51
|
Bonn S, Furlong EE. cis-Regulatory networks during development: a view of Drosophila. Curr Opin Genet Dev 2008; 18:513-20. [DOI: 10.1016/j.gde.2008.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/16/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
|
52
|
He F, Wen Y, Deng J, Lin X, Lu LJ, Jiao R, Ma J. Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev Cell 2008; 15:558-67. [PMID: 18854140 DOI: 10.1016/j.devcel.2008.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/19/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
A remarkable feature of development is its reproducibility, the ability to correct embryo-to-embryo variations and instruct precise patterning. In Drosophila, embryonic patterning along the anterior-posterior axis is controlled by the morphogen gradient Bicoid (Bcd). In this article, we describe quantitative studies of the native Bcd gradient and its target Hunchback (Hb). We show that the native Bcd gradient is highly reproducible and is itself scaled with embryo length. While a precise Bcd gradient is necessary for precise Hb expression, it still has positional errors greater than Hb expression. We describe analyses further probing mechanisms for Bcd gradient scaling and correction of its residual positional errors. Our results suggest a simple model of a robust Bcd gradient sufficient to achieve scaled and precise activation of its targets. The robustness of this gradient is conferred by its intrinsic properties of "self-correcting" the inevitable input variations to achieve a precise and reproducible output.
Collapse
Affiliation(s)
- Feng He
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Spatial bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comput Biol 2008; 4:e1000184. [PMID: 18818726 PMCID: PMC2527687 DOI: 10.1371/journal.pcbi.1000184] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 08/13/2008] [Indexed: 11/19/2022] Open
Abstract
During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on-off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior-posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction-diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical framework for understanding the data and in particular indicates that spatial bistability can play a central role in threshold-dependent reading mechanisms of positional information.
Collapse
|
54
|
Abstract
Gene expression levels fluctuate even under constant external conditions. Much emphasis has usually been placed on the components of this noise that are due to randomness in transcription and translation. Here we focus on the role of noise associated with the inputs to transcriptional regulation; in particular, we analyze the effects of random arrival times and binding of transcription factors to their target sites along the genome. This contribution to the total noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, universal models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.
Collapse
|
55
|
Simpson P, Ayyar S. Chapter 3 Evolution of Cis‐Regulatory Sequences in Drosophila. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:67-106. [DOI: 10.1016/s0065-2660(07)00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
56
|
Gregor T, Tank DW, Wieschaus EF, Bialek W. Probing the limits to positional information. Cell 2007; 130:153-64. [PMID: 17632062 PMCID: PMC2253670 DOI: 10.1016/j.cell.2007.05.025] [Citation(s) in RCA: 504] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 02/15/2007] [Accepted: 05/03/2007] [Indexed: 11/22/2022]
Abstract
The reproducibility and precision of biological patterning is limited by the accuracy with which concentration profiles of morphogen molecules can be established and read out by their targets. We consider four measures of precision for the Bicoid morphogen in the Drosophila embryo: the concentration differences that distinguish neighboring cells, the limits set by the random arrival of Bicoid molecules at their targets (which depends on absolute concentration), the noise in readout of Bicoid by the activation of Hunchback, and the reproducibility of Bicoid concentration at corresponding positions in multiple embryos. We show, through a combination of different experiments, that all of these quantities are approximately 10%. This agreement among different measures of accuracy indicates that the embryo is not faced with noisy input signals and readout mechanisms; rather, the system exerts precise control over absolute concentrations and responds reliably to small concentration differences, approaching the limits set by basic physical principles.
Collapse
Affiliation(s)
- Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
57
|
McHale P, Rappel WJ, Levine H. Embryonic pattern scaling achieved by oppositely directed morphogen gradients. Phys Biol 2006; 3:107-20. [PMID: 16829697 DOI: 10.1088/1478-3975/3/2/003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Morphogens are proteins, often produced in a localized region, whose concentrations spatially demarcate regions of differing gene expression in developing embryos. The boundaries of gene expression are typically sharp and the genes can be viewed as abruptly switching from on to off or vice versa upon crossing the boundary. To ensure the viability of the organism these boundaries must be set at certain fractional positions within the corresponding developing field. Remarkably this can be done with high precision despite the fact that the size of the developing field itself can vary widely from embryo to embryo. How this scaling is accomplished is unknown but it is clear that a single morphogen gradient is insufficient. Here we show how a pair of morphogens A and B, produced at opposite ends of a one-dimensional developing field, can solve the pattern-scaling problem. In the most promising scenario the morphogens interact via an effective annihilation reaction A + B --> slashed circle and the switch occurs according to the absolute concentration of A or B. We define a scaling criterion and show that morphogens coupled in this way can set embryonic markers across the entire developing field in proportion to the field size. This scaling occurs at developing-field sizes of a few times the morphogen decay length. The scaling criterion is not met if instead the gradients couple combinatorially such that downstream genes are regulated by the ratio A/B of the morphogen concentrations.
