51
|
Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, Czabotar PE, Voss AK, Strasser A. Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK. Cell 2019; 173:1217-1230.e17. [PMID: 29775594 DOI: 10.1016/j.cell.2018.04.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022]
Abstract
Intrinsic apoptosis, reliant on BAX and BAK, has been postulated to be fundamental for morphogenesis, but its precise contribution to this process has not been fully explored in mammals. Our structural analysis of BOK suggests close resemblance to BAX and BAK structures. Notably, Bok-/-Bax-/-Bak-/- animals exhibited more severe defects and died earlier than Bax-/-Bak-/- mice, implying that BOK has overlapping roles with BAX and BAK during developmental cell death. By analyzing Bok-/-Bax-/-Bak-/- triple-knockout mice whose cells are incapable of undergoing intrinsic apoptosis, we identified tissues that formed well without this process. We provide evidence that necroptosis, pyroptosis, or autophagy does not substantially substitute for the loss of apoptosis. Albeit very rare, unexpected attainment of adult Bok-/-Bax-/-Bak-/- mice suggests that morphogenesis can proceed entirely without apoptosis mediated by these proteins and possibly without cell death in general.
Collapse
Affiliation(s)
- Francine F S Ke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Hannah K Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Angus D Cowan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
52
|
Coupling between dynamic 3D tissue architecture and BMP morphogen signaling during Drosophila wing morphogenesis. Proc Natl Acad Sci U S A 2019; 116:4352-4361. [PMID: 30760594 PMCID: PMC6410814 DOI: 10.1073/pnas.1815427116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue morphogenesis is a dynamic process often accompanied by cell patterning and differentiation. Although how conserved growth factor signaling affects cell and tissue shapes has been actively studied, much less is known about how signaling and dynamic morphogenesis are mutually coordinated. Our study shows that BMP signaling and 3D morphogenesis of the Drosophila pupal wing are tightly coupled. These findings are highlighted by the fact that the directionality of BMP signal is changed from lateral planar during the inflation stage to interplanar after re-apposition of the dorsal and ventral wing epithelia. We suspect that the dynamic interplay between planar and interplanar signaling linked to tissue shape changes is likely to be used across species in many developing organs. At the level of organ formation, tissue morphogenesis drives developmental processes in animals, often involving the rearrangement of two-dimensional (2D) structures into more complex three-dimensional (3D) tissues. These processes can be directed by growth factor signaling pathways. However, little is known about how such morphological changes affect the spatiotemporal distribution of growth factor signaling. Here, using the Drosophila pupal wing, we address how decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signaling and 3D wing morphogenesis are coordinated. Dpp, expressed in the longitudinal veins (LVs) of the pupal wing, initially diffuses laterally within both dorsal and ventral wing epithelia during the inflation stage to regulate cell proliferation. Dpp localization is then refined to the LVs within each epithelial plane, but with active interplanar signaling for vein patterning/differentiation, as the two epithelia appose. Our data further suggest that the 3D architecture of the wing epithelia and the spatial distribution of BMP signaling are tightly coupled, revealing that 3D morphogenesis is an emergent property of the interactions between extracellular signaling and tissue shape changes.
Collapse
|
53
|
Transcriptome profiling of zebrafish optic fissure fusion. Sci Rep 2019; 9:1541. [PMID: 30733552 PMCID: PMC6367446 DOI: 10.1038/s41598-018-38379-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Incomplete fusion of the optic fissure leads to ocular coloboma, a congenital eye defect that affects up to 7.5 per 10,000 births and accounts for up to 10 percent of childhood blindness. The molecular and cellular mechanisms that facilitate optic fissure fusion remain elusive. We have profiled global gene expression during optic fissure morphogenesis by transcriptome analysis of tissue dissected from the margins of the zebrafish optic fissure and the opposing dorsal retina before (32 hours post fertilisation, hpf), during (48 hpf) and after (56 hpf) optic fissure fusion. Differential expression analysis between optic fissure and dorsal retinal tissue resulted in the detection of several known and novel developmental genes. The expression of selected genes was validated by qRT-PCR analysis and localisation investigated using in situ hybridisation. We discuss significantly overrepresented functional ontology categories in the context of optic fissure morphogenesis and highlight interesting transcripts from hierarchical clustering for subsequent analysis. We have identified netrin1a (ntn1a) as highly differentially expressed across optic fissure fusion, with a resultant ocular coloboma phenotype following morpholino antisense translation-blocking knockdown and downstream disruption of atoh7 expression. To support the identification of candidate genes in human studies, we have generated an online open-access resource for fast and simple quantitative querying of the gene expression data. Our study represents the first comprehensive analysis of the zebrafish optic fissure transcriptome and provides a valuable resource to facilitate our understanding of the complex aetiology of ocular coloboma.
Collapse
|
54
|
Han T, Wu N, Wang Y, Shen W, Zou J. miR‑16‑2‑3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells. Int J Mol Med 2019; 43:1441-1451. [PMID: 30664182 PMCID: PMC6365086 DOI: 10.3892/ijmm.2019.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by targeting the 3′ untranslated region (UTR) of target genes, and serve diverse roles in cell proliferation, differentiation and apoptosis. However, the association between miR-16-2-3p and 3-phosphoinositide-dependent protein kinase-1 (PDPK1) in nonsyndromic cleft lip (NSCL) remains unclear. In the present study, a luciferase activity assay indicated that miR-16-2-3p negatively regulated PDPK1 in maxillary primordium mesenchymal cells (MPMCs). In addition, it was confirmed that the expression levels of miR-16-2-3p was markedly increased in cleft lip tissues compared with those in adjacent normal lip tissues. A negative correlation between miR-16-2-3p and PDPK1 in cleft lip tissues was observed. Furthermore, miR-16-2-3p inhibited cell proliferation and migration, and induced apoptosis of MPMCs via repressing PDPK1. Finally, miR-16-2-3p exerted its suppressive role in MPMCs by inhibiting the PDPK1/protein kinase B signaling pathway. These results indicate that miR-16-2-3p may inhibit cell proliferation and migration, and promote apoptosis in MPMCs through repression of PDPK1 and may be a potential target for future clinical prevention and treatment of NSCL.
Collapse
Affiliation(s)
- Tao Han
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ni Wu
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Youjing Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
55
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
56
|
Wolf CJ, Belair DG, Becker CM, Das KP, Schmid JE, Abbott BD. Development of an organotypic stem cell model for the study of human embryonic palatal fusion. Birth Defects Res 2018; 110:1322-1334. [PMID: 30347137 DOI: 10.1002/bdr2.1394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cleft palate (CP) is a common birth defect, occurring in an estimated 1 in 1,000 births worldwide. The secondary palate is formed by paired palatal shelves, consisting of a mesenchymal core with an outer layer of epithelial cells that grow toward each other, attach, and fuse. One of the mechanisms that can cause CP is failure of fusion, that is, failure to remove the epithelial seam between the palatal shelves to allow the mesenchyme confluence. Epidermal growth factor (EGF) plays an important role in palate growth and differentiation, while it may impede fusion. METHODS We developed a 3D organotypic model using human mesenchymal and epithelial stem cells to mimic human embryonic palatal shelves, and tested the effects of human EGF (hEGF) on proliferation and fusion. Spheroids were generated from human umbilical-derived mesenchymal stem cells (hMSCs) directed down an osteogenic lineage. Heterotypic spheroids, or organoids, were constructed by coating hMSC spheroids with extracellular matrix solution followed by a layer of human progenitor epithelial keratinocytes (hPEKs). Organoids were incubated in co-culture medium with or without hEGF and assessed for cell proliferation and time to fusion. RESULTS Osteogenic differentiation in hMSC spheroids was highest by Day 13. hEGF delayed fusion of organoids after 12 and 18 hr of contact. hEGF increased proliferation in organoids at 4 ng/ml, and proliferation was detected in hPEKs alone. CONCLUSION Our results show that this model of human palatal fusion appropriately mimics the morphology of the developing human palate and responds to hEGF as expected.
