51
|
Fukui H, Chiba A, Miyazaki T, Takano H, Ishikawa H, Omori T, Mochiuzki N. Spatial Allocation and Specification of Cardiomyocytes during Zebrafish Embryogenesis. Korean Circ J 2017; 47:160-167. [PMID: 28382067 PMCID: PMC5378018 DOI: 10.4070/kcj.2016.0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Incomplete development and severe malformation of the heart result in miscarriage of embryos because of its malfunction as a pump for circulation. During cardiogenesis, development of the heart is precisely coordinated by the genetically-primed program that is revealed by the sequential expression of transcription factors. It is important to investigate how spatial allocation of the heart containing cardiomyocytes and other mesoderm-derived cells is determined. In addition, the molecular mechanism underlying cardiomyocyte differentiation still remains elusive. The location of ectoderm-, mesoderm-, and endoderm-derived organs is determined by their initial allocation and subsequent mutual cell-cell interactions or paracrine-based regulation. In the present work, we provide an overview of cardiac development controlled by the germ layers and discuss the points that should be uncovered in future for understanding cardiogenesis.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Haruko Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Toyonori Omori
- Management office, National Center for Child Health and Development, Tokyo, Japan
| | - Naoki Mochiuzki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.; AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
52
|
Isl2b regulates anterior second heart field development in zebrafish. Sci Rep 2017; 7:41043. [PMID: 28106108 PMCID: PMC5247716 DOI: 10.1038/srep41043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
After initial formation, the heart tube grows by addition of second heart field progenitor cells to its poles. The transcription factor Isl1 is expressed in the entire second heart field in mouse, and Isl1-deficient mouse embryos show defects in arterial and venous pole development. The expression of Isl1 is conserved in zebrafish cardiac progenitors; however, Isl1 is required for cardiomyocyte differentiation only at the venous pole. Here we show that Isl1 homologues are expressed in specific patterns in the developing zebrafish heart and play distinct roles during cardiac morphogenesis. In zebrafish, isl2a mutants show defects in cardiac looping, whereas isl2b is required for arterial pole development. Moreover, Isl2b controls the expression of key cardiac transcription factors including mef2ca, mef2cb, hand2 and tbx20. The specific roles of individual Islet family members in the development of distinct regions of the zebrafish heart renders this system particularly well-suited for dissecting Islet-dependent gene regulatory networks controlling the behavior and function of second heart field progenitors in distinct steps of cardiac development.
Collapse
|
53
|
Mandal A, Holowiecki A, Song YC, Waxman JS. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields. Mech Dev 2017; 143:32-41. [PMID: 28087459 DOI: 10.1016/j.mod.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 01/01/2023]
Abstract
Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos.
Collapse
Affiliation(s)
- Amrita Mandal
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45208, USA
| | - Andrew Holowiecki
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yuntao Charlie Song
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45208, USA
| | - Joshua S Waxman
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
54
|
Grant MG, Patterson VL, Grimes DT, Burdine RD. Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol 2017; 124:1-40. [DOI: 10.1016/bs.ctdb.2016.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
55
|
Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity. PLoS Biol 2016; 14:e2000504. [PMID: 27893754 PMCID: PMC5125711 DOI: 10.1371/journal.pbio.2000504] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity. Retinoic acid (RA) is the most active metabolic product of vitamin A. The embryonic heart is particularly sensitive to inappropriate RA levels, with cardiac outflow tract (OFT) defects among the most common RA-induced malformations. However, the mechanisms underlying these RA-induced defects are not understood. Cyp26 enzymes facilitate degradation of RA and thus are required to limit RA levels in early development. Here, we present evidence that loss of Cyp26 enzymes induces cardiac OFT defects through two mechanisms. First, we find that Cyp26-deficient zebrafish embryos fail to add later-differentiating ventricular cardiac progenitors to the OFT, with some of these progenitors instead contributing to the nearby arch arteries. Second, Cyp26-deficient embryos cannot maintain the integrity of the nascent heart tube, with ventricular cells within the heart tube losing their polarity and being extruded. Our data indicate that excess expression of matrix metalloproteinase 9, an enzyme that degrades the extracellular matrix, underlies both the cardiac progenitor addition and heart tube integrity defects seen in Cyp26-deficient embryos. Our findings highlight perturbation of the extracellular matrix as a major cause of RA-induced cardiac OFT defects that specifically disrupt ventricular development at later stages than previously appreciated.