Collapse
Affiliation(s)
- Peter McHale
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92093-0374, USA
| | | | | |
Collapse
|
58
|
Wratten NS, McGregor AP, Shaw PJ, Dover GA. Evolutionary and functional analysis of the tailless enhancer in Musca domestica and Drosophila melanogaster. Evol Dev 2006; 8:6-15. [PMID: 16409378 DOI: 10.1111/j.1525-142x.2006.05070.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further understand the evolutionary dynamics of the regulatory interactions underlying development, we expand on our previous analysis of hunchback and compare the structure and function of the tailless enhancer between Musca domestica and Drosophila melanogaster. Our analysis shows that although the expression patterns and functional protein domains of tll are conserved between Musca and Drosophila, the enhancer sequences are unalignable. Upon closer investigation, we find that these highly diverged enhancer sequences encode the same regulatory information necessary for Bicoid, Dorsal, and the terminal system to drive tll expression. The binding sites for these transcription factors differ in the sequence, number, spacing, and position between the Drosophila and Musca tll enhancers, and we were unable to establish homology between binding sites from each species. This implies that the Musca and Drosophila Bcd-binding sites have evolved de novo in the 100 million years since these species diverged. However, in transgenic Drosophila embryos the Musca tll enhancer is able to drive the same expression pattern as endogenous Drosophila tll. Therefore, during the rapid evolution of enhancer sequences individual binding sites are continually lost and gained, but the transcriptional output is maintained by compensatory mutations in cis and in trans.
Collapse
Affiliation(s)
- Naomi S Wratten
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | |
Collapse
|
59
|
Abstract
The morphogen gradient as a source of embryonic patterning is one of the best accepted concepts in developmental biology. Morphogens can be transcription factors or extracellular signals, but in both cases, they are thought to provide concentration thresholds that position different cell fates within the developing embryo. Several recent papers examine the patterning activities of Drosophila Bicoid, the first known molecular morphogen and reach different conclusions about the patterning power of a single morphogen gradient.
Collapse
Affiliation(s)
- Gozde Yucel
- Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|
60
|
Howard M, ten Wolde PR. Finding the center reliably: robust patterns of developmental gene expression. PHYSICAL REVIEW LETTERS 2005; 95:208103. [PMID: 16384103 DOI: 10.1103/physrevlett.95.208103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Indexed: 05/05/2023]
Abstract
We investigate a mechanism for the robust identification of the center of a developing biological system. We assume the existence of two morphogen gradients, an activator emanating from the anterior, and a corepressor from the posterior. The corepressor inhibits the action of the activator in switching on target genes. We apply this system to Drosophila embryos, where we predict the existence of a hitherto undetected posterior corepressor. Using mathematical modeling, we show that a symmetric activator-corepressor model can quantitatively explain the precise midembryo expression boundary of the hunchback gene, and the scaling of this pattern with embryo size.
Collapse
Affiliation(s)
- Martin Howard
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
61
|
D'Orsogna MR, Chou T. First passage and cooperativity of queuing kinetics. PHYSICAL REVIEW LETTERS 2005; 95:170603. [PMID: 16383812 DOI: 10.1103/physrevlett.95.170603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Indexed: 05/05/2023]
Abstract
We model the kinetics of ligand-receptor systems, where multiple ligands may bind and unbind to the receptor, either randomly or in a specific order. Equilibrium occupation and first occurrence of complete filling of the receptor are determined and compared. At equilibrium, receptors that bind ligands sequentially are more likely to be saturated than those that bind in random order. Surprisingly however, for low cooperativity, the random process first reaches full occupancy faster than the sequential one. This is true except near a critical binding energy where a "kinetic trap" arises and the random process dramatically slows down when the number of binding sites N > or = 8. These results demonstrate the subtle interplay between cooperativity and sequentiality for a wide class of kinetic phenomena, including chemical binding, nucleation, and assembly line strategies.
Collapse
Affiliation(s)
- Maria R D'Orsogna
- Department of Mathematics, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
62
|
Lopes FJP, Vanario-Alonso CE, Bisch PM, Vieira FMC. A kinetic mechanism for Drosophila bicoid cooperative binding. J Theor Biol 2005; 235:185-98. [PMID: 15862588 DOI: 10.1016/j.jtbi.2005.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/21/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The Bicoid (Bcd) protein is a concentration-dependent transcriptional activator in the embryo of Drosophila melanogaster. Bcd regulates the expression of the maternal and zygotic gene hunchback (hb) that shows a step-like-function expression pattern, in the anterior half of the egg. The regulatory region of hb contains six major binding sites for the Bcd protein, named A1, A2, A3 (strong sites), and X1, X2, X3 (weak sites). Cooperativity between Bcd molecules binding to the hb enhancer element has been characterized as an important mechanism for the step-like shape of hb anterior expression domain. The objective of the present report is to analyse the mechanism of this cooperative binding based on a reaction network model. Using this method we have analysed experimental results from the literature describing how the Bcd protein binds to hb enhancer elements containing the A1 or X1 site alone or these two sites together at wild type distance. This approach allows us to estimate the kinetic constants of protein-protein and protein-DNA interactions. Moreover our results suggest that binding of a Bcd dimer to the hb enhancer element is more stable than binding of a monomer. We propose a cooperative kinetic mechanism for binding of Bcd to the hb enhancer element: First, a monomer binds to the site with a relatively low affinity; after that, another monomer binds to the first one with higher affinity, generating a dimer bound to the site. This yet unreported monomer-monomer cooperative mechanism takes place for occupancy of either one-site or two-site enhancer elements. In addition, we find cooperativity between neighbor sites, as previously reported in the literature.
