51
|
Wan Y, Lantz B, Cusack BJ, Szabo-Rogers HL. Prickle1 regulates differentiation of frontal bone osteoblasts. Sci Rep 2018; 8:18021. [PMID: 30575813 PMCID: PMC6303328 DOI: 10.1038/s41598-018-36742-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
Enlarged fontanelles and smaller frontal bones result in a mechanically compromised skull. Both phenotypes could develop from defective migration and differentiation of osteoblasts in the skull bone primordia. The Wnt/Planar cell polarity (Wnt/PCP) signaling pathway regulates cell migration and movement in other tissues and led us to test the role of Prickle1, a core component of the Wnt/PCP pathway, in the skull. For these studies, we used the missense allele of Prickle1 named Prickle1Beetlejuice (Prickle1Bj). The Prickle1Bj/Bj mutants are microcephalic and develop enlarged fontanelles between insufficient frontal bones, while the parietal bones are normal. Prickle1Bj/Bj mutants have several other craniofacial defects including a midline cleft lip, incompletely penetrant cleft palate, and decreased proximal-distal growth of the head. We observed decreased Wnt/β-catenin and Hedgehog signaling in the frontal bone condensations of the Prickle1Bj/Bj mutants. Surprisingly, the smaller frontal bones do not result from defects in cell proliferation or death, but rather significantly delayed differentiation and decreased expression of migratory markers in the frontal bone osteoblast precursors. Our data suggests that Prickle1 protein function contributes to both the migration and differentiation of osteoblast precursors in the frontal bone.
Collapse
Affiliation(s)
- Yong Wan
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandi Lantz
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Cusack
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather L Szabo-Rogers
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
52
|
Xu R, Khan SK, Zhou T, Gao B, Zhou Y, Zhou X, Yang Y. Gα s signaling controls intramembranous ossification during cranial bone development by regulating both Hedgehog and Wnt/β-catenin signaling. Bone Res 2018; 6:33. [PMID: 30479847 PMCID: PMC6242855 DOI: 10.1038/s41413-018-0034-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
How osteoblast cells are induced is a central question for understanding skeletal formation. Abnormal osteoblast differentiation leads to a broad range of devastating craniofacial diseases. Here we have investigated intramembranous ossification during cranial bone development in mouse models of skeletal genetic diseases that exhibit craniofacial bone defects. The GNAS gene encodes Gαs that transduces GPCR signaling. GNAS activation or loss-of-function mutations in humans cause fibrous dysplasia (FD) or progressive osseous heteroplasia (POH) that shows craniofacial hyperostosis or craniosynostosis, respectively. We find here that, while Hh ligand-dependent Hh signaling is essential for endochondral ossification, it is dispensable for intramembranous ossification, where Gαs regulates Hh signaling in a ligand-independent manner. We further show that Gαs controls intramembranous ossification by regulating both Hh and Wnt/β-catenin signaling. In addition, Gαs activation in the developing cranial bone leads to reduced ossification but increased cartilage presence due to reduced cartilage dissolution, not cell fate switch. Small molecule inhibitors of Hh and Wnt signaling can effectively ameliorate cranial bone phenotypes in mice caused by loss or gain of Gnas function mutations, respectively. Our work shows that studies of genetic diseases provide invaluable insights in both pathological bone defects and normal bone development, understanding both leads to better diagnosis and therapeutic treatment of bone diseases.