Collapse
|
56
|
Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease. Cell Mol Life Sci 2016; 74:1367-1378. [PMID: 27812722 PMCID: PMC5357290 DOI: 10.1007/s00018-016-2404-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cardiomyocytes proliferate profusely during early development and for a brief period after birth in mammals. Within a month after birth, this proliferative capability is dramatically reduced in mammals unlike lower vertebrates where it persists into adult life. The zebrafish, for example, retains the ability to regenerate the apex of the heart following resection by a mechanism predominantly driven by cardiomyocyte proliferation. Differences in proliferative capacity of cardiomyocytes in adulthood between mammals and lower vertebrates are closely liked to ontogenetic or phylogenetic factors. Elucidation of these factors has the potential to provide enormous benefits if they lead to the development of therapeutic strategies that facilitate cardiomyocyte proliferation. In this review, we highlight the differences between Mammalian and Zebrafish cardiomyocytes, which could explain at least in part the different proliferative capacities in these two species. We discuss the advantages of the zebrafish as a model of cardiomyocyte proliferation, particularly at the embryonic stage. We also identify a number of key molecular pathways with potential to reveal key steps in switching cardiomyocytes from a quiescent to a proliferative phenotype.
Collapse
|
57
|
Liu P, Sun Y, Qiu G, Jiang H, Qiu G. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase. Mol Med Rep 2016; 14:2904-14. [PMID: 27572266 PMCID: PMC5042752 DOI: 10.3892/mmr.2016.5660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle arrest.
Collapse
Affiliation(s)
- Peiyan Liu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yueling Sun
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guangbin Qiu
- Department of Laboratory Medicine, 202 Hospital of People's Liberation Army, Shenyang, Heping 110003, P.R. China
| | - Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital, China Medical University, Shenyang, Heping 110001, P.R. China
| | - Guangrong Qiu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
58
|
Jahangiri L, Sharpe M, Novikov N, González-Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE, Burns CG. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development 2016; 143:113-22. [PMID: 26732840 DOI: 10.1242/dev.126136] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage.
Collapse
Affiliation(s)
- Leila Jahangiri
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Michka Sharpe
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Natasha Novikov
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Juan Manuel González-Rosa
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Asya Borikova
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Nevis
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Noelle Paffett-Lugassy
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Long Zhao
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Meghan Adams
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Burcu Guner-Ataman
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C Geoffrey Burns
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
59
|
Haack T, Abdelilah-Seyfried S. The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development 2016; 143:373-86. [PMID: 26839341 DOI: 10.1242/dev.131425] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flow-responsive endocardial signalling can result in pathophysiological changes.
Collapse
Affiliation(s)
- Timm Haack
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, Potsdam D-14476, Germany
| |
Collapse
|
60
|
Xie H, Ye D, Sepich D, Lin F. S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence. Dev Biol 2016; 414:228-43. [PMID: 27158029 DOI: 10.1016/j.ydbio.2016.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/09/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Formation of the heart tube requires synchronized migration of endocardial and myocardial precursors. Our previous studies indicated that in S1pr2/Gα13-deficient embryos, impaired endoderm convergence disrupted the medial migration of myocardial precursors, resulting in the formation of two myocardial populations. Here we show that endoderm convergence also regulates endocardial migration. In embryos defective for S1pr2/Gα13 signaling, endocardial precursors failed to migrate towards the midline, and the presumptive endocardium surrounded the bilaterally-located myocardial cells rather than being encompassed by them. In vivo imaging of control embryos revealed that, like their myocardial counterparts, endocardial precursors migrated with the converging endoderm, though from a more anterior point, then moved from the dorsal to the ventral side of the endoderm (subduction), and finally migrated posteriorly towards myocardial precursors, ultimately forming the inner layer of the heart tube. In embryos defective for endoderm convergence due to an S1pr2/Gα13 deficiency, both the medial migration and the subduction of endocardial precursors were impaired, and their posterior migration towards the myocardial precursors was premature. This placed them medial to the myocardial populations, physically blocking the medial migration of the myocardial precursors. Furthermore, contact between the endocardial and myocardial precursor populations disrupted the epithelial architecture of the myocardial precursors, and thus their medial migration; in embryos depleted of endocardial cells, the myocardial migration defect was partially rescued. Our data indicate that endoderm convergence regulates the medial migration of endocardial precursors, and that premature association of the endocardial and myocardial populations contributes to myocardial migration defects observed in S1pr2/Gα13-deficient embryos. The demonstration that endoderm convergence regulates the synchronized migration of endocardial and myocardial precursors reveals a new role of the endoderm in heart development.
