52
|
Hing B, Davidson S, Lear M, Breen G, Quinn J, McGuffin P, MacKenzie A. A polymorphism associated with depressive disorders differentially regulates brain derived neurotrophic factor promoter IV activity. Biol Psychiatry 2012; 71:618-26. [PMID: 22265241 PMCID: PMC3712170 DOI: 10.1016/j.biopsych.2011.11.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Changes in brain derived neurotrophic factor (BDNF) expression have been associated with mood disorders and cognitive dysfunction. Transgenic models that overexpress or underexpress BDNF demonstrate similar deficits in cognition and mood. We explored the hypothesis that BDNF expression is controlled by balancing the activity of BDNF promoter IV (BP4) with a negative regulatory region containing a polymorphism associated with cognitive dysfunction and mood disorders. METHODS We used comparative genomics, transgenic mouse production, and magnetofection of primary neurons with luciferase reporters and signal transduction agonist treatments to identify novel polymorphic cis-regulatory regions that control BP4 activity. RESULTS We show that BP4 is active in the hippocampus, the cortex, and the amygdala and responds strongly to stimuli such as potassium chloride, lithium chloride, and protein kinase C agonists. We also identified a highly conserved sequence 21 kilobase 5' of BP4 that we called BE5.2, which contains rs12273363, a polymorphism associated with decreased BDNF expression, mood disorders, and cognitive decline. BE5.2 modulated the ability of BP4 to respond to different stimuli. Intriguingly, the rarer disease associated allele, BE5.2(C), acted as a significantly stronger repressor of BP4 activity than the more common BE5.2(T) allele. CONCLUSIONS This study shows that the C allele of rs12273363, which is associated with mood disorder, modulates BP4 activity in an allele-specific manner following cell depolarization or the combined activity of protein kinase A and protein kinase C pathways. The relevance of these findings to the role of BDNF misexpression in mood disorders and cognitive decline is discussed.
Collapse
Affiliation(s)
- Benjamin Hing
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Scott Davidson
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Marrisa Lear
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Gerome Breen
- Institute of Psychiatry, Kings College London, London, United Kingdom
| | - John Quinn
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Peter McGuffin
- Institute of Psychiatry, Kings College London, London, United Kingdom
| | - Alasdair MacKenzie
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
53
|
Pauls S, Smith SF, Elgar G. Lens development depends on a pair of highly conserved Sox21 regulatory elements. Dev Biol 2012; 365:310-8. [PMID: 22387845 PMCID: PMC3480646 DOI: 10.1016/j.ydbio.2012.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 02/03/2023]
Abstract
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.
Collapse
|
54
|
Schanze D, Ekici AB, Pfuhlmann B, Reis A, Stöber G. Evaluation of conserved and ultra-conserved non-genic sequences in chromosome 15q15-linked periodic catatonia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:77-86. [PMID: 22162401 DOI: 10.1002/ajmg.b.32004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023]
Abstract
Conserved and ultra-conserved non-genic sequence elements (CNGs, UCEs) between human and other mammalian genomes seem to constitute a heterogeneous group of functional sequences which likely have important biological function. To determine whether variation in CNGs and UCEs contributes to risk for the schizophrenic subphenotype of periodic catatonia (according to K. Leonhard; OMIM 605419), we evaluated non-coding elements at a critical 7.35 Mb interval on chromosome 15q15 in 8 unrelated cases with periodic catatonia (derived from pedigrees compatible with linkage to chromosome 15q15) and 8 controls, followed by association studies in a cohort of 510 cases and controls. Among 65 CNGs (≥100 bp, 100% identity; human-mouse comparison), 7 CNGs matched criteria for UCE (≥200 bp, 100% identity). A hot spot of 62/65 CNGs (95%) appeared at the MEIS2 locus, which implicates functional importance of associated (ultra-)conserved elements to this early developmental gene, which is present in the human fetal neocortex and associated with metabolic side effects to antipsychotic drugs. Further CNGs were identified at the PLCB2 and DLL4 locus or located intergenic between TYRO3 and MAPKBP1. Automated sequencing revealed genetic variation in 12.3% of CNGs, but frequencies were low (MAF: 0.06-0.4) in cases. Three variants located inside CNGs/UCEs were found in cases only. In a case-control association study we could not confirm a significant association of these three CNG-variants with periodic catatonia. Our results suggest genetic variation in (ultra-)conserved non-genic sequence elements which might alter functional properties. The identified variants are genetically not associated with the phenotype of periodic catatonia.
Collapse
Affiliation(s)
- Denny Schanze
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
55
|
Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, Nicod J, Groszer M, Baban D, Sahgal N, Cazier JB, Ragoussis J, Davies KE, Geschwind DH, Fisher SE. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 2011; 7:e1002145. [PMID: 21765815 PMCID: PMC3131290 DOI: 10.1371/journal.pgen.1002145] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Sonja C. Vernes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter L. Oliver
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Spiteri
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Helen E. Lockstone
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jennifer M. Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joses Ho
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cedric Mombereau
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ariel Brewer
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ernesto Lowy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Groszer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Dilair Baban
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Natasha Sahgal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Semel Institute and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon E. Fisher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|