Collapse
Affiliation(s)
- Ruoshi Xu
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA.,2State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sanjoy Kumar Khan
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA
| | - Taifeng Zhou
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA.,3Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA.,4Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhou
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA
| | - Xuedong Zhou
- 2State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- 1Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA USA
| |
Collapse
|
53
|
Teng CS, Ting MC, Farmer DT, Brockop M, Maxson RE, Crump JG. Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. eLife 2018; 7:37024. [PMID: 30375332 PMCID: PMC6207424 DOI: 10.7554/elife.37024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Cranial sutures separate the skull bones and house stem cells for bone growth and repair. In Saethre-Chotzen syndrome, mutations in TCF12 or TWIST1 ablate a specific suture, the coronal. This suture forms at a neural-crest/mesoderm interface in mammals and a mesoderm/mesoderm interface in zebrafish. Despite this difference, we show that combinatorial loss of TCF12 and TWIST1 homologs in zebrafish also results in specific loss of the coronal suture. Sequential bone staining reveals an initial, directional acceleration of bone production in the mutant skull, with subsequent localized stalling of bone growth prefiguring coronal suture loss. Mouse genetics further reveal requirements for Twist1 and Tcf12 in both the frontal and parietal bones for suture patency, and to maintain putative progenitors in the coronal region. These findings reveal conservation of coronal suture formation despite evolutionary shifts in embryonic origins, and suggest that the coronal suture might be especially susceptible to imbalances in progenitor maintenance and osteoblast differentiation. Some of the most common birth defects involve improper development of the head and face. One such birth defect is called craniosynostosis. Normally, an infant’s skull bones are not fully fused together. Instead, they are held together by soft tissue that allows the baby’s skull to more easily pass through the birth canal. This tissue also houses specialized cells called stem cells that allow the brain and skull to grow with the child. But in craniosynostosis these stem cells behave abnormally, which fuses the skull bones together and prevents the skull and brain from growing properly during childhood. One form of craniosynostosis called Saethre-Chotzen syndrome is caused by mutations in one of two genes that ensure the proper separation of two bones in the roof of the skull. Mice with mutations in the mouse versions of these genes develop the same problem and are used to study this condition. Mouse studies have looked mostly at what happens after birth. Studies looking at what happens in embryos with these mutations could help scientists learn more. One way to do so would be to genetically engineer zebrafish with the equivalent mutations. This is because zebrafish embryos are transparent and grow outside their mother’s body, making it easier for scientists to watch them develop. Now, Teng et al. have grown zebrafish with mutations in the zebrafish versions of the genes that cause Saethre-Chotzen syndrome. In the experiments, imaging tools were used to observe the live fish as they developed. This showed that the stem cells in their skulls become abnormal much earlier than previous studies had suggested. Teng et al. also showed that similar stem cells are responsible for growth of the skull in zebrafish and mice. Babies with craniosynostosis often need multiple, risky surgeries to separate their skull bones and allow their brain and head to grow. Unfortunately, these bones often fuse again because they have abnormal stem cells. Teng et al. provide new information on what goes wrong in these stem cells. Hopefully, this new information will help scientists to one day correct the defective stem cells in babies with craniosynostosis, thus reducing the number of surgeries needed to correct the problem.
Collapse
Affiliation(s)
- Camilla S Teng
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States.,Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Man-Chun Ting
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - D'Juan T Farmer
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
| | - Mia Brockop
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Robert E Maxson
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
54
|
Cesario JM, Landin Malt A, Chung JU, Khairallah MP, Dasgupta K, Asam K, Deacon LJ, Choi V, Almaidhan AA, Darwiche NA, Kim J, Johnson RL, Jeong J. Anti-osteogenic function of a LIM-homeodomain transcription factor LMX1B is essential to early patterning of the calvaria. Dev Biol 2018; 443:103-116. [PMID: 29852132 DOI: 10.1016/j.ydbio.2018.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/15/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022]
Abstract
The calvaria (upper part of the skull) is made of plates of bone and fibrous joints (sutures and fontanelles), and the proper balance and organization of these components are crucial to normal development of the calvaria. In a mouse embryo, the calvaria develops from a layer of head mesenchyme that surrounds the brain from shortly after mid-gestation. The mesenchyme just above the eye (supra-orbital mesenchyme, SOM) generates ossification centers for the bones, which then grow toward the apex gradually. In contrast, the mesenchyme apical to SOM (early migrating mesenchyme, EMM), including the area at the vertex, does not generate an ossification center. As a result, the dorsal midline of the head is occupied by sutures and fontanelles at birth. To date, the molecular basis for this regional difference in developmental programs is unknown. The current study provides vital insights into the genetic regulation of calvarial patterning. First, we showed that osteogenic signals were active in both EMM and SOM during normal development, which suggested the presence of an anti-osteogenic factor in EMM to counter the effect of these signals. Subsequently, we identified Lmx1b as an anti-osteogenic gene that was expressed in EMM but not in SOM. Furthermore, head mesenchyme-specific deletion of Lmx1b resulted in heterotopic ossification from EMM at the vertex, and craniosynostosis affecting multiple sutures. Conversely, forced expression of Lmx1b in SOM was sufficient to inhibit osteogenic specification. Therefore, we conclude that Lmx1b plays a key role as an anti-osteogenic factor in patterning the head mesenchyme into areas with different osteogenic competence. In turn, this patterning event is crucial to generating the proper organization of the bones and soft tissue joints of the calvaria.