Collapse
Affiliation(s)
- Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
61
|
Abstract
The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- A R Houk
- University of California, San Diego, CA, United States
| | - D Yelon
- University of California, San Diego, CA, United States
| |
Collapse
|
62
|
Abstract
Proper control of the temporal onset of cellular differentiation is critical for regulating cell lineage decisions and morphogenesis during development. Pbx homeodomain transcription factors have emerged as important regulators of cellular differentiation. We previously showed, by using antisense morpholino knockdown, that Pbx factors are needed for the timely activation of myocardial differentiation in zebrafish. In order to gain further insight into the roles of Pbx factors in heart development, we show here that zebrafish pbx4 mutant embryos exhibit delayed onset of myocardial differentiation, such as delayed activation of tnnt2a expression in early cardiomyocytes in the anterior lateral plate mesoderm. We also observe delayed myocardial morphogenesis and dysmorphic patterning of the ventricle and atrium, consistent with our previous Pbx knock-down studies. In addition, we find that pbx4 mutant larvae have aberrant outflow tracts and defective expression of the proepicardial marker tbx18. Finally, we present evidence for Pbx expression in cardiomyocyte precursors as well as heterogeneous Pbx expression among the pan-cytokeratin-expressing proepicardial cells near the developing ventricle. In summary, our data show that Pbx4 is required for the proper temporal activation of myocardial differentiation and establish a basis for studying additional roles of Pbx factors in heart development.
Collapse
|
63
|
Ye D, Xie H, Hu B, Lin F. Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Development 2015; 142:2928-40. [PMID: 26329600 PMCID: PMC10682956 DOI: 10.1242/dev.113944] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 07/21/2015] [Indexed: 01/15/2023]
Abstract
Coordination between the endoderm and adjacent cardiac mesoderm is crucial for heart development. We previously showed that myocardial migration is promoted by convergent movement of the endoderm, which itself is controlled by the S1pr2/Gα13 signaling pathway, but it remains unclear how the movements of the two tissues is coordinated. Here, we image live and fixed embryos to follow these movements, revealing previously unappreciated details of strikingly complex and dynamic associations between the endoderm and myocardial precursors. We found that during segmentation the endoderm underwent three distinct phases of movement relative to the midline: rapid convergence, little convergence and slight expansion. During these periods, the myocardial cells exhibited different stage-dependent migratory modes: co-migration with the endoderm, movement from the dorsal to the ventral side of the endoderm (subduction) and migration independent of endoderm convergence. We also found that defects in S1pr2/Gα13-mediated endodermal convergence affected all three modes of myocardial cell migration, probably due to the disruption of fibronectin assembly around the myocardial cells and consequent disorganization of the myocardial epithelium. Moreover, we found that additional cell types within the anterior lateral plate mesoderm (ALPM) also underwent subduction, and that this movement likewise depended on endoderm convergence. Our study delineates for the first time the details of the intricate interplay between the endoderm and ALPM during embryogenesis, highlighting why endoderm movement is essential for heart development, and thus potential underpinnings of congenital heart disease.
Collapse
Affiliation(s)
- Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242-1109, USA
| | - Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242-1109, USA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242-1109, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242-1109, USA
| |
Collapse
|
64
|
Strate I, Tessadori F, Bakkers J. Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling. Development 2015; 142:1767-76. [PMID: 25968312 DOI: 10.1242/dev.113894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects. To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4. Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers. Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 'Knypek' is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes. Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos. In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers. Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes. This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.
Collapse
Affiliation(s)
- Ina Strate
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Federico Tessadori
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Jeroen Bakkers
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands Department of Medical Physiology, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
65
|
Matrone G, Wilson KS, Mullins JJ, Tucker CS, Denvir MA. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart. Differentiation 2015; 89:117-27. [PMID: 26095446 DOI: 10.1016/j.diff.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/06/2015] [Accepted: 05/10/2015] [Indexed: 11/25/2022]
Abstract
Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.