Collapse
Affiliation(s)
- Francisco J P Lopes
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21.949-900, Brazil.
| | | | | | | |
Collapse
|
63
|
Abstract
In Drosophila, a Bcd protein gradient orchestrates patterning along the anteroposterior embryonic axis. However, studies of basal flies and other insects have revealed that bcd is a derived Hox3 gene found only in higher dipterans. To understand how bcd acquired its role in flies and how anteroposterior patterning mechanisms have evolved, I first review key features of bcd function in Drosophila: anterior localization and transcriptional and translation control of gene expression. I then discuss investigations of bcd in other higher dipterans that have provided insight into the evolution of regulatory interactions and the Bcd gradient. Finally, I review studies of Drosophila and other insects that address the evolution of bcd function and integration of bcd into ancestral regulatory mechanisms. I suggest further comparative studies may allow us to identify the intermediate steps in bcd evolution. This will make bcd a paradigm for the origin and evolution of genes and regulatory networks.
Collapse
Affiliation(s)
- Alistair P McGregor
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08540, USA.
| |
Collapse
|
64
|
Fu D, Wen Y, Ma J. The co-activator CREB-binding protein participates in enhancer-dependent activities of bicoid. J Biol Chem 2004; 279:48725-33. [PMID: 15358774 DOI: 10.1074/jbc.m407066200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bicoid (Bcd) is a transcriptional activator required for early embryonic patterning in Drosophila. Despite extensive studies, it currently remains unclear how Bcd activates transcription and what proteins participate in its activation process. In this report, we describe experiments to analyze the role of the Drosophila co-activator dCBP in Bcd-mediated activation. In Drosophila S2 cells, the Bcd activity is increased by the co-transfection of plasmids expressing dCBP and reduced by double-stranded RNA-mediated interference against dCBP. We further show that Bcd and dCBP can interact with each other and that Bcd-interacting domains of dCBP can cause dominant negative effects on Bcd activity in S2 cells. Our comparison of two Bcd-responsive enhancers, hunchback (hb) and knirps (kni), reveals a differential role of dCBP in facilitating Bcd activation. A dCBP mutant defective in its histone acetyltransferase activity exhibits a reduced, but not abolished, co-activator function for Bcd. Our chromatin immunoprecipitation experiments show that dCBP can increase not only the occupancy of Bcd itself at the enhancers but also the recruitment of general transcription factors to the promoter. Together, these experiments suggest that dCBP is an enhancer-dependent co-activator of Bcd, facilitating its activation through multiple mechanisms.
Collapse
Affiliation(s)
- Dechen Fu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
65
|
Affiliation(s)
- Wolfgang Driever
- Developmental Biology Unit, Department of Biology I, University of Freiburg Hauptstrasse 1, D-79104 Freiburg, Germany.
| |
Collapse
|
66
|
Zhao C, Fu D, Dave V, Ma J. A composite motif of the Drosophila morphogenetic protein bicoid critical to transcription control. J Biol Chem 2003; 278:43901-9. [PMID: 12939280 DOI: 10.1074/jbc.m302714200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bicoid is a molecular morphogen-controlling embryonic patterning in Drosophila. It is a homeodomain-containing protein that activates specific target genes during early embryogenesis. Our recent studies have identified a domain of Bcd located outside its homeodomain and referred to as a self-inhibitory domain that can dramatically repress its own ability to activate transcription. Here we present evidence that the self-inhibitory function is evolutionarily conserved. A systematic analysis of this domain reveals a composite 10-amino acid motif with interdigitating residues that regulate Bcd activity in opposite manners. Mutations within the Bcd motif can exert their respective effects when the self-inhibitory domain is grafted to an entirely heterologous activator, but they do not affect DNA binding in vitro or subcellular localization of Bcd in cells. We further show that the self-inhibitory domain of Bcd can interact with Sin3A, a component of the histone deacetylase co-repressor complex. Our study suggests that the activity of Bcd is intricately controlled by multiple mechanisms involving the actions of co-repressor proteins.