Collapse
Affiliation(s)
- Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - André Landin Malt
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jong Uk Chung
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Michael P Khairallah
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Kesava Asam
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Lindsay J Deacon
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Veronica Choi
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Asma A Almaidhan
- Department of Orthodontics, New York University College of Dentistry, New York, NY, United States
| | - Nadine A Darwiche
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jimin Kim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
55
|
ZIC1 Function in Normal Cerebellar Development and Human Developmental Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:249-268. [PMID: 29442326 DOI: 10.1007/978-981-10-7311-3_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zic genes are strongly expressed in the cerebellum. This feature leads to their initial identification and their name "zic," as the abbreviation of "zinc finger protein of the cerebellum." Zic gene function in cerebellar development has been investigated mainly in mice. However, association of heterozygous loss of ZIC1 and ZIC4 with Dandy-Walker malformation, a structural birth defect of the human cerebellum, highlights the clinical relevance of these studies. Two proposed mechanisms for Zic-mediated cerebellar developmental control have been documented: regulation of neuronal progenitor proliferation-differentiation and the patterning of the cerebellar primordium. Clinical studies have also revealed that ZIC1 gain of function mutations contribute to coronal craniosynostosis, a rare skull malformation. The molecular pathways contributing to these phenotypes are not fully explored; however, embryonic interactions with sonic hedgehog signaling, retinoic acid signaling, and TGFβ signaling have been described during mouse cerebellar development. Further, Zic1/2 target a multitude of genes associated with cerebellar granule cell maturation during postnatal mouse cerebellar development.
Collapse
|
56
|
Veistinen LK, Mustonen T, Hasan MR, Takatalo M, Kobayashi Y, Kesper DA, Vortkamp A, Rice DP. Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Front Physiol 2017; 8:1036. [PMID: 29311969 PMCID: PMC5742257 DOI: 10.3389/fphys.2017.01036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Loss-of-function mutations in GLI3 and IHH cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that Ihh ligand, the receptor Ptch1 and Gli transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both Ihh-/- and Gli3Xt-J/Xt-J embryonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone development. RUNX2 is a master regulatory transcription factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expanded and aberrant osteogenesis observed in Gli3Xt-J/Xt-J mice, and consistent with Runx2-I expression by relatively immature osteoprogenitors. Ihh-/- mice exhibited small calvarial bones and HH target genes, Ptch1 and Gli1, were absent. This indicates that IHH is the functional HH ligand, and that it is not compensated by another HH ligand. To decipher the roles and potential interaction of Gli3 and Ihh, we generated Ihh-/-;Gli3Xt-J/Xt-J compound mutant mice. Even in the absence of Ihh, Gli3 deletion was sufficient to induce aberrant precocious ossification across the developing suture, indicating that the craniosynostosis phenotype of Gli3Xt-J/Xt-J mice is not dependent on IHH ligand. Also, we found that Ihh was not required for Runx2 expression as the expression of RUNX2 target genes was unaffected by deletion of Ihh. To test whether RUNX2 has a role upstream of IHH, we performed RUNX2 siRNA knock down experiments in WT calvarial osteoblasts and explants and found that Ihh expression is suppressed. Our results show that IHH is the functional HH ligand in the embryonic mouse calvaria osteogenic condensations, where it regulates the progression of osteoblastic differentiation. As GLI3 represses the expression of Runx2-II and Ihh, and also elevates the Runx2-I expression, and as IHH may be regulated by RUNX2 these results raise the possibility of a regulatory feedback circuit to control calvarial osteogenesis and suture patency. Taken together, RUNX2-controlled osteoblastic cell fate is regulated by IHH through concomitant inhibition of GLI3-repressor formation and activation of downstream targets.