Collapse
Affiliation(s)
- Cynthia J Wolf
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - David G Belair
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - Carrie M Becker
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Kaberi P Das
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - Judith E Schmid
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - Barbara D Abbott
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| |
Collapse
|
57
|
Aristotelous AC, Crawford JM, Edwards GS, Kiehart DP, Venakides S. Mathematical models of dorsal closure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:111-131. [PMID: 29852207 PMCID: PMC6109426 DOI: 10.1016/j.pbiomolbio.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Dorsal closure is a model cell sheet movement that occurs midway through Drosophila embryogenesis. A dorsal hole, filled with amnioserosa, closes through the dorsalward elongation of lateral epidermal cell sheets. Closure requires contributions from 5 distinct tissues and well over 140 genes (see Mortensen et al., 2018, reviewed in Kiehart et al., 2017 and Hayes and Solon, 2017). In spite of this biological complexity, the movements (kinematics) of closure are geometrically simple at tissue, and in certain cases, at cellular scales. This simplicity has made closure the target of a number of mathematical models that seek to explain and quantify the processes that underlie closure's kinematics. The first (purely kinematic) modeling approach recapitulated well the time-evolving geometry of closure even though the underlying physical principles were not known. Almost all subsequent models delve into the forces of closure (i.e. the dynamics of closure). Models assign elastic, contractile and viscous forces which impact tissue and/or cell mechanics. They write rate equations which relate the forces to one another and to other variables, including those which represent geometric, kinematic, and or signaling characteristics. The time evolution of the variables is obtained by computing the solution of the model's system of equations, with optimized model parameters. The basis of the equations range from the phenomenological to biophysical first principles. We review various models and present their contribution to our understanding of the molecular mechanisms and biophysics of closure. Models of closure will contribute to our understanding of similar movements that characterize vertebrate morphogenesis.
Collapse
Affiliation(s)
- A C Aristotelous
- Department of Mathematics, West Chester University, West Chester, PA, USA.
| | - J M Crawford
- Department of Biology, Duke University, Durham, NC, USA
| | - G S Edwards
- Department of Physics, Duke University, Durham, NC, USA
| | - D P Kiehart
- Department of Biology, Duke University, Durham, NC, USA.
| | - S Venakides
- Department of Mathematics, Duke University, Durham, NC, USA
| |
Collapse
|
58
|
Shinotsuka N, Yamaguchi Y, Nakazato K, Matsumoto Y, Mochizuki A, Miura M. Caspases and matrix metalloproteases facilitate collective behavior of non-neural ectoderm after hindbrain neuropore closure. BMC DEVELOPMENTAL BIOLOGY 2018; 18:17. [PMID: 30064364 PMCID: PMC6069860 DOI: 10.1186/s12861-018-0175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
Background Mammalian brain is formed through neural tube closure (NTC), wherein both ridges of opposing neural folds are fused in the midline and remodeled in the roof plate of the neural tube and overlying non-neural ectodermal layer. Apoptosis is widely observed from the beginning of NTC at the neural ridges and is crucial for the proper progression of NTC, but its role after the closure remains less clear. Results Here, we conducted live-imaging analysis of the mid-hindbrain neuropore (MHNP) closure and revealed unexpected collective behavior of cells surrounding the MHNP. The cells first gathered to the closing point and subsequently relocated as if they were released from the point. Inhibition of caspases or matrix metalloproteases with chemical inhibitors impaired the cell relocation. Conclusions These lines of evidence suggest that apoptosis-mediated degradation of extracellular matrix might facilitate the final process of neuropore closure. Electronic supplementary material The online version of this article (10.1186/s12861-018-0175-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naomi Shinotsuka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, 060-0819, Japan.
| | - Kenichi Nakazato
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yudai Matsumoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.,Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
59
|
Li J, Yuan Y, He J, Feng J, Han X, Jing J, Ho TV, Xu J, Chai Y. Constitutive activation of hedgehog signaling adversely affects epithelial cell fate during palatal fusion. Dev Biol 2018; 441:191-203. [PMID: 29981310 DOI: 10.1016/j.ydbio.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023]
Abstract
Cleft palate is one of the most common craniofacial congenital defects in humans. It is associated with multiple genetic and environmental risk factors, including mutations in the genes encoding signaling molecules in the sonic hedgehog (Shh) pathway, which are risk factors for cleft palate in both humans and mice. However, the function of Shh signaling in the palatal epithelium during palatal fusion remains largely unknown. Although components of the Shh pathway are localized in the palatal epithelium, specific inhibition of Shh signaling in palatal epithelium does not affect palatogenesis. We therefore utilized a hedgehog (Hh) signaling gain-of-function mouse model, K14-Cre;R26SmoM2, to uncover the role of Shh signaling in the palatal epithelium during palatal fusion. In this study, we discovered that constitutive activation of Hh signaling in the palatal epithelium results in submucous cleft palate and persistence of the medial edge epithelium (MEE). Further investigation revealed that precise downregulation of Shh signaling is required at a specific time point in the MEE during palatal fusion. Upregulation of Hh signaling in the palatal epithelium maintains the proliferation of MEE cells. This may be due to a dysfunctional p63/Irf6 regulatory loop. The resistance of MEE cells to apoptosis is likely conferred by enhancement of a cell adhesion network through the maintenance of p63 expression. Collectively, our data illustrate that persistent Hh signaling in the palatal epithelium contributes to the etiology and pathogenesis of submucous cleft palate through its interaction with a p63/Irf6-dependent biological regulatory loop and through a p63-induced cell adhesion network.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA; Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA; Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA; Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
60
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
61
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
62
|
Gao LR, Wang G, Zhang J, Li S, Chuai M, Bao Y, Hocher B, Yang X. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation. J Cell Physiol 2018; 233:7120-7133. [PMID: 29574800 DOI: 10.1002/jcp.26528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022]
Abstract
An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI+ cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes.