Collapse
Affiliation(s)
- Chen Zhao
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
67
|
Fu D, Zhao C, Ma J. Enhancer sequences influence the role of the amino-terminal domain of bicoid in transcription. Mol Cell Biol 2003; 23:4439-48. [PMID: 12808087 PMCID: PMC164838 DOI: 10.1128/mcb.23.13.4439-4448.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 03/25/2003] [Accepted: 04/01/2003] [Indexed: 11/20/2022] Open
Abstract
Bicoid (Bcd) is a Drosophila melanogaster morphogenetic gradient that controls embryonic patterning by activating target gene expression in a concentration-dependent manner. In this study we describe experiments to determine how different enhancers respond to Bcd distinctively, focusing on two natural Bcd-responsive enhancer elements, hunchback (hb) and knirps (kni). Our results show that, on the hb enhancer element, the amino-terminal domain of Bcd (residues 1 to 91) plays primarily an inhibitory role, whereas on the kni enhancer element this same Bcd domain plays a positive role at low protein concentrations. We further demonstrate that while the amino-terminal domain is largely dispensable for cooperative binding to the hb enhancer element, it is preferentially required for cooperative binding to the kni enhancer element. Alteration of the arrangement of Bcd binding sites in the kni enhancer element reduces the role of the amino-terminal domain in cooperative DNA binding but increases the effectiveness of the self-inhibitory function. In addition, elimination of symmetric pairs of Bcd binding sites in the kni enhancer element reduces both DNA binding and activation by Bcd. We propose that the amino-terminal domain of Bcd is an enhancer-specific switch that contributes to the protein's ability to activate different target genes in distinct manners.
Collapse
Affiliation(s)
- Dechen Fu
- Graduate Program in Molecular and Developmental Biology, Division of Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
68
|
Saadi I, Kuburas A, Engle JJ, Russo AF. Dominant negative dimerization of a mutant homeodomain protein in Axenfeld-Rieger syndrome. Mol Cell Biol 2003; 23:1968-82. [PMID: 12612071 PMCID: PMC149458 DOI: 10.1128/mcb.23.6.1968-1982.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/06/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
Axenfeld-Rieger syndrome is an autosomal-dominant disorder caused by mutations in the PITX2 homeodomain protein. We have studied the mechanism underlying the dominant negative K88E mutation, which occurs at position 50 of the homeodomain. By using yeast two-hybrid and in vitro pulldown assays, we have documented that PITX2a can form homodimers in the absence of DNA. Moreover, the K88E mutant had even stronger dimerization ability, primarily due to interactions involving the C-terminal region. Dimerization allowed cooperative binding of wild-type (WT) PITX2a to DNA containing tandem bicoid sites in a head-to-tail orientation (Hill coefficient, 1.73). In contrast, the WT-K88E heterodimer bound the tandem sites with greatly reduced cooperativity and decreased transactivation activity. To further explore the role of position 50 in PITX2a dimerization, we introduced a charge-conservative mutation of lysine to arginine (K88R). The K88R protein had greatly reduced binding to a TAATCC element and did not specifically bind any other TAATNN motif. Like K88E, K88R formed relatively stronger dimers with WT. As predicted by our model, the K88R protein acted in a dominant negative manner to suppress WT PITX2a activity. These results suggest that the position 50 residue in the PITX2 homeodomain plays an important role in both DNA binding and dimerization activities.
Collapse
Affiliation(s)
- Irfan Saadi
- Genetics Progra, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
69
|
Abstract
One of the main challenges in evolutionary biology is to identify the molecular changes that underlie phenotypic differences that are of evolutionary significance. Comparative studies of early development have shown that changes in the spatio-temporal use of regulatory genes, as well as changes in the specificity of regulatory proteins, are correlated with important differences in morphology between phylogenetically distant species. However, it is not known how such changes take place in natural populations, and whether they result from a single, or many small, additive events. Extending this approach to the study of development of closely related species promises to enrich this debate.
Collapse
Affiliation(s)
- Pat Simpson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
70
|
Zakaria MM, Jeong KH, Lacza C, Kaiser UB. Pituitary homeobox 1 activates the rat FSHbeta (rFSHbeta) gene through both direct and indirect interactions with the rFSHbeta gene promoter. Mol Endocrinol 2002; 16:1840-52. [PMID: 12145338 DOI: 10.1210/me.2002-0088] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms underlying gonadotrope-specific and hormonal regulation of FSHbeta gene expression remain largely unknown. We have studied the role of pituitary homeobox 1 (Ptx1), a transcription factor important for regulation of many pituitary-specific genes, in the regulation of rat FSHbeta (rFSHbeta) gene transcription. We demonstrate that Ptx1 activates the rFSHbeta gene promoter both basally and in synergy with GnRH. The effect of Ptx1 was localized to -140/-50, a region also important for basal activity of the promoter. Two putative Ptx1 binding sites (P1 and P2) homologous to consensus Ptx1 binding elements were identified in this region. We demonstrate specific binding of Ptx1 to the P2 but not to the P1 site. Furthermore, functional studies indicate that the P2 but not the P1 site mediates activation of the promoter by Ptx1. Residual activation of the promoter by Ptx1 was observed independent of the P2 site. However, no additional Ptx1 binding sites were identified in this region, indicating that the residual activation observed is likely independent of direct Ptx1 binding to the promoter. These results identify a functional Ptx1 binding site in the rFSHbeta gene promoter and suggest the presence of an additional activating pathway that is independent of direct binding of Ptx1 to the promoter.