Collapse
Affiliation(s)
- Lotta K Veistinen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Minerva Research Institute, Helsinki, Finland
| | - Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Yukiho Kobayashi
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dörthe A Kesper
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW When providing accurate clinical diagnosis and genetic counseling in craniosynostosis, the challenge is heightened by knowledge that etiology in any individual case may be entirely genetic, entirely environmental, or anything in between. This review will scope out how recent genetic discoveries from next-generation sequencing have impacted on the clinical genetic evaluation of craniosynostosis. RECENT FINDINGS Survey of a 13-year birth cohort of patients treated at a single craniofacial unit demonstrates that a genetic cause of craniosynostosis can be identified in one quarter of cases. The substantial contributions of mutations in two genes, TCF12 and ERF, is confirmed. Important recent discoveries are mutations of CDC45 and SMO in specific craniosynostosis syndromes, and of SMAD6 in nonsyndromic midline synostosis. The added value of exome or whole genome sequencing in the diagnosis of difficult cases is highlighted. SUMMARY Strategies to optimize clinical genetic diagnostic pathways by combining both targeted and next-generation sequencing are discussed. In addition to improved genetic counseling, recent discoveries spotlight the important roles of signaling through the bone morphogenetic protein and hedgehog pathways in cranial suture biogenesis, as well as a key requirement for adequate cell division in suture maintenance.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- aClinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital bOxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre cCraniofacial Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | |
Collapse
|
58
|
Fonseca BF, Couly G, Dupin E. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo. BMC DEVELOPMENTAL BIOLOGY 2017; 17:13. [PMID: 29017464 PMCID: PMC5634862 DOI: 10.1186/s12861-017-0155-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Background Vertebrate head development depends on a series of interactions between many cell populations of distinct embryological origins. Cranial mesenchymal tissues have a dual embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-development of cephalic NC and mesodermal cells to properly construct the head of vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have remained unclear. In this work, we addressed these issues in the avian embryo model by using quail-chick chimeras, cephalic NC cultures and immunostaining for SIX1. Results Our data show that, at early NC migration stages, SIX1 is expressed by mesodermal cells but excluded from the NC cells (NCC). Then, SIX1 becomes widely expressed in NCC that colonize the pre-otic mesenchyme. In contrast, in the branchial arches (BAs), SIX1 is present only in mesodermal cells that give rise to jaw muscles. At later developmental stages, the distribution of SIX1-expressing cells in mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In NC derivatives, SIX1 is notably expressed in perichondrium and chondrocytes of the nasal septum and in the sclera, although other facial cartilages such as Meckel’s were negative at the stages considered. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, not the neural and melanocytic cells express SIX1. Conclusion The present results point to a dynamic tissue-specific expression of SIX1 in a variety of cephalic NC- and mesoderm-derived cell types and tissues, opening the way for further analysis of Six1 function in the coordinated development of these two cellular populations during vertebrate head formation. Electronic supplementary material The online version of this article (10.1186/s12861-017-0155-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara F Fonseca
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Gérard Couly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,Université Paris Descartes, Institut de la Bouche et du Visage de l'Enfant, Hôpital Universitaire Necker, 149, rue de Sèvres, 75015, Paris, France
| | - Elisabeth Dupin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
59
|
He F, Soriano P. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. Development 2017; 144:4026-4036. [PMID: 28947535 DOI: 10.1242/dev.151068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Craniosynostosis is a prevalent human birth defect characterized by premature fusion of calvarial bones. In this study, we show that tight regulation of endogenous PDGFRα activity is required for normal calvarium development in the mouse and that dysregulated PDGFRα activity causes craniosynostosis. Constitutive activation of PDGFRα leads to expansion of cartilage underlying the coronal sutures, which contribute to suture closure through endochondral ossification, in a process regulated in part by PI3K/AKT signaling. Our results thus identify a novel mechanism underlying calvarial development in craniosynostosis.