Collapse
Affiliation(s)
- Lin-Rui Gao
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jing Zhang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Shuai Li
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Berthold Hocher
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Xuesong Yang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
63
|
Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018; 145:dev157628. [PMID: 29437830 PMCID: PMC5868993 DOI: 10.1242/dev.157628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers. We observed morphological changes in the seam epithelia, intermingling of cells of epithelial descent into the mesenchyme and molecular signatures of epithelial-mesenchymal transition (EMT). Utilizing mouse lines with cephalic epithelium-specific Pbx loss exhibiting CL/P, we demonstrate that these cellular behaviors are Pbx dependent, as is the transcriptional regulation of the EMT driver Snail1. Furthermore, in the embryo, the majority of epithelial cells expressing high levels of Snail1 do not undergo apoptosis. Pbx1 loss- and gain-of-function in a tractable epithelial culture system revealed that Pbx1 is both necessary and sufficient for EMT induction. This study establishes that Pbx-dependent EMT programs mediate murine upper lip/primary palate morphogenesis and fusion via regulation of Snail1. Of note, the EMT signatures observed in the embryo are mirrored in the epithelial culture system.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Bingsi Li
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Hui Yang
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irene F Choi
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick Lewicki
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Sameer Khan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
| | - C Theresa Vincent
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony M C Brown
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Trevor Williams
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| |
Collapse
|
64
|
Seifu DG, Meghezi S, Unsworth L, Mequanint K, Mantovani D. Viscoelastic properties of multi-layered cellularized vascular tissues fabricated from collagen gel. J Mech Behav Biomed Mater 2018; 80:155-163. [PMID: 29427931 DOI: 10.1016/j.jmbbm.2018.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2017] [Accepted: 01/20/2018] [Indexed: 01/31/2023]
Abstract
Since collagen is one of the major extracellular matrix components in vascular tissues, its use for vascular tissue engineering has several advantages. However, collagen extraction and processing for tissue engineering application alters its structure. As a result, collagen-based vascular constructs show poor mechanical properties compared to native tissues. In this work, multi-layer (single, double, and triple) vascular tissue constructs were engineered from porcine smooth muscle cells (PSMCs) entrapped in collagen gel by concentrically and sequentially layering after compaction of the previous layer(s). The engineered tissues were matured for either 14 or 21 days to allow the collagen gel to remodel before viscoelasticity, compliance, histological, and protein expression studies were conducted. While there was no significant difference upon addition of the different layers on the elastic modulus (p > .05), the viscous modulus of the single layer construct was significantly lower than the double and triple layer constructs (p < .05). Increasing the number of layers of the cellularized collagen construct increased the wall thickness and the viscous modulus of the construct. Furthermore, the cellularized single-layer construct had a relatively high compliance, but the double and triple layer constructs had compliance values comparable to both engineered vessels and native vessels. PSMCs were uniformly distributed throughout the cross-section and expressed the anticipated marker proteins smooth muscle-α actin, calponin, and smooth muscle myosin heavy chain. Taken together, this study demonstrated the viscoelastic responsiveness of multi-layer collagen-gel based vascular tissues.
Collapse
Affiliation(s)
- Dawit G Seifu
- Dept. of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec City, Canada
| | - Sébastien Meghezi
- Dept. of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec City, Canada
| | - Larry Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada; Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada.
| | - Diego Mantovani
- Dept. of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec City, Canada.
| |
Collapse
|
65
|
Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues. Dev Biol 2018; 435:130-137. [PMID: 29397878 PMCID: PMC5854268 DOI: 10.1016/j.ydbio.2018.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Indexed: 12/03/2022]
Abstract
Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Conditional knockout of Grhl3 in the hindgut causes spinal NTDs owing to incomplete closure of the posterior neuropore late in spinal neurulation. On the other hand, closure fails early in spinal neurulation in Grhl3 null embryos, prior to the normal stage of hindgut expression. Stage-dependent analysis of Grhl3 expression implicates the non-neural ectoderm in the early failure of closure. Grhl3 is also expressed in neural plate and neuromesodermal precursors, but knock-out in these tissues does not cause NTDs.
Collapse
|
66
|
Giessen E, Brink L, Lourenburg M, Spanjersberg T, Hut P. Calf with congenital lateralised nostrils and maxillary hypoplasia. VETERINARY RECORD CASE REPORTS 2018. [DOI: 10.1136/vetreccr-2017-000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Emmie Giessen
- Department of Farm Animal HealthUtrecht UniversityFaculty of Veterinary MedicineUtrechtThe Netherlands
| | - Lianne Brink
- Department of Farm Animal HealthUtrecht UniversityFaculty of Veterinary MedicineUtrechtThe Netherlands
| | - Maxine Lourenburg
- Department of Farm Animal HealthUtrecht UniversityFaculty of Veterinary MedicineUtrechtThe Netherlands
| | - Talitha Spanjersberg
- Department of Farm Animal HealthUtrecht UniversityFaculty of Veterinary MedicineUtrechtThe Netherlands
| | - Peter Hut
- Department of Farm Animal HealthUtrecht UniversityFaculty of Veterinary MedicineUtrechtThe Netherlands
| |
Collapse
|
67
|
Heimsath EG, Yim YI, Mustapha M, Hammer JA, Cheney RE. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep 2017; 7:17354. [PMID: 29229982 PMCID: PMC5725431 DOI: 10.1038/s41598-017-17638-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Myosin-X (Myo10) is an unconventional myosin best known for its striking localization to the tips of filopodia. Despite the broad expression of Myo10 in vertebrate tissues, its functions at the organismal level remain largely unknown. We report here the generation of KO-first (Myo10tm1a/tm1a), floxed (Myo10tm1c/tm1c), and KO mice (Myo10tm1d/tm1d). Complete knockout of Myo10 is semi-lethal, with over half of homozygous KO embryos exhibiting exencephaly, a severe defect in neural tube closure. All Myo10 KO mice that survive birth exhibit a white belly spot, all have persistent fetal vasculature in the eye, and ~50% have webbed digits. Myo10 KO mice that survive birth can breed and produce litters of KO embryos, demonstrating that Myo10 is not absolutely essential for mitosis, meiosis, adult survival, or fertility. KO-first mice and an independent spontaneous deletion (Myo10m1J/m1J) exhibit the same core phenotypes. During retinal angiogenesis, KO mice exhibit a ~50% decrease in endothelial filopodia, demonstrating that Myo10 is required to form normal numbers of filopodia in vivo. The Myo10 mice generated here demonstrate that Myo10 has important functions in mammalian development and provide key tools for defining the functions of Myo10 in vivo.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang-In Yim
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirna Mustapha
- Department of Otolaryngology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard E Cheney
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
68
|
Zhou Y, Liu X, Huang F, Liu Y, Cao X, Shen L, Long C, He D, Lin T, Wei G. Epithelial-mesenchymal transformation and apoptosis in rat urethra development. Pediatr Res 2017; 82:1073-1079. [PMID: 28876330 DOI: 10.1038/pr.2017.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
BackgroundTo examine the mechanism of urethral seam formation during embryonal development of rat urethra.MethodsTime-mated Sprague-Dawley rats were killed and the genital tubercles of male pups harvested on embryonic day (ED) 15, 16, 18, and 19. External morphology was observed under scanning electron microscope. Serial transverse sections were prepared to examine dynamic changes in the urethral seam morphology with hematoxylin-eosin staining, immunohistochemistry, transmission electron microscopy, and double immunofluorescence.ResultsBilateral outgrowth of urethral swelling followed by urethral plate fusion in the midline to form urethral seam was observed from ED 16 onwards. Coexpression of epithelial and mesenchymal markers was observed in several cells at the urethral seam; a few cells with coexpression of epithelial and apoptotic markers were also observed. Mesenchymal transformation of epithelial cells and apoptotic epithelial cells was observed under transmission electron microscope.ConclusionUrethral formation occurs by tubulogenesis, which initiates proximally and progresses distally. This is the first study to demonstrate epithelial-mesenchymal transformation and epithelial cell apoptosis in the urethral seam cells of fetal rats. These findings provide new insights into the mechanisms involved in embryonal development of the urethra.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xing Liu
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fangyuan Huang
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yang Liu
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xining Cao
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lianju Shen
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chunlan Long
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei He
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tao Lin
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
69
|
Akhiwu BI, Efunkoya AA, Akhiwu HO, Adebola RA. Congenital Heart Disease in Cleft Lip and Palate Patients: How Common Is the Association? JOURNAL OF ADVANCED ORAL RESEARCH 2017. [DOI: 10.1177/2229411217729082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Objectives: To determine the prevalence of congenital heart disease in patients with orofacial cleft in a Nigerian population. Materials and Methods: A retrospective review of all the case files of patients with orofacial cleft managed at the Dental and Maxillofacial Surgery unit of the Aminu Kano Teaching Hospital between 2007 and 2014. Data were analyzed using SPSS version 16. Results: A total of 133 patients with cleft lip and palate were seen during the period of study comprising 77 males and 56 females, giving an M:F ratio of 1:0.7. The age range was 15 days–36 years with a mean age of 6 years. There were five cases of congenital heart disease made up of two males and three females, giving a prevalence of 3.76 per cent. Conclusion: This study showed that the prevalence of congenital heart disease in patients with orofacial cleft was low. However, the need for routine echocardiography in all orofacial cleft patients especially children should not be overlooked.