Collapse
Affiliation(s)
- Marjorie M Zakaria
- Endocrine-Hypertension Division, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
71
|
Shaw PJ, Wratten NS, McGregor AP, Dover GA. Coevolution in bicoid-dependent promoters and the inception of regulatory incompatibilities among species of higher Diptera. Evol Dev 2002; 4:265-77. [PMID: 12168619 DOI: 10.1046/j.1525-142x.2002.02016.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To what extent and in what way do gene promoters and their transacting regulatory proteins coevolve? In this and in earlier publications we show that the Bicoid-dependent promoters of the segmentation genes hunchback and tailless in species of higher Diptera (Drosophila, Musca, Calliphora, and Lucilia) are different with respect to the copy number, spacing, sequence, and orientation of Bicoid binding sites. At the same time there are significant amino acid differences in the Bicoid homeodomain. To test these interspecific differences, we used a series of functional assays, starting with the analysis of Bicoid binding affinities of individual sites, through to transgene rescue experiments, to compare within-species with between-species mixtures of Bicoid homeodomains and hunchback or tailless promoters. We observed that components taken from different species interact with less efficiency compared with those taken from within the same species. Our interpretation is that such interspecific incompatibilities are a consequence of interactive genetic elements coevolving one with another, hence maintaining functional compatibility within each species. At the same time such a process allows differences to accumulate between species regarding the precise molecular basis whereby the common function is effected.
Collapse
Affiliation(s)
- P J Shaw
- Department of Genetics, University of Leicester, UK.
| | | | | | | |
Collapse
|
72
|
Nasiadka A, Dietrich BH, Krause HM. Anterior-posterior patterning in the Drosophila embryo. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12027-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
McGregor AP, Shaw PJ, Hancock JM, Bopp D, Hediger M, Wratten NS, Dover GA. Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol Dev 2001; 3:397-407. [PMID: 11806635 DOI: 10.1046/j.1525-142x.2001.01043.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interacting genetic elements need to coevolve if their joint function is to be maintained; for example, the correct binding of transcriptional regulators to defined binding sites in gene promoters needs to be maintained during evolution to ensure proper function. As part of a wider investigation into the molecular coevolution of the Dipteran homeodomain-bearing regulator bicoid (bcd) and Bcd-dependent promoters, we present data on the functional, structural, and sequence differences between the promoters of the segmentation gene hunchback (hb), in several species of Cyclorrhaphan (higher) Diptera. The result of phenocopying hb mutations using RNA interference (RNAi) in Musca domestica shows broadly similar functions to the hb gene in Drosophila melanogaster. However, the Bcd-binding sites in the hb promoters of Drosophila, Musca, and the two blowfly species Lucilia sericata and Calliphora vicina differ in copy number, sequence, orientation, and spacing. Furthermore, all promoters are subject to rapid turnover by slippage-like processes leading to high densities of short repetitive motifs. A study of polymorphism among six strains of M. domestica reveals that turnover by slippage also occurs in the promoter, untranslated leader, and exonic coding sequences of hb, but to different extents. We discuss these results in terms of the known interspecific differences in bcdand the potential coevolution of selected compensatory mutations in trans and cis in response to continuous promoter restructuring.
Collapse
Affiliation(s)
- A P McGregor
- Department of Genetics, University of Leicester, UK.
| | | | | | | | | | | | | |
Collapse
|
74
|
Hjalt TA, Amendt BA, Murray JC. PITX2 regulates procollagen lysyl hydroxylase (PLOD) gene expression: implications for the pathology of Rieger syndrome. J Cell Biol 2001; 152:545-52. [PMID: 11157981 PMCID: PMC2196000 DOI: 10.1083/jcb.152.3.545] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2000] [Accepted: 12/19/2000] [Indexed: 11/22/2022] Open
Abstract
The Rieger syndrome is an autosomal dominant disease characterized by ocular, craniofacial, and umbilical defects. Patients have mutations in PITX2, a paired-bicoid homeobox gene, also involved in left/right polarity determination. In this study we have identified a family of genes for enzymes responsible for hydroxylizing lysines in collagens as one group of likely cognate targets of PITX2 transcriptional regulation. The mouse procollagen lysyl hydroxylase (Plod)-2 gene was enriched for by chromatin precipitation using a PITX2/Pitx2-specific antibody. Plod-2, as well as the human PLOD-1 promoters, contains multiple bicoid (PITX2) binding elements. We show these elements to bind PITX2 specifically in vitro. The PLOD-1 promoter induces the expression of a luciferase reporter gene in the presence of PITX2 in cotransfection experiments. The Rieger syndrome causing PITX2 mutant T68P fails to induce PLOD-1-luciferase. Mutations and rearrangements in PLOD-1 are known to be prevalent in patients with Ehlers-Danlos syndrome, kyphoscoliosis type (type VI [EDVI]). Several of the same organ systems are involved in Rieger syndrome and EDVI.