Collapse
Affiliation(s)
- Fenglei He
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
60
|
Heuzé Y, Kawasaki K, Schwarz T, Schoenebeck JJ, Richtsmeier JT. Developmental and Evolutionary Significance of the Zygomatic Bone. Anat Rec (Hoboken) 2017; 299:1616-1630. [PMID: 27870340 PMCID: PMC5111587 DOI: 10.1002/ar.23449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023]
Abstract
The zygomatic bone is derived evolutionarily from the orbital series. In most modern mammals the zygomatic bone forms a large part of the face and usually serves as a bridge that connects the facial skeleton to the neurocranium. Our aim is to provide information on the contribution of the zygomatic bone to variation in midfacial protrusion using three samples; humans, domesticated dogs, and monkeys. In each case, variation in midface protrusion is a heritable trait produced by one of three classes of transmission: localized dysmorphology associated with single gene dysfunction, selective breeding, or long‐term evolution from a common ancestor. We hypothesize that the shape of the zygomatic bone reflects its role in stabilizing the connection between facial skeleton and neurocranium and consequently, changes in facial protrusion are more strongly reflected by the maxilla and premaxilla. Our geometric morphometric analyses support our hypothesis suggesting that the shape of the zygomatic bone has less to do with facial protrusion. By morphometrically dissecting the zygomatic bone we have determined a degree of modularity among parts of the midfacial skeleton suggesting that these components have the ability to vary independently and thus can evolve differentially. From these purely morphometric data, we propose that the neural crest cells that are fated to contribute to the zygomatic bone experience developmental cues that distinguish them from the maxilla and premaxilla. The spatiotemporal and molecular identity of the cues that impart zygoma progenitors with their identity remains an open question that will require alternative data sets. Anat Rec, 299:1616–1630, 2016. © 2016 The Authors The Anatomical Record Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yann Heuzé
- UMR5199 PACEA, Bordeaux Archaeological Sciences Cluster of Excellence, Université De Bordeaux
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Tobias Schwarz
- Department of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Jeffrey J Schoenebeck
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA
| |
Collapse
|
61
|
Peskett E, Kumar S, Baird W, Jaiswal J, Li M, Patel P, Britto JA, Pauws E. Analysis of the Fgfr2C342Y mouse model shows condensation defects due to misregulation of Sox9 expression in prechondrocytic mesenchyme. Biol Open 2017; 6:223-231. [PMID: 28069589 PMCID: PMC5312100 DOI: 10.1242/bio.022178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Syndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model (Fgfr2C342Y) at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red) and histological staining of sections of CD1 wild-type (WT), Fgfr2C342Y/+ heterozygous (HET) and Fgfr2C342Y/C342Y homozygous (HOM) mouse embryos from embryonic day (E)12.5-E17.5 stages. Gene expression (Sox9, Shh, Fgf10 and Runx2) was studied by in situ hybridisation and protein expression (COL2A1) by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The Sox9 expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates Sox9 expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the Fgfr2C342Y/C342Y mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon-Pfeiffer syndrome. FGFR2 mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of skeletogenesis.
Collapse
Affiliation(s)
- Emma Peskett
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Samin Kumar
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - William Baird
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Janhvi Jaiswal
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Ming Li
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Priyanca Patel
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Jonathan A Britto
- Craniofacial Unit, Great Ormond Street Hospital, London, WC1N 3JH, UK
| | - Erwin Pauws
- UCL Great Ormond Street, Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
62
|
Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis. Am J Med Genet A 2017; 173:1406-1429. [PMID: 28160402 DOI: 10.1002/ajmg.a.38159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Craniosynostosis, the premature ossification of one or more skull sutures, is a clinically and genetically heterogeneous congenital anomaly affecting approximately one in 2,500 live births. In most cases, it occurs as an isolated congenital anomaly, that is, nonsyndromic craniosynostosis (NCS), the genetic, and environmental causes of which remain largely unknown. Recent data suggest that, at least some of the midline NCS cases may be explained by two loci inheritance. In approximately 25-30% of patients, craniosynostosis presents as a feature of a genetic syndrome due to chromosomal defects or mutations in genes within interconnected signaling pathways. The aim of this review is to provide a detailed and comprehensive update on the genetic and environmental factors associated with NCS, integrating the scientific findings achieved during the last decade. Focus on the neurodevelopmental, imaging, and treatment aspects of NCS is also provided.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Latium Musculoskeletal Tıssue Bank, Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simeon A Boyadjiev
- Division of Genomic Medicine, Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California
| |
Collapse
|
63
|
Salva JE, Merrill AE. Signaling networks in joint development. Dev Dyn 2016; 246:262-274. [PMID: 27859991 DOI: 10.1002/dvdy.24472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
64
|
Goldie SJ, Arhatari BD, Anderson P, Auden A, Partridge DD, Jane SM, Dworkin S. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:37. [PMID: 27756203 PMCID: PMC5070091 DOI: 10.1186/s12861-016-0136-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. RESULTS Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. CONCLUSIONS Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.