Collapse
Affiliation(s)
- Benjamin I. Akhiwu
- Dental and Maxillofacial Surgery Department, Jos University Teaching Hospital/University of Jos (formerly of Aminu Kano Teaching Hospital, Kano)
| | | | - Helen O. Akhiwu
- Department of Paediatrics, Jos University Teaching Hospital, Kano (formerly of Aminu Kano Teaching Hospital, Kano)
| | - Rafael A. Adebola
- Dental and Maxillofacial Surgery Department, Aminu Kano Teaching Hospital, Kano
| |
Collapse
|
70
|
Belair DG, Wolf CJ, Wood C, Ren H, Grindstaff R, Padgett W, Swank A, MacMillan D, Fisher A, Winnik W, Abbott BD. Engineering human cell spheroids to model embryonic tissue fusion in vitro. PLoS One 2017; 12:e0184155. [PMID: 28898253 PMCID: PMC5595299 DOI: 10.1371/journal.pone.0184155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/19/2017] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton’s Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.
Collapse
Affiliation(s)
- David G. Belair
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Cynthia J. Wolf
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Carmen Wood
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Hongzu Ren
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Rachel Grindstaff
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - William Padgett
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Adam Swank
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Denise MacMillan
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Anna Fisher
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Witold Winnik
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Barbara D. Abbott
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
71
|
Ono Minagi H, Sarper SE, Kurosaka H, Kuremoto KI, Taniuchi I, Sakai T, Yamashiro T. Runx1 mediates the development of the granular convoluted tubules in the submandibular glands. PLoS One 2017; 12:e0184395. [PMID: 28877240 PMCID: PMC5587342 DOI: 10.1371/journal.pone.0184395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023] Open
Abstract
The mouse granular convoluted tubules (GCTs), which are only located in the submandibular gland (SMG) are known to develop and maintain their structure in an androgen-dependent manner. We previously demonstrated that the GCTs are involuted by the epithelial deletion of core binding factor β (CBFβ), a transcription factor that physically interacts with any of the Runt-related transcription factor (RUNX) proteins (RUNX1, 2 and 3). This result clearly demonstrates that the Runx /Cbfb signaling pathway is indispensable in the development of the GCTs. However, it is not clear which of the RUNX proteins plays useful role in the development of the GCTs by activating the Runx /Cbfb signaling pathway. Past studies have revealed that the Runx /Cbfb signaling pathway plays important roles in various aspects of development and homeostatic events. Moreover, the Runx genes have different temporospatial requirements depending on the biological situation. In the present study, the GCTs of the SMG showed a remarkable phenotype of, which phenocopied the epithelial deletion of Cbfb, in epithelial-specific Runx1 conditional knock-out (cKO) mice. The results indicate that Runx1 works as a partner of Cbfb during the development of the GCTs. We also discovered that the depletion of Runx1 resulted in the reduced secretion of saliva in male mice. Consistent with this finding, one of the water channels, Aquaporin-5 (AQP5) was mislocalized in the cytoplasm of the Runx1 mutants, suggesting a novel role of Runx1 in the membrane trafficking of AQP5. In summary, the present findings demonstrated that RUNX1 is essential for the development of the GCTs. Furthermore, RUNX1 could also be involved in the membrane trafficking of the AQP5 protein of the acinar cells in the SMG in order to allow for the proper secretion of saliva.
Collapse
Affiliation(s)
- Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Safiye Esra Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Koh-ichi Kuremoto
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail: (TS); (TY)
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail: (TS); (TY)
| |
Collapse
|
72
|
Nishitani AM, Ohta S, Yung AR, Del Rio T, Gordon MI, Abraira VE, Avilés EC, Schoenwolf GC, Fekete DM, Goodrich LV. Distinct functions for netrin 1 in chicken and murine semicircular canal morphogenesis. Development 2017; 144:3349-3360. [PMID: 28851705 DOI: 10.1242/dev.144519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 08/11/2017] [Indexed: 12/16/2022]
Abstract
The vestibular system of the inner ear detects head position using three orthogonally oriented semicircular canals; even slight changes in their shape and orientation can cause debilitating behavioral defects. During development, the canals are sculpted from pouches that protrude from the otic vesicle, the embryonic anlage of the inner ear. In the center of each pouch, a fusion plate forms where cells lose their epithelial morphology and the basement membrane breaks down. Cells in the fusing epithelia intercalate and are removed, creating a canal. In mice, fusion depends on the secreted protein netrin 1 (Ntn1), which is necessary for basement membrane breakdown, although the underlying molecular mechanism is unknown. Using gain-of-function approaches, we found that overexpression of Ntn1 in the chick otic vesicle prevented canal fusion by inhibiting apoptosis. In contrast, ectopic expression of the same chicken Ntn1 in the mouse otic vesicle, where apoptosis is less prominent, resulted in canal truncation. These findings highlight the importance of apoptosis for tissue morphogenesis and suggest that Ntn1 may play divergent cellular roles despite its conserved expression during canal morphogenesis in chicken and mouse.
Collapse
Affiliation(s)
| | - Sho Ohta
- Departments of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tony Del Rio
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael I Gordon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gary C Schoenwolf
- Departments of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Donna M Fekete
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
73
|
Abstract
The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled.
Collapse
Affiliation(s)
- Seungil Kim
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California San Francisco
| | - Jan Prochazka
- Laboratory of Transgenic Models Diseases, Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California San Francisco;
| |
Collapse
|
74
|
Ladher RK. Changing shape and shaping change: Inducing the inner ear. Semin Cell Dev Biol 2017; 65:39-46. [DOI: 10.1016/j.semcdb.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
|
75
|
Belair DG, Abbott BD. Engineering epithelial-stromal interactions in vitro for toxicology assessment. Toxicology 2017; 382:93-107. [PMID: 28285100 PMCID: PMC5985517 DOI: 10.1016/j.tox.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.