Collapse
Affiliation(s)
- Gianfranco Matrone
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | - Kathryn S Wilson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Carl S Tucker
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Martin A Denvir
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
66
|
Jungke P, Hammer J, Hans S, Brand M. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS One 2015; 10:e0129072. [PMID: 26083735 PMCID: PMC4471347 DOI: 10.1371/journal.pone.0129072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.
Collapse
Affiliation(s)
- Peggy Jungke
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Juliane Hammer
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Stefan Hans
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
67
|
George V, Colombo S, Targoff KL. An early requirement for nkx2.5 ensures the first and second heart field ventricular identity and cardiac function into adulthood. Dev Biol 2014; 400:10-22. [PMID: 25536398 DOI: 10.1016/j.ydbio.2014.12.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Temporally controlled mechanisms that define the unique features of ventricular and atrial cardiomyocyte identities are essential for the construction of a coordinated, morphologically intact heart. We have previously demonstrated an important role for nkx genes in maintaining ventricular identity, however, the specific timing of nkx2.5 function in distinct cardiomyocyte populations has yet to be elucidated. Here, we show that heat-shock induction of a novel transgenic line, Tg(hsp70l:nkx2.5-EGFP), during the initial stages of cardiomyocyte differentiation leads to rescue of chamber shape and identity in nkx2.5(-/-) embryos as chambers emerge. Intriguingly, our findings link an early role of this essential cardiac transcription factor with a later function. Moreover, these data reveal that nkx2.5 is also required in the second heart field as the heart tube forms, reflecting the temporal delay in differentiation of this population. Thus, our results support a model in which nkx genes induce downstream targets that are necessary to maintain chamber-specific identity in both early- and late-differentiating cardiomyocytes at discrete stages in cardiac morphogenesis. Furthermore, we show that overexpression of nkx2.5 during the first and second heart field development not only rescues the mutant phenotype, but also is sufficient for proper function of the adult heart. Taken together, these results shed new light on the stage-dependent mechanisms that sculpt chamber-specific cardiomyocytes and, therefore, have the potential to improve in vitro generation of ventricular cells to treat myocardial infarction and congenital heart disease.
Collapse
Affiliation(s)
- Vanessa George
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA
| | - Sophie Colombo
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA
| | - Kimara L Targoff
- Division of Pediatric Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA.
| |
Collapse
|
68
|
Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration. Cytotechnology 2014; 68:763-70. [PMID: 25480318 DOI: 10.1007/s10616-014-9827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that mammalian hearts maintain the capacity for cardiac regeneration. Rapid and sensitive identification of cardiac cellular proliferation is prerequisite for understanding the underlying mechanisms and strategies of cardiac regeneration. The following immunologically related markers of cardiac cells were analyzed: cardiac transcription factors Nkx2.5 and Gata 4; specific marker of cardiomyocytes TnT; endothelial cell marker CD31; vascular smooth muscle marker smooth muscle myosin IgG; cardiac resident stem cells markers IsL1, Tbx18, and Wt1. Markers were co-localized in cardiac tissues of embryonic, neonatal, adult, and pathological samples by 5-ethynyl-2'-deoxyuridine (EdU) staining. EdU was also used to label isolated neonatal cardiomyocytes in vitro. EdU robustly labeled proliferating cells in vitro and in vivo, co-immunostaining with different cardiac cells markers. EdU can rapidly and sensitively label proliferating cardiac cells in developmental and pathological states. Cardiac cell proliferation assessed by EdU is a novel analytical tool for investigating the mechanism and strategies of cardiac regeneration in response to injury.
Collapse
|
69
|
Zeng XXI, Yelon D. Cadm4 restricts the production of cardiac outflow tract progenitor cells. Cell Rep 2014; 7:951-60. [PMID: 24813897 DOI: 10.1016/j.celrep.2014.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Heart assembly requires input from two populations of progenitor cells, the first and second heart fields (FHF and SHF), that differentiate at distinct times and create different cardiac components. The cardiac outflow tract (OFT) is built through recruitment of late-differentiating, SHF-derived cardiomyocytes to the arterial pole of the heart. The mechanisms responsible for selection of an appropriate number of OFT cells from the SHF remain unclear. Here, we find that cell adhesion molecule 4 (cadm4) is essential for restricting the size of the zebrafish OFT. Knockdown of cadm4 causes dramatic OFT expansion, and overexpression of cadm4 results in a greatly diminished OFT. Moreover, cadm4 activity limits the production of OFT progenitor cells and the duration of their accumulation at the arterial pole. Together, our data suggest a role for cell adhesion in restraining SHF deployment to the OFT, perturbation of which could cause congenital OFT defects.