Collapse
Affiliation(s)
- Stephen J Goldie
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, 3004, Australia
| | - Benedicta D Arhatari
- ARC Centre of Excellence for Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter Anderson
- Australian Craniofacial Unit, Women and Children's Hospital, Adelaide, SA, 5005, Australia.,Faculty of Health Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.,Nanjing Medical University, Nanjing, People's Republic of China
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, 3004, Australia
| | - Darren D Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, 3004, Australia
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, 3004, Australia
| | - Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, 3004, Australia. .,Present address: Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
65
|
Tabler JM, Rice CP, Liu KJ, Wallingford JB. A novel ciliopathic skull defect arising from excess neural crest. Dev Biol 2016; 417:4-10. [PMID: 27395007 DOI: 10.1016/j.ydbio.2016.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023]
Abstract
The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies.
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Molecular Biosciences, University of Texas at Austin, United States
| | - Christopher P Rice
- Department of Molecular Biosciences, University of Texas at Austin, United States
| | - Karen J Liu
- Department of Craniofacial Development and Stem Cell Biology, King's College London, UK.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
66
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
67
|
Twigg SRF, Wilkie AOM. New insights into craniofacial malformations. Hum Mol Genet 2015; 24:R50-9. [PMID: 26085576 PMCID: PMC4571997 DOI: 10.1093/hmg/ddv228] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Development of the human skull and face is a highly orchestrated and complex three-dimensional morphogenetic process, involving hundreds of genes controlling the coordinated patterning, proliferation and differentiation of tissues having multiple embryological origins. Craniofacial malformations that occur because of abnormal development (including cleft lip and/or palate, craniosynostosis and facial dysostoses), comprise over one-third of all congenital birth defects. High-throughput sequencing has recently led to the identification of many new causative disease genes and functional studies have clarified their mechanisms of action. We present recent findings in craniofacial genetics and discuss how this information together with developmental studies in animal models is helping to increase understanding of normal craniofacial development.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| |
Collapse
|
68
|
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis. Curr Top Dev Biol 2015; 115:131-56. [PMID: 26589924 DOI: 10.1016/bs.ctdb.2015.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The skull vault is a complex, exquisitely patterned structure that plays a variety of key roles in vertebrate life, ranging from the acquisition of food to the support of the sense organs for hearing, smell, sight, and taste. During its development, it must meet the dual challenges of protecting the brain and accommodating its growth. The bones and sutures of the skull vault are derived from cranial neural crest and head mesoderm. The frontal and parietal bones develop from osteogenic rudiments in the supraorbital ridge. The coronal suture develops from a group of Shh-responsive cells in the head mesoderm that are collocated, with the osteogenic precursors, in the supraorbital ridge. The osteogenic rudiments and the prospective coronal suture expand apically by cell migration. A number of congenital disorders affect the skull vault. Prominent among these is craniosynostosis, the fusion of the bones at the sutures. Analysis of the pathophysiology underling craniosynostosis has identified a variety of cellular mechanisms, mediated by a range of signaling pathways and effector transcription factors. These cellular mechanisms include loss of boundary integrity, altered sutural cell specification in embryos, and loss of a suture stem cell population in adults. Future work making use of genome-wide transcriptomic approaches will address the deep structure of regulatory interactions and cellular processes that unify these seemingly diverse mechanisms.