Collapse
Affiliation(s)
- David G Belair
- US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Developmental Toxicology Branch, Research Triangle Park, NC 27711, United States.
| | - Barbara D Abbott
- US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Developmental Toxicology Branch, Research Triangle Park, NC 27711, United States
| |
Collapse
|
76
|
Lin H, Li Q, Lei Y. Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks. Biofabrication 2017; 9:025007. [PMID: 28287080 DOI: 10.1088/1758-5090/aa663b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably be differentiated into all the cell types of the human body in vitro, thus are an ideal cell source for biofabrication. We previously developed a hydrogel-based cell culture system that can economically produce large numbers of hPSC spheroids. With hPSCs and this culture system, there are two potential methods to biofabricate a desired tissue. In Method 1, hPSC spheroids are first utilized to biofabricate an hPSC tissue that is subsequently differentiated into the desired tissue. In Method 2, hPSC spheroids are first converted into tissue spheroids in the hydrogel-based culture system and the tissue spheroids are then utilized to biofabricate the desired tissue. In this paper, we systematically measured the fusion rates of hPSC spheroids without and with differentiation toward cortical and midbrain dopaminergic neurons and found spheroids' fusion rates dropped sharply as differentiation progressed. We found Method 1 was appropriate for biofabricating neural tissues.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
| | | | | |
Collapse
|
77
|
Li D, Liu T, Meng X, Guo Q, Shi J, Hao Y, Jiao X, Lv K, Song T. Polymorphic variants in VAX1 and the risk of nonsyndromic cleft lip with or without cleft palate in a population from northern China. Medicine (Baltimore) 2017; 96:e6550. [PMID: 28383424 PMCID: PMC5411208 DOI: 10.1097/md.0000000000006550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common craniofacial birth defects, and the etiology of NSCL/P involves both genetic and environmental factors. Genome-wide association study (GWAS) identified a novel susceptibility locus of ventral anterior homeobox 1 (VAX1) in patients with NSCL/P. However, the association of single nucleotide polymorphisms (SNPs) of VAX1 with NSCL/P is inconclusive due to the differences in the racial and ethnic populations. The aim of this study was to replicate the association between VAX1 and NSCL/P in a northern Chinese Han population. METHODS Our study included 186 patients with NSCL/P and 223 healthy individuals from northern China. Five SNPs (rs4752028, rs10787760, rs7078160, rs6585429, and rs1871345) on VAX1 were genotyped using the SNaPshot method. RESULTS Recessive genetic model analysis revealed that homozygous genotype CC of VAX1 rs4752028 was associated with an increased risk of NSCL/P (odds ratio = 1.89, 95% confidence interval = 1.12-3.19, P = 0.017), but the results were not significant after the Bonferroni correction for multiple comparisons. The allele and genotype frequencies of rs10787760, rs7078160, rs6585429, and rs1871345 and the allele frequencies of rs4752028 showed no significant differences between cases and controls. Haplotype and SNP-SNP interaction analyses did not detect any significant association of VAX1 with the occurrence of NSCL/P. CONCLUSION VAX1 rs4752028 was weakly associated with NSCL/P development in the studied northern Chinese Han population.
Collapse
Affiliation(s)
| | | | | | - Qiang Guo
- Scientific Research Management Office, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jinna Shi
- Scientific Research Management Office, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
78
|
Hutson MS, Leung MCK, Baker NC, Spencer RM, Knudsen TB. Computational Model of Secondary Palate Fusion and Disruption. Chem Res Toxicol 2017; 30:965-979. [PMID: 28045533 DOI: 10.1021/acs.chemrestox.6b00350] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphogenetic events are driven by cell-generated physical forces and complex cellular dynamics. To improve our capacity to predict developmental effects from chemical-induced cellular alterations, we built a multicellular agent-based model in CompuCell3D that recapitulates the cellular networks and collective cell behavior underlying growth and fusion of the mammalian secondary palate. The model incorporated multiple signaling pathways (TGFβ, BMP, FGF, EGF, and SHH) in a biological framework to recapitulate morphogenetic events from palatal outgrowth through midline fusion. It effectively simulated higher-level phenotypes (e.g., midline contact, medial edge seam (MES) breakdown, mesenchymal confluence, and fusion defects) in response to genetic or environmental perturbations. Perturbation analysis of various control features revealed model functionality with respect to cell signaling systems and feedback loops for growth and fusion, diverse individual cell behaviors and collective cellular behavior leading to physical contact and midline fusion, and quantitative analysis of the TGF/EGF switch that controls MES breakdown-a key event in morphogenetic fusion. The virtual palate model was then executed with theoretical chemical perturbation scenarios to simulate switch behavior leading to a disruption of fusion following chronic (e.g., dioxin) and acute (e.g., retinoic acid) chemical exposures. This computer model adds to similar systems models toward an integrative "virtual embryo" for simulation and quantitative prediction of adverse developmental outcomes following genetic perturbation and/or environmental disruption.
Collapse
Affiliation(s)
- M Shane Hutson
- Department of Physics & Astronomy, Department of Biological Sciences and Vanderbilt Institute for Integrative Biosystem Research & Education, Vanderbilt University , Nashville, Tennessee 37235, United States.,Oak Ridge Institute for Science & Education , Oak Ridge, Tennessee 37832, United States
| | - Maxwell C K Leung
- Oak Ridge Institute for Science & Education , Oak Ridge, Tennessee 37832, United States
| | - Nancy C Baker
- Leidos , Research Triangle Park, Durham, North Carolina 27711 United States
| | - Richard M Spencer
- Leidos , Research Triangle Park, Durham, North Carolina 27711 United States
| | - Thomas B Knudsen
- National Center for Computational Toxicology, Office of Research & Development, U.S. Environmental Protection Agency , Research Triangle Park, Durham, North Carolina 27711, United States
| |
Collapse
|
79
|
Gao LR, Li S, Zhang J, Liang C, Chen EN, Zhang SY, Chuai M, Bao YP, Wang G, Yang X. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9078-9088. [PMID: 27792329 DOI: 10.1021/acs.jafc.6b03381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.
Collapse
Affiliation(s)
- Lin-Rui Gao
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Shuai Li
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Jing Zhang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Chang Liang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - En-Ni Chen
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Shi-Yao Zhang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee , Dundee DD1 5EH, U.K
| | - Yong-Ping Bao
- Norwich Medical School, University of East Anglia , Norwich, Norfolk NR4 7UQ, U.K
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| |
Collapse
|
80
|
Expression profile of plasma microRNAs in nonsyndromic cleft lip and their clinical significance as biomarkers. Biomed Pharmacother 2016; 82:459-66. [DOI: 10.1016/j.biopha.2016.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
|
81
|
Computational modeling and simulation of genital tubercle development. Reprod Toxicol 2016; 64:151-61. [PMID: 27180093 DOI: 10.1016/j.reprotox.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/22/2022]
Abstract
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development.