Collapse
Affiliation(s)
- Tord A. Hjalt
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
| | - Brad A. Amendt
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma 74104
| | | |
Collapse
|
75
|
Burz DS, Hanes SD. Isolation of mutations that disrupt cooperative DNA binding by the Drosophila bicoid protein. J Mol Biol 2001; 305:219-30. [PMID: 11124901 DOI: 10.1006/jmbi.2000.4287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cooperative DNA binding is thought to contribute to the ability of the Drosophila melanogaster protein, Bicoid, to stimulate transcription of target genes in precise sub-domains within the embryo. As a first step toward testing this idea, we devised a genetic screen to isolate mutations in Bicoid that specifically disrupt cooperative interactions, but do not disrupt DNA recognition or transcription activation. The screen was carried out in Saccharomyces cerevisiae and 12 cooperativity mutants were identified. The mutations map across most of the Bicoid protein, with some located within the DNA-binding domain (homeodomain). Four homeodomain mutants were characterized in yeast and shown to activate a single-site reporter gene to levels comparable to that of wild-type, indicating that DNA binding per se is not affected. However, these mutants failed to show cooperative coupling between high and low-affinity sites, and showed reduced activation of a reporter gene carrying a natural Drosophila enhancer. Homology modeling indicated that none of the four mutations is in residues that contact DNA. Instead, these residues are likely to interact with other DNA-bound Bicoid monomers or other parts of the Bicoid protein. In vitro, the isolated homeodomains did not show strong cooperativity defects, supporting the idea that other regions of Bicoid are also important for cooperativity. This study describes the first systematic screen to identify cooperativity mutations in a eukaryotic DNA-binding protein.
Collapse
Affiliation(s)
- D S Burz
- Molecular Genetics Program Wadsworth Center, New York State Department of Health, USA
| | | |
Collapse
|
76
|
Zhao C, Dave V, Yang F, Scarborough T, Ma J. Target selectivity of bicoid is dependent on nonconsensus site recognition and protein-protein interaction. Mol Cell Biol 2000; 20:8112-23. [PMID: 11027281 PMCID: PMC86421 DOI: 10.1128/mcb.20.21.8112-8123.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe experiments to compare the activities of two Drosophila homeodomain proteins, Bicoid (Bcd) and an altered-specificity mutant of Fushi tarazu, Ftz(Q50K). Although the homeodomains of these proteins share a virtually indistinguishable ability to recognize a consensus Bcd site, only Bcd can activate transcription from natural enhancer elements when assayed in both yeast and Drosophila Schneider S2 cells. Our analysis of chimeric proteins suggests that both the homeodomain of Bcd and sequences outside the homeodomain contribute to its ability to recognize natural enhancer elements. We further show that, unlike the Bcd homeodomain, the Ftz(Q50K) homeodomain fails to recognize nonconsensus sites found in natural enhancer elements. The defect of a chimeric protein containing the homeodomain of Ftz(Q50K) in place of that of Bcd can be preferentially restored by converting the nonconsensus sites in natural enhancer elements to consensus sites. Our experiments suggest that the biological specificity of Bcd is determined by combinatorial contributions of two important mechanisms: the nonconsensus site recognition function conferred by the homeodomain and the cooperativity function conferred primarily by sequences outside the homeodomain. A systematic comparison of different assay methods and enhancer elements further suggests a fluid nature of the requirements for these two Bcd functions in target selection.
Collapse
Affiliation(s)
- C Zhao
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
77
|
Dave V, Zhao C, Yang F, Tung CS, Ma J. Reprogrammable recognition codes in bicoid homeodomain-DNA interaction. Mol Cell Biol 2000; 20:7673-84. [PMID: 11003663 PMCID: PMC86337 DOI: 10.1128/mcb.20.20.7673-7684.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2000] [Accepted: 07/18/2000] [Indexed: 11/20/2022] Open
Abstract
We describe experiments to determine how the homeodomain of the Drosophila morphogenetic protein Bicoid recognizes different types of DNA sequences found in natural enhancers. Our chemical footprint analyses reveal that the Bicoid homeodomain makes both shared and distinct contacts with a consensus site A1 (TAATCC) and a nonconsensus site X1 (TAAGCT). In particular, the guanine of X1 at position 4 (TAAGCT) is protected by Bicoid homeodomain. We provide further evidence suggesting that the unique arginine at position 54 (Arg 54) of the Bicoid homeodomain enables the protein to recognize X1 by specifically interacting with this position 4 guanine. We also describe experiments to analyze the contribution of artificially introduced Arg 54 to DNA recognition by other Bicoid-related homeodomains, including that from the human disease protein Pitx2. Our experiments demonstrate that the role of Arg 54 varies depending on the exact homeodomain framework and DNA sequences. Together, our results suggest that Bicoid and its related homeodomains utilize distinct recognition codes to interact with different DNA sequences, underscoring the need to study DNA recognition by Bicoid-class homeodomains in an individualized manner.