Collapse
|
69
|
Twigg SRF, Forecki J, Goos JAC, Richardson ICA, Hoogeboom AJM, van den Ouweland AMW, Swagemakers SMA, Lequin MH, Van Antwerp D, McGowan SJ, Westbury I, Miller KA, Wall SA, van der Spek PJ, Mathijssen IMJ, Pauws E, Merzdorf CS, Wilkie AOM. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability. Am J Hum Genet 2015; 97:378-88. [PMID: 26340333 PMCID: PMC4564895 DOI: 10.1016/j.ajhg.2015.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 12/03/2022] Open
Abstract
Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Jennifer Forecki
- Department of Cell Biology and Neuroscience, 513 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA
| | - Jacqueline A C Goos
- Department of Plastic Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Ivy C A Richardson
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - A Jeannette M Hoogeboom
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Maarten H Lequin
- Department of Pediatric Radiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Daniel Van Antwerp
- Department of Cell Biology and Neuroscience, 513 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Isabelle Westbury
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Kerry A Miller
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Department of Plastic Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Erwin Pauws
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Christa S Merzdorf
- Department of Cell Biology and Neuroscience, 513 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
70
|
Twigg SRF, Wilkie AOM. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015; 97:359-77. [PMID: 26340332 PMCID: PMC4564941 DOI: 10.1016/j.ajhg.2015.07.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures of the skull, provides a paradigm for investigating the interplay of genetic and environmental factors leading to malformation. Over the past 20 years molecular genetic techniques have provided a new approach to dissect the underlying causes; success has mostly come from investigation of clinical samples, and recent advances in high-throughput DNA sequencing have dramatically enhanced the study of the human as the preferred "model organism." In parallel, however, we need a pathogenetic classification to describe the pathways and processes that lead to cranial suture fusion. Given the prenatal onset of most craniosynostosis, investigation of mechanisms requires more conventional model organisms; principally the mouse, because of similarities in cranial suture development. We present a framework for classifying genetic causes of craniosynostosis based on current understanding of cranial suture biology and molecular and developmental pathogenesis. Of note, few pathologies result from complete loss of gene function. Instead, biochemical mechanisms involving haploinsufficiency, dominant gain-of-function and recessive hypomorphic mutations, and an unusual X-linked cellular interference process have all been implicated. Although few of the genes involved could have been predicted based on expression patterns alone (because the genes play much wider roles in embryonic development or cellular homeostasis), we argue that they fit into a limited number of functional modules active at different stages of cranial suture development. This provides a useful approach both when defining the potential role of new candidate genes in craniosynostosis and, potentially, for devising pharmacological approaches to therapy.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
71
|
Homayounfar N, Park SS, Afsharinejad Z, Bammler TK, MacDonald JW, Farin FM, Mecham BH, Cunningham ML. Transcriptional analysis of human cranial compartments with different embryonic origins. Arch Oral Biol 2015; 60:1450-60. [PMID: 26188427 PMCID: PMC4750879 DOI: 10.1016/j.archoralbio.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Previous investigations suggest that the embryonic origins of the calvarial tissues (neural crest or mesoderm) may account for the molecular mechanisms underlying sutural development. The aim of this study was to evaluate the differences in the gene expression of human cranial tissues and assess the presence of an expression signature reflecting their embryonic origins. METHODS Using microarray technology, we investigated global gene expression of cells from the frontal and parietal bones and the metopic and sagittal intrasutural mesenchyme (ISM) of four human foetal calvaria. qRT-PCR of a selected group of genes was done to validate the microarray analysis. Paired comparison and correlation analyses were performed on microarray results. RESULTS Of six paired comparisons, frontal and parietal compartments (distinct tissue types of calvaria, either bone or intrasutural mesenchyme) had the most different gene expression profiles despite being composed of the same tissue type (bone). Correlation analysis revealed two distinct gene expression profiles that separate frontal and metopic compartments from parietal and sagittal compartments. TFAP2A, TFAP2B, ICAM1, SULF1, TNC and FOXF2 were among differentially expressed genes. CONCLUSION Transcriptional profiles of two groups of tissues, frontal and metopic compartments vs. parietal and sagittal compartments, suggest differences in proliferation, differentiation and extracellular matrix production. Our data suggest that in the second trimester of human foetal development, a gene expression signature of neural crest origin still exists in frontal and metopic compartments while gene expression of parietal and sagittal compartments is more similar to mesoderm.