Collapse
|
82
|
Rolo A, Savery D, Escuin S, de Castro SC, Armer HEJ, Munro PMG, Molè MA, Greene NDE, Copp AJ. Regulation of cell protrusions by small GTPases during fusion of the neural folds. eLife 2016; 5:e13273. [PMID: 27114066 PMCID: PMC4846376 DOI: 10.7554/elife.13273] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/18/2016] [Indexed: 11/26/2022] Open
Abstract
Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI:http://dx.doi.org/10.7554/eLife.13273.001 The neural tube is an embryonic structure that gives rise to the brain and spinal cord. It originates from a flat sheet of cells – the neural plate – that rolls up and fuses to form a tube during development. If this closure fails, it leads to birth defects such as spina bifida, a condition that causes severe disability because babies are born with an exposed and damaged spinal cord. As the edges of the neural plate meet, they need to fuse together to produce a closed tube. It was known that cells at these edges extend protrusions. However, it was unclear how these protrusions are regulated, whether they arise from neural or non-neural cells and whether or not they are required for the neural tube to close fully. By studying mutant mouse embryos, Rolo et al. found that cellular protrusions are indeed required for the neural tube to close completely. These protrusions proved to be regulated by proteins called Rac1 and Cdc42, which control the filaments inside the cell that are responsible for cell shape and movement. Rolo et al. also found that the cells that give rise to the protrusions are not part of the neural plate itself. Instead, these cells are neighboring cells from the layer that later forms the epidermis of the skin (the surface ectoderm). Future studies will need to investigate which signals instruct those precise cells to make protrusions and to discover what happens to the protrusions after contact is made with cells on the opposite side. It will also be important to determine whether spina bifida may arise in humans if the protrusions are defective or absent. DOI:http://dx.doi.org/10.7554/eLife.13273.002
Collapse
Affiliation(s)
- Ana Rolo
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Sandra C de Castro
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Hannah E J Armer
- Imaging Unit, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Peter M G Munro
- Imaging Unit, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Matteo A Molè
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
83
|
Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat Commun 2016; 7:11036. [PMID: 26980715 PMCID: PMC4799373 DOI: 10.1038/ncomms11036] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/12/2016] [Indexed: 01/17/2023] Open
Abstract
Planar in vitro models have been invaluable tools to identify the mechanical basis of wound closure. Although these models may recapitulate closure dynamics of epithelial cell sheets, they fail to capture how a wounded fibrous tissue rebuilds its 3D architecture. Here we develop a 3D biomimetic model for soft tissue repair and demonstrate that fibroblasts ensconced in a collagen matrix rapidly close microsurgically induced defects within 24 h. Traction force microscopy and time-lapse imaging reveal that closure of gaps begins with contractility-mediated whole-tissue deformations. Subsequently, tangentially migrating fibroblasts along the wound edge tow and assemble a progressively thickening fibronectin template inside the gap that provide the substrate for cells to complete closure. Unlike previously reported mechanisms based on lamellipodial protrusions and purse-string contraction, our data reveal a mode of stromal closure in which coordination of tissue-scale deformations, matrix assembly and cell migration act together to restore 3D tissue architecture. Planar in vitro models for wound closure stress the role of lamellipodial protrusions and purse-string contraction. Here the authors develop a 3D biomimetic model for tissue repair and show a mode of stromal closure that relies on whole tissue deformations, cell migration and matrix deposition.
Collapse
|
84
|
Lacy ME, Hutson MS. Amnioserosa development and function in Drosophila embryogenesis: Critical mechanical roles for an extraembryonic tissue. Dev Dyn 2016; 245:558-68. [PMID: 26878336 DOI: 10.1002/dvdy.24395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022] Open
Abstract
Despite being a short-lived, extraembryonic tissue, the amnioserosa plays critical roles in the major morphogenetic events of Drosophila embryogenesis. These roles involve both cellular mechanics and biochemical signaling. Its best-known role is in dorsal closure-well studied by both developmental biologists and biophysicists-but the amnioserosa is also important during earlier developmental stages. Here, we provide an overview of amnioserosa specification and its role in several key developmental stages: germ band extension, germ band retraction, and dorsal closure. We also compare embryonic development in Drosophila and its relative Megaselia to highlight how the amnioserosa and its roles have evolved. Placed in context, the amnioserosa provides a fascinating example of how signaling, mechanics, and morphogen patterns govern cell-type specification and subsequent morphogenetic changes in cell shape, orientation, and movement. Developmental Dynamics 245:558-568, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica E Lacy
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystems Research & Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
85
|
Peters NC, Berg CA. Dynamin-mediated endocytosis is required for tube closure, cell intercalation, and biased apical expansion during epithelial tubulogenesis in the Drosophila ovary. Dev Biol 2015; 409:39-54. [PMID: 26542010 DOI: 10.1016/j.ydbio.2015.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/09/2015] [Accepted: 10/31/2015] [Indexed: 11/28/2022]
Abstract
Most metazoans are able to grow beyond a few hundred cells and to support differentiated tissues because they elaborate multicellular, epithelial tubes that are indispensable for nutrient and gas exchange. To identify and characterize the cellular behaviors and molecular mechanisms required for the morphogenesis of epithelial tubes (i.e., tubulogenesis), we have turned to the D. melanogaster ovary. Here, epithelia surrounding the developing egg chambers first pattern, then form and extend a set of simple, paired, epithelial tubes, the dorsal appendage (DA) tubes, and they create these structures in the absence of cell division or cell death. This genetically tractable system lets us assess the relative contributions that coordinated changes in cell shape, adhesion, orientation, and migration make to basic epithelial tubulogenesis. We find that Dynamin, a conserved regulator of endocytosis and the cytoskeleton, serves a key role in DA tubulogenesis. We demonstrate that Dynamin is required for distinct aspects of DA tubulogenesis: DA-tube closure, DA-tube-cell intercalation, and biased apical-luminal cell expansion. We provide evidence that Dynamin promotes these processes by facilitating endocytosis of cell-cell and cell-matrix adhesion complexes, and we find that precise levels and sub-cellular distribution of E-Cadherin and specific Integrin subunits impact DA tubulogenesis. Thus, our studies identify novel morphogenetic roles (i.e., tube closure and biased apical expansion), and expand upon established roles (i.e., cell intercalation and adhesion remodeling), for Dynamin in tubulogenesis.
Collapse
Affiliation(s)
- Nathaniel C Peters
- University of Washington, Molecular and Cellular Biology Program and Department of Genome Sciences, Box 355065, Seattle, WA 98195-5065, United States
| | - Celeste A Berg
- University of Washington, Molecular and Cellular Biology Program and Department of Genome Sciences, Box 355065, Seattle, WA 98195-5065, United States.
| |
Collapse
|
86
|
Gredler ML, Seifert AW, Cohn MJ. Tissue-specific roles of Fgfr2 in development of the external genitalia. Development 2015; 142:2203-12. [PMID: 26081573 DOI: 10.1242/dev.119891] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Congenital anomalies frequently occur in organs that undergo tubulogenesis. Hypospadias is a urethral tube defect defined by mislocalized, oversized, or multiple openings of the penile urethra. Deletion of Fgfr2 or its ligand Fgf10 results in severe hypospadias in mice, in which the entire urethral plate is open along the ventral side of the penis. In the genital tubercle, the embryonic precursor of the penis and clitoris, Fgfr2 is expressed in two epithelial populations: the endodermally derived urethral epithelium and the ectodermally derived surface epithelium. Here, we investigate the tissue-specific roles of Fgfr2 in external genital development by generating conditional deletions of Fgfr2 in each of these cell types. Conditional deletion of Fgfr2 results in two distinct phenotypes: endodermal Fgfr2 deletion causes mild hypospadias and inhibits maturation of a complex urethral epithelium, whereas loss of ectodermal Fgfr2 results in severe hypospadias and absence of the ventral prepuce. Although these cell type-specific mutants exhibit distinctive genital anomalies, cellular analysis reveals that Fgfr2 regulates epithelial maturation and cell cycle progression in the urethral endoderm and in the surface ectoderm. The unexpected finding that ectodermal deletion of Fgfr2 results in the most severe hypospadias highlights a major role for Fgfr2 in the developing genital surface epithelium, where epithelial maturation is required for maintenance of a closed urethral tube. These results demonstrate that urethral tubulogenesis, prepuce morphogenesis, and sexually dimorphic patterning of the lower urethra are controlled by discrete regions of Fgfr2 activity.