Collapse
Affiliation(s)
- V Dave
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
78
|
Torigoi E, Bennani-Baiti IM, Rosen C, Gonzalez K, Morcillo P, Ptashne M, Dorsett D. Chip interacts with diverse homeodomain proteins and potentiates bicoid activity in vivo. Proc Natl Acad Sci U S A 2000; 97:2686-91. [PMID: 10688916 PMCID: PMC15990 DOI: 10.1073/pnas.050586397] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila protein Chip potentiates activation by several enhancers and is required for embryonic segmentation. Chip and its mammalian homologs interact with and promote dimerization of nuclear LIM proteins. No known Drosophila LIM proteins, however, are required for segmentation, nor for expression of most genes known to be regulated by Chip. Here we show that Chip also interacts with diverse homeodomain proteins using residues distinct from those that interact with LIM proteins, and that Chip potentiates activity of one of these homeodomain proteins in Drosophila embryos and in yeast. These and other observations help explain the roles of Chip in segmentation and suggest a model to explain how Chip potentiates activation by diverse enhancers.
Collapse
Affiliation(s)
- E Torigoi
- Molecular Biology Program, Sloan-Kettering Division of the Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Transcriptional activation of many developmentally regulated genes is mediated by proteins binding to enhancer sequences located several kilobases from the promoter. Existing models for how activator proteins function do not adequately explain long-range activation. Recent experiments in Drosophila on insulators that block enhancer-promoter interactions, interchromosomal activation, and mutants deficient in long-range activation are consistent with models in which facilitator factors that function between enhancers and promoters bring them into physical proximity of each other.
Collapse
Affiliation(s)
- D Dorsett
- Molecular Biology Program Sloan-Kettering Institute for Cancer Research Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
80
|
Li H, Schrick JJ, Fewell GD, MacFarland KL, Witte DP, Bodenmiller DM, Hsieh-Li HM, Su CY, Potter SS. Novel strategy yields candidate Gsh-1 homeobox gene targets using hypothalamus progenitor cell lines. Dev Biol 1999; 211:64-76. [PMID: 10373305 DOI: 10.1006/dbio.1999.9304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the successful application of a strategy that potentially provides for an efficient and universal screen for downstream gene targets. We used the promoter of the Gsh-1 homeobox gene to drive expression of the SV40 T-antigen gene in transgenic mice. We have previously shown that the Gsh-1 homeobox gene is expressed in discrete domains of the ganglionic eminences, diencephalon, and hindbrain during brain development. Gsh-1-SV40 T transgenic mice showed cellular hyperplasia in regions of the brain coincident with Gsh-1 expression. The Gsh-1-SV40 T transgene was introduced, by breeding, into Gsh-1 homozygous mutant mice, and Gsh-1 -/- cell lines were made. Clonal cell lines were generated and analyzed by Northern blot hybridizations and Affymetrix GeneChip probe arrays to determine gene expression profiles. The results indicate that the cell lines remain representative of early developmental stages. Further, immunocytochemistry showed uniformly high levels of nestin expression, typical of central nervous system progenitor cells, and the absence of terminal differentiation markers of neuronal cells. One clonal cell line, No. 14, was then stably transfected with a tet-inducible Gsh-1 expression construct and subcloned. The starting clone 14, together with the uninduced and induced subclones, provided cell populations with varying levels of Gsh-1 expression. Differential display and Affymetrix GeneChip probe arrays were then used to identify transcript differences that represent candidate Gsh-1 target genes. Of particular interest, the drm and gas1 genes, which repress cell proliferation, were observed to be activated in Gsh-1-expressing cells. These observations support models predicting that homeobox genes function in the regulation of cell proliferation.