Collapse
Affiliation(s)
- Negar Homayounfar
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States; Department of Oral Health Sciences, Dental School, University of Washington, United States; Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, United States.
| | - Sarah S Park
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Brigham H Mecham
- Trialomics, 1700 7th Avenue, # 116, Seattle, WA 98101, United States
| | - Michael L Cunningham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States; Seattle Children's Craniofacial Center, 4800 Sand Point Way NE, Seattle, WA 98105, United States
| |
Collapse
|
72
|
BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development. Gene Expr Patterns 2014; 17:16-25. [PMID: 25511173 DOI: 10.1016/j.gep.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
Abstract
Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone.
Collapse
|
73
|
Juuri E, Saito K, Lefebvre S, Michon F. Establishment of crown-root domain borders in mouse incisor. Gene Expr Patterns 2013; 13:255-64. [PMID: 23684768 DOI: 10.1016/j.gep.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/27/2013] [Accepted: 05/05/2013] [Indexed: 12/24/2022]
Abstract
Teeth are composed of two domains, the enamel-covered crown and the enamel-free root. The understanding of the initiation and regulation of crown and root domain formation is important for the development of bioengineered teeth. In most teeth the crown develops before the root, and erupts to the oral cavity whereas the root anchors the tooth to the jawbone. However, in the continuously growing mouse incisor the crown and root domains form simultaneously, the crown domain forming the labial and the root domain the lingual part of the tooth. While the crown-root border on the incisor distal side supports the distal enamel extent, reflecting an evolutionary diet adaptation, on the incisor mesial side the root-like surface is necessary for the attachment of the interdental ligament between the two incisors. Therefore, the mouse incisor exhibits a functional distal-mesial asymmetry. Here, we used the mouse incisor as a model to understand the mechanisms involved in the crown-root border formation. We analyzed the cellular origins and gene expression patterns leading to the development of the mesial and distal crown-root borders. We discovered that Barx2, En1, Wnt11, and Runx3 were exclusively expressed on the mesial crown-root border. In addition, the distal border of the crown-root domain might be established by cells from a different origin and by an early Follistatin expression, factor known to be involved in the root domain formation. The use of different mechanisms to establish domain borders gives indications of the incisor functional asymmetry.
Collapse
Affiliation(s)
- Emma Juuri
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
74
|
Sun J, Ishii M, Ting MC, Maxson R. Foxc1 controls the growth of the murine frontal bone rudiment by direct regulation of a Bmp response threshold of Msx2. Development 2013; 140:1034-44. [PMID: 23344708 DOI: 10.1242/dev.085225] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The mammalian skull vault consists of several intricately patterned bones that grow in close coordination. The growth of these bones depends on the precise regulation of the migration and differentiation of osteogenic cells from undifferentiated precursor cells located above the eye. Here, we demonstrate a role for Foxc1 in modulating the influence of Bmp signaling on the expression of Msx2 and the specification of these cells. Inactivation of Foxc1 results in a dramatic reduction in skull vault growth and causes an expansion of Msx2 expression and Bmp signaling into the area occupied by undifferentiated precursor cells. Foxc1 interacts directly with a Bmp responsive element in an enhancer upstream of Msx2, and acts to reduce the occupancy of P-Smad1/5/8. We propose that Foxc1 sets a threshold for the Bmp-dependent activation of Msx2, thus controlling the differentiation of osteogenic precursor cells and the rate and pattern of calvarial bone development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA
| | | | | | | |
Collapse
|
75
|
Marcellini S, Henriquez JP, Bertin A. Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. Bioessays 2012; 34:953-62. [PMID: 22930599 DOI: 10.1002/bies.201200061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad-dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad-dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone-specific cell types during development.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Faculty of Biological Science, Department of Cell Biology, University of Concepcion, Concepcion, Chile.
| | | | | |
Collapse
|