Collapse
Affiliation(s)
- Marissa L Gredler
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL 32611, USA
| | - Ashley W Seifert
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL 32611, USA
| | - Martin J Cohn
- Department of Biology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL 32611, USA Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Florida, PO Box 103610, Gainesville, FL 32611, USA
| |
Collapse
|
87
|
Garlena RA, Lennox AL, Baker LR, Parsons TE, Weinberg SM, Stronach BE. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering. Development 2015; 142:3403-15. [PMID: 26293306 DOI: 10.1242/dev.122226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects.
Collapse
Affiliation(s)
- Rebecca A Garlena
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ashley L Lennox
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lewis R Baker
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Beth E Stronach
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
88
|
Abstract
Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions.
Collapse
|
89
|
Kachalo S, Naveed H, Cao Y, Zhao J, Liang J. Mechanical model of geometric cell and topological algorithm for cell dynamics from single-cell to formation of monolayered tissues with pattern. PLoS One 2015; 10:e0126484. [PMID: 25974182 PMCID: PMC4431879 DOI: 10.1371/journal.pone.0126484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly available.
Collapse
Affiliation(s)
- Sëma Kachalo
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, 60607
| | - Hammad Naveed
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, 60607
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Youfang Cao
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, 60607
| | - Jieling Zhao
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, 60607
| | - Jie Liang
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL, 60607
| |
Collapse
|
90
|
Hashimoto H, Robin FB, Sherrard KM, Munro EM. Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 2015; 32:241-55. [PMID: 25625209 DOI: 10.1016/j.devcel.2014.12.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 11/07/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Unidirectional zippering is a key step in neural tube closure that remains poorly understood. Here, we combine experimental and computational approaches to identify the mechanism for zippering in a basal chordate, Ciona intestinalis. We show that myosin II is activated sequentially from posterior to anterior along the neural/epidermal (Ne/Epi) boundary just ahead of the advancing zipper. This promotes rapid shortening of Ne/Epi junctions, driving the zipper forward and drawing the neural folds together. Cell contact rearrangements (Ne/Epi + Ne/Epi → Ne/Ne + Epi/Epi) just behind the zipper lower tissue resistance to zipper progression by allowing transiently stretched cells to detach and relax toward isodiametric shapes. Computer simulations show that measured differences in junction tension, timing of primary contractions, and delay before cell detachment are sufficient to explain the speed and direction of zipper progression and highlight key advantages of a sequential contraction mechanism for robust efficient zippering.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francois B Robin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin M Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
91
|
Kim S, Lewis AE, Singh V, Ma X, Adelstein R, Bush JO. Convergence and extrusion are required for normal fusion of the mammalian secondary palate. PLoS Biol 2015; 13:e1002122. [PMID: 25848986 PMCID: PMC4388528 DOI: 10.1371/journal.pbio.1002122] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/06/2015] [Indexed: 11/24/2022] Open
Abstract
The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and is concurrent to orthogonal cell displacement and epithelial cell extrusion. Functional studies in mice indicate that this process requires an actomyosin contractility pathway involving Rho kinase (ROCK) and myosin light chain kinase (MLCK), culminating in the activation of non-muscle myosin IIA (NMIIA). Together, these data indicate that actomyosin contractility drives cell intercalation and cell extrusion during palate fusion and suggest a general mechanism for tissue fusion in development. A study of the mouse palate shows that the fusion of tissues during development involves convergence and displacement of epithelial cells, coupled with cell extrusion driven by the contractile activity of actomyosin. Tissue fusion, the process by which two independent prominences become united to form one continuous structure, is common during development, and its failure leads to multiple structural birth defects. In this study, we directly examine the cellular and molecular mechanisms by which tissue fusion occurs using the mouse secondary palate as a model. Using live imaging, we find that fusion of the secondary palatal shelves proceeds by a progression of previously undescribed cell behaviors. Cellular protrusions and establishment of contacts between palatal shelves leads to the formation of a transient multicellular epithelial structure that then converges toward the midline, driven by cell intercalation. This convergence occurs together with displacement of the epithelium and epithelial cell extrusions that squeeze epithelial cells out from between the palatal shelves and mediate continuity of the structure. We show that in mice this morphogenesis requires an actomyosin contractility pathway culminating in non-muscle myosin IIA activation. Altogether, these data support a new model for tissue fusion during mouse embryogenesis in which convergence, displacement, and cell extrusion drive the union of independent structures.