Collapse
Affiliation(s)
- Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
70
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
71
|
Wang W, Razy-Krajka F, Siu E, Ketcham A, Christiaen L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol 2013; 11:e1001725. [PMID: 24311985 PMCID: PMC3849182 DOI: 10.1371/journal.pbio.1001725] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022] Open
Abstract
Cross inhibition between NK4 and TBX1 transcription factors specifies heart versus pharyngeal muscle fates by promoting the activation of tissue-specific regulators in distinct precursors within the cardiopharyngeal lineage of the ascidian, Ciona intestinalis. The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates. Mutations in the regulatory genes encoding the transcription factors NKX2-5 and TBX1, which govern heart and head muscle development, cause prevalent congenital defects. Recent studies using vertebrate models have shown that the heart and pharyngeal head muscle cells derive from common progenitors in the early embryo. To better understand the genetic mechanisms by which these progenitors select one of the two developmental trajectories, we studied the activity of these transcription factors in a simple invertebrate chordate model, the sea squirt Ciona intestinalis. We show that the sea squirt homolog of NKX2-5 promotes early heart specification by inhibiting the formation of pharyngeal muscles. Conversely, the TBX1 homolog determines pharyngeal muscle fate by inhibiting GATAa and thereby the heart program it instructs, as well as promoting the pharyngeal muscle program through activation of COE (Collier/Olf-1/EBF), a recently identified regulator of skeletal muscle differentiation. Finally, we show that the NKX2-5 homolog protein directly binds to the COE gene to repress its activity. Notably, these antagonistic interactions occur in heart and pharyngeal precursors immediately following the division of their pluripotent mother cells, thus contributing to their respective fate choice. These mechanistic insights into the process of early heart versus head muscle specification in this simple chordate provide the grounds for establishing the etiology of human congenital cardio-craniofacial defects.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology, New York University, New York, New York, United States of America
| | - Florian Razy-Krajka
- Department of Biology, New York University, New York, New York, United States of America
| | - Eric Siu
- Department of Biology, New York University, New York, New York, United States of America
| | - Alexandra Ketcham
- Department of Biology, New York University, New York, New York, United States of America
| | - Lionel Christiaen
- Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
72
|
Grajevskaja V, Balciuniene J, Balciunas D. Chicken β-globin insulators fail to shield the nkx2.5 promoter from integration site effects in zebrafish. Mol Genet Genomics 2013; 288:717-25. [PMID: 24036575 PMCID: PMC4104600 DOI: 10.1007/s00438-013-0778-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Genetic lineage tracing and conditional mutagenesis are developmental genetics techniques reliant on precise tissue-specific expression of transgenes. In the mouse, high specificity is usually achieved by inserting the transgene into the locus of interest through homologous recombination in embryonic stem cells. In the zebrafish, DNA containing the transgenic construct is randomly integrated into the genome, usually through transposon-mediated transgenesis. Expression of such transgenes is affected by regulatory features surrounding the integration site from general accessibility of chromatin to tissue-specific enhancers. We tested if the 1.2 kb cHS4 insulators derived from the chicken β-globin locus can shield a transgene from chromosomal position effects in the zebrafish genome. As our test promoters, we used two different-length versions of the zebrafish nkx2.5. We found that flanking a transgenic construct by cHS4 insulation sequences leads to overall increase in the expression of nkx2.5:mRFP. However, we also observed a very high degree of variability of mRFP expression, indicating that cHS4 insulators fail to protect nkx2.5:mRFP from falling under the control of enhancers in the vicinity of integration site.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | | | - Darius Balciunas
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
73
|
Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nat Cell Biol 2013; 15:1362-9. [PMID: 24161929 PMCID: PMC3864813 DOI: 10.1038/ncb2862] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/18/2013] [Indexed: 01/12/2023]
Abstract
The pharyngeal arch arteries (PAAs) are transient embryonic blood vessels that make indispensable contributions to the carotid arteries and great vessels of the heart, including the aorta and pulmonary artery1, 2. During embryogenesis, the PAAs appear in a craniocaudal sequence to connect pre-existing segments of the primitive circulation after de novo vasculogenic assembly from angioblast precursors3, 4. Despite the unique spatiotemporal characteristics of PAA development, the embryonic origins of PAA angioblasts and the genetic factors regulating their emergence remain unknown. Here, we identify the embryonic source of PAA endothelium as nkx2.5+ progenitors in lateral plate mesoderm long considered to adopt cell fates within the heart exclusively5, 6. Further, we report that PAA endothelial differentiation relies on Nkx2.5, a canonical cardiac transcription factor not previously implicated in blood vessel formation. Together, these studies reveal the heart field origin of PAA endothelium and attribute a novel vasculogenic function to the cardiac transcription factor nkx2.5 during great vessel precursor development.
