from D. pseudoobscura,which contains a cluster of UBX-binding sites that is not homologous to the functionally defined D. melanogaster cluster. It is, however,homologous to a second D. melanogaster region containing a cluster of UBX sites that can also function as a repressor element. Thus, the knot regulatory region in D. melanogaster has two apparently functionally redundant blocks of sequences for repression by UBX, both of which are widely separated from activator sequences. This redundancy suggests that the complete evolutionary unit of regulatory control is larger than the minimal experimentally defined control element. The span of regulatory sequences upon which selection acts may, in general, be more expansive and less modular than functional studies of these elements have previously indicated.
Collapse
Affiliation(s)
- Bradley M Hersh
- University of Wisconsin-Madison, Howard Hughes Medical Institute, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
85
|
Shou S, Scott V, Reed C, Hitzemann R, Stadler HS. Transcriptome analysis of the murine forelimb and hindlimb autopod. Dev Dyn 2005; 234:74-89. [PMID: 16059910 DOI: 10.1002/dvdy.20514] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To gain insight into the coordination of gene expression profiles during forelimb and hindlimb differentiation, a transcriptome analysis of mouse embryonic autopod tissues was performed using Affymetrix Murine Gene Chips (MOE-430). Forty-four transcripts with expression differences higher than 2-fold (T test, P < or = 0.05) were detected between forelimb and hindlimb tissues including 38 new transcripts such as Rdh10, Frzb, Tbx18, and Hip that exhibit differential limb expression. A comparison of gene expression profiles in the forelimb, hindlimb, and brain revealed 24 limb-signature genes whose expression was significantly enriched in limb autopod versus brain tissue (fold change >2, P < or = 0.05). Interestingly, the genes exhibiting enrichment in the developing autopod also segregated into significant fore- and hindlimb-specific clusters (P < or = 0.05) suggesting that by E 12.5, unique gene combinations are being used during the differentiation of each autopod type.
Collapse
Affiliation(s)
- Siming Shou
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|