Collapse
Affiliation(s)
- Seungil Kim
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Ace E. Lewis
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Vivek Singh
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, California, United States of America
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
92
|
Abstract
Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Newlife Birth Defects Research Center, Institute of Child Health, University College London, WC1N 1EH, United Kingdom;
| | | |
Collapse
|
93
|
Green RM, Feng W, Phang T, Fish JL, Li H, Spritz RA, Marcucio RS, Hooper J, Jamniczky H, Hallgrímsson B, Williams T. Tfap2a-dependent changes in mouse facial morphology result in clefting that can be ameliorated by a reduction in Fgf8 gene dosage. Dis Model Mech 2015; 8:31-43. [PMID: 25381013 PMCID: PMC4283648 DOI: 10.1242/dmm.017616] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Failure of facial prominence fusion causes cleft lip and palate (CL/P), a common human birth defect. Several potential mechanisms can be envisioned that would result in CL/P, including failure of prominence growth and/or alignment as well as a failure of fusion of the juxtaposed epithelial seams. Here, using geometric morphometrics, we analyzed facial outgrowth and shape change over time in a novel mouse model exhibiting fully penetrant bilateral CL/P. This robust model is based upon mutations in Tfap2a, the gene encoding transcription factor AP-2α, which has been implicated in both syndromic and non-syndromic human CL/P. Our findings indicate that aberrant morphology and subsequent misalignment of the facial prominences underlies the inability of the mutant prominences to fuse. Exencephaly also occured in some of the Tfap2a mutants and we observed additional morphometric differences that indicate an influence of neural tube closure defects on facial shape. Molecular analysis of the CL/P model indicates that Fgf signaling is misregulated in the face, and that reducing Fgf8 gene dosage can attenuate the clefting pathology by generating compensatory changes. Furthermore, mutations in either Tfap2a or Fgf8 increase variance in facial shape, but the combination of these mutations restores variance to normal levels. The alterations in variance provide a potential mechanistic link between clefting and the evolution and diversity of facial morphology. Overall, our findings suggest that CL/P can result from small gene-expression changes that alter the shape of the facial prominences and uncouple their coordinated morphogenesis, which is necessary for normal fusion.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Tzulip Phang
- Department of Pharmacology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Jennifer L Fish
- University of California San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, San Francisco, CA 94110, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 17th Avenue, Aurora, CO 80045, USA
| | - Ralph S Marcucio
- University of California San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, San Francisco, CA 94110, USA
| | - Joan Hooper
- Department of Cell and Developmental Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Heather Jamniczky
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada. Alberta Children's Hospital Research Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA. Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 17th Avenue, Aurora, CO 80045, USA. Department of Cell and Developmental Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
94
|
Wilde JJ, Petersen JR, Niswander L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet 2014; 48:583-611. [PMID: 25292356 DOI: 10.1146/annurev-genet-120213-092208] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and adhere to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado 80045;
| | | | | |
Collapse
|
95
|
Luijsterburg AJ, Rozendaal AM, Vermeij-Keers C. Classifying Common Oral Clefts: A New Approach after Descriptive Registration. Cleft Palate Craniofac J 2014. [DOI: 10.1597/12-088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective Using the Dutch Oral Cleft Registration, which records the morphology and topography of common oral clefts, a new classification based on the (patho)embryology of the primary and secondary palates was tested. Design Prospective observational study. Setting The fifteen cleft palate teams in the Netherlands register patients to the national registry. Patients All unoperated patients with common oral clefts reported between 1997 and 2006 inclusive were included. Main Outcome Measures The classification is based on the pathoembryological events that ultimately result in various subphenotypes of common oral clefts. Patients within the three categories cleft lip/alveolus (CL/A), cleft lip/alveolus and palate (CL/AP), and cleft palate (CP) were divided into three subgroups: fusion defects, differentiation defects, and fusion and differentiation defects. A timetable was constructed to relate the type of clefting to the time of derailment during embryonic development. Results 3512 patients were included. Patients with CL/A showed 22% fusion defects, 75% differentiation defects, and 3% fusion and differentiation defects. CL/AP patients and CP patients mostly showed fusion defects (70% and 89%, respectively). We were able to relate almost all (over 90%) cleft subphenotypes to specific weeks in embryonic development. Conclusions This classification provides new cleft subgroups that may be used for clinical and fundamental research. The subphenotypes of these subgroups originate from different time frames during embryonic development and different cell biological mechanisms, thereby enabling more accurate data for, e.g., gene identification and/or environmental factors.
Collapse
Affiliation(s)
- Antonius J.M. Luijsterburg
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anna M. Rozendaal
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christi Vermeij-Keers
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
96
|
de Faria Poloni J, Chapola H, Feltes BC, Bonatto D. The importance of sphingolipids and reactive oxygen species in cardiovascular development. Biol Cell 2014; 106:167-81. [PMID: 24678717 DOI: 10.1111/boc.201400008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023]
Abstract
The heart is the first organ in the embryo to form. Its structural and functional complexity is the result of a thorough developmental program, where sphingolipids play an important role in cardiogenesis, heart maturation, angiogenesis, the regulation of vascular tone and vessel permeability. Sphingolipids are necessary for signal transduction and membrane microdomain formation. In addition, recent evidence suggests that sphingolipid metabolism is directly interconnected to the modulation of oxidative stress. However, cardiovascular development is highly sensitive to excessive reactive species production, and disturbances in sphingolipid metabolism can lead to abnormal development and cardiac disease. Therefore, in this review, we address the molecular link between sphingolipids and oxidative stress, connecting these pathways to cardiovascular development and cardiovascular disease.
Collapse
Affiliation(s)
- Joice de Faria Poloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
97
|
Kurosaka H, Iulianella A, Williams T, Trainor PA. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest 2014; 124:1660-71. [PMID: 24590292 DOI: 10.1172/jci72688] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/02/2014] [Indexed: 01/30/2023] Open
Abstract
Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip fusion. Mice carrying compound mutations in hedgehog acyltransferase (Hhat) and patched1 (Ptch1) exhibited perturbations in the SHH gradient during frontonasal development, which led to hypoplastic nasal process outgrowth, epithelial seam persistence, and cleft lip. Further investigation revealed that enhanced SHH signaling restricts canonical WNT signaling in the lambdoidal region by promoting expression of genes encoding WNT inhibitors. Moreover, reduction of canonical WNT signaling perturbed p63/interferon regulatory factor 6 (p63/IRF6) signaling, resulting in increased proliferation and decreased cell death, which was followed by persistence of the epithelial seam and cleft lip. Consistent with our results, mutations in genes that disrupt SHH and WNT signaling have been identified in both mice and humans with cleft lip. Collectively, our data illustrate that altered SHH signaling contributes to the etiology and pathogenesis of cleft lip through antagonistic interactions with other gene regulatory networks, including the canonical WNT and p63/IRF6 signaling pathways.
Collapse
|
98
|
Yamamoto H, Maruo T, Majima T, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Mandai K, Takai Y. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One 2013; 8:e80356. [PMID: 24236178 PMCID: PMC3827428 DOI: 10.1371/journal.pone.0080356] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/11/2013] [Indexed: 12/23/2022] Open
Abstract
Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell–cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell–cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Takashi Majima
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Hiroyoshi Ishizaki
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Miki Tanaka-Okamoto
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Jun Miyoshi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail: (KT); (KM)
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (KT); (KM)
| |
Collapse
|
99
|
Wyczalkowski MA, Varner VD, Taber LA. Computational and experimental study of the mechanics of embryonic wound healing. J Mech Behav Biomed Mater 2013; 28:125-46. [PMID: 23973771 DOI: 10.1016/j.jmbbm.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Wounds in the embryo show a remarkable ability to heal quickly without leaving a scar. Previous studies have found that an actomyosin ring (purse string) forms around the wound perimeter and contracts to close the wound over the course of several dozens of minutes. Here, we report experiments that reveal an even faster mechanism which remarkably closes wounds by more than 50% within the first 30s. Circular and elliptical wounds (~100μm in size) were made in the blastoderm of early chick embryos and allowed to heal, with wound area and shape characterized as functions of time. The closure rate displayed a biphasic behavior, with rapid constriction lasting about a minute, followed by a period of more gradual closure to complete healing. Fluorescent staining suggests that both healing phases are driven by actomyosin contraction, with relatively rapid contraction of fibers at cell borders within a relatively thick ring of tissue (several cells wide) around the wound followed by slower contraction of a thin supracellular actomyosin ring along the margin, consistent with a purse string mechanism. Finite-element modeling showed that this idea is biophysically plausible, with relatively isotropic contraction within the thick ring giving way to tangential contraction in the thin ring. In addition, consistent with experimental results, simulated elliptical wounds heal with little change in aspect ratio, and decreased membrane tension can cause these wounds to open briefly before going on to heal. These results provide new insight into the healing mechanism in embryonic epithelia.
Collapse
|
100
|
Massarwa R, Ray HJ, Niswander L. Morphogenetic movements in the neural plate and neural tube: mouse. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:59-68. [DOI: 10.1002/wdev.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- R'ada Massarwa
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot Israel
| | - Heather J. Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program; University of Colorado School of Medicine and Children's Hospital Colorado; Aurora CO USA
| | - Lee Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program; University of Colorado School of Medicine and Children's Hospital Colorado; Aurora CO USA
| |
Collapse
|