Collapse
|
74
|
Targoff KL, Colombo S, George V, Schell T, Kim SH, Solnica-Krezel L, Yelon D. Nkx genes are essential for maintenance of ventricular identity. Development 2013; 140:4203-13. [PMID: 24026123 DOI: 10.1242/dev.095562] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Establishment of specific characteristics of each embryonic cardiac chamber is crucial for development of a fully functional adult heart. Despite the importance of defining and maintaining unique features in ventricular and atrial cardiomyocytes, the regulatory mechanisms guiding these processes are poorly understood. Here, we show that the homeodomain transcription factors Nkx2.5 and Nkx2.7 are necessary to sustain ventricular chamber attributes through repression of atrial chamber identity. Mutation of nkx2.5 in zebrafish yields embryos with diminutive ventricular and bulbous atrial chambers. These chamber deformities emerge gradually during development, with a severe collapse in the number of ventricular cardiomyocytes and an accumulation of excess atrial cardiomyocytes as the heart matures. Removal of nkx2.7 function from nkx2.5 mutants exacerbates the loss of ventricular cells and the gain of atrial cells. Moreover, in these Nkx-deficient embryos, expression of vmhc, a ventricular gene, fades, whereas expression of amhc, an atrial gene, expands. Cell-labeling experiments suggest that ventricular cardiomyocytes can transform into atrial cardiomyocytes in the absence of Nkx gene function. Through suggestion of transdifferentiation from ventricular to atrial fate, our data reveal a pivotal role for Nkx genes in maintaining ventricular identity and highlight remarkable plasticity in differentiated myocardium. Thus, our results are relevant to the etiologies of fetal and neonatal cardiac pathology and could direct future innovations in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Kimara L Targoff
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Sorrell MRJ, Dohn TE, D'Aniello E, Waxman JS. Tcf7l1 proteins cell autonomously restrict cardiomyocyte and promote endothelial specification in zebrafish. Dev Biol 2013; 380:199-210. [PMID: 23707897 DOI: 10.1016/j.ydbio.2013.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/24/2022]
Abstract
Tcf7l1 (formerly Tcf3) proteins are conserved transcription factors whose function as transcriptional repressors is relieved through interactions with β-catenin. Although the functions of Tcf7l1 proteins have been studied in many developmental contexts, whether this conserved mediator of Wnt signaling is required for appropriate cardiomyocyte (CM) development has not been investigated. We find that Tcf7l1 proteins are necessary during two developmental periods to limit CM number in zebrafish embryos: prior to gastrulation and after the initial wave of CM differentiation. In contrast to partially redundant roles in anterior neural patterning, we find that Tcf7l1a and Tcf7l1b have non-redundant functions with respect to restricting CM specification during anterior mesodermal patterning, suggesting that between the two zebrafish Tcf7l1 paralogs there is a limit to the transcriptional repression provided during early CM specification. Using cell transplantation experiments, we determine that the Tcf7l1 paralogs are required cell autonomously to restrict CM specification and promote endothelial cell (EC) specification, which is overtly similar to the ability of Wnt signaling to direct a transformation between these progenitors in embryonic stem cells. Therefore, these results argue that during anterior-posterior patterning of the mesoderm Tcf7l1 proteins are cell autonomously required to limit Wnt signaling, which balances CM and EC progenitor specification within the anterior lateral plate mesoderm. This study expands our understanding of the in vivo developmental requirements of Tcf7l1 proteins and the mechanisms directing CM development in vertebrates.
Collapse
Affiliation(s)
- Mollie R J Sorrell
- Molecular Cardiovascular Biology Division and The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|