Collapse
Affiliation(s)
- H Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Calvo S, Venepally P, Cheng J, Buonanno A. Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol Cell Biol 1999; 19:515-25. [PMID: 9858575 PMCID: PMC83909 DOI: 10.1128/mcb.19.1.515] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory elements that restrict transcription of genes encoding contractile proteins specifically to either slow- or fast-twitch skeletal muscles are unknown. As an initial step towards understanding the mechanisms that generate muscle diversity during development, we have identified a 128-bp troponin I slow upstream element (SURE) and a 144-bp troponin I fast intronic element (FIRE) that confer fiber type specificity in transgenic mice (M. Nakayama et al., Mol. Cell. Biol. 16:2408-2417, 1996). SURE and FIRE have maintained the spatial organization of four conserved motifs (3' to 5'): an E box, an AT-rich site (A/T2) that binds MEF-2, a CACC site, and a novel CAGG motif. Troponin I slow (TnIs) constructs harboring mutations in these motifs were analyzed in transiently and stably transfected Sol8 myocytes and in transgenic mice to assess their function. Mutations of the E-box, A/T2, and CAGG motifs completely abolish transcription from the TnI SURE. In contrast, mutation of the CACC motif had no significant effect in transfected myocytes or on the slow-specific transcription of the TnI SURE in transgenic mice. To assess the role of E boxes in fiber type specificity, a chimeric enhancer was constructed in which the E box of SURE was replaced with the E box from FIRE. This TnI E box chimera, which lacks the SURE NFAT site, confers essentially the same levels of transcription in transgenic mice as those conferred by wild-type SURE and is specifically expressed in slow-twitch muscles, indicating that the E box on its own cannot determine the fiber-type-specific expression of the TnI promoter. The importance of the 5' half of SURE, which bears little homology to the TnI FIRE, in muscle-specific expression was analyzed by deletion and linker scanning analyses. Removal of the 5' half of SURE (-846 to -811) results in the loss of expression in stably transfected but not in transiently expressing myocytes. Linker scanning mutations identified sequences in this region that are necessary for the function of SURE when integrated into chromatin. One of these sites (GTTAATCCG), which is highly homologous to a bicoid consensus site, binds to nuclear proteins from several mesodermal cells. These results show that multiple elements are involved in the muscle-specific activity of the TnIs promoter and that interactions between upstream and downstream regions of SURE are important for transcription in the context of native chromatin.
Collapse
Affiliation(s)
- S Calvo
- Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
83
|
Gao Q, Finkelstein R. Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development 1998; 125:4185-93. [PMID: 9753673 DOI: 10.1242/dev.125.21.4185] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bicoid (Bcd) morphogen establishes the head and thorax of the Drosophila embryo. Bcd activates the transcription of identified target genes in the thoracic segments, but its mechanism of action in the head remains poorly understood. It has been proposed that Bcd directly activates the cephalic gap genes, which are the first zygotic genes to be expressed in the head primordium. It has also been suggested that the affinity of Bcd-binding sites in the promoters of Bcd target genes determines the posterior extent of their expression (the Gene X model). However, both these hypotheses remain untested. Here, we show that a small regulatory region upstream of the cephalic gap gene orthodenticle (otd) is sufficient to recapitulate early otd expression in the head primordium. This region contains two control elements, each capable of driving otd-like expression. The first element has consensus Bcd target sites that bind Bcd in vitro and are necessary for head-specific expression. As predicted by the Gene X model, this element has a relatively low affinity for Bcd. Surprisingly, the second regulatory element has no Bcd sites. Instead, it contains a repeated sequence motif similar to a regulatory element found in the promoters of otd-related genes in vertebrates. Our study is the first demonstration that a cephalic gap gene is directly regulated by Bcd. However, it also shows that zygotic gene expression can be targeted to the head primordium without direct Bcd regulation.
Collapse
Affiliation(s)
- Q Gao
- University of Pennsylvania School of Medicine, Department of Neuroscience, Philadelphia PA 19104, USA
| | | |
Collapse
|
84
|
Mailhos C, André S, Mollereau B, Goriely A, Hemmati-Brivanlou A, Desplan C. Drosophila Goosecoid requires a conserved heptapeptide for repression of paired-class homeoprotein activators. Development 1998; 125:937-47. [PMID: 9449676 DOI: 10.1242/dev.125.5.937] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Goosecoid (Gsc) is a homeodomain protein expressed in the organizer region of vertebrate embryos. Its Drosophila homologue, D-Gsc, has been implicated in the formation of the Stomatogastric Nervous System. Although there are no apparent similarities between the phenotypes of mutations in the gsc gene in flies and mice, all known Gsc proteins can rescue dorsoanterior structures in ventralized Xenopus embryos. We describe how D-Gsc behaves as a transcriptional repressor in Drosophila cells, acting through specific palindromic HD binding sites (P3K). D-Gsc is a ‘passive repressor’ of activator homeoproteins binding to the same sites and an ‘active repressor’ of activators binding to distinct sites. In addition, D-Gsc is able to strongly repress transcription activated by Paired-class homeoproteins through P3K, via specific protein-protein interactions in what we define as ‘interactive repression’. This form of repression requires the short conserved GEH/eh-1 domain, also present in the Engrailed repressor. Although the GEH/eh-1 domain is necessary for rescue of UV-ventralized Xenopus embryos, it is dispensable for ectopic induction of Xlim-1 expression, demonstrating that this domain is not required for all Gsc functions in vivo. Interactive repression may represent specific interactions among Prd-class homeoproteins, several of which act early during development of invertebrate and vertebrate embryos.
Collapse
Affiliation(s)
- C Mailhos
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, USA
| | | | | | | | | | | |
Collapse
|
85
|
Ludwig MZ, Patel NH, Kreitman M. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development 1998; 125:949-58. [PMID: 9449677 DOI: 10.1242/dev.125.5.949] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Experimental investigations of eukaryotic enhancers suggest that multiple binding sites and trans-acting regulatory factors are often required for wild-type enhancer function. Genetic analysis of the stripe 2 enhancer of even-skipped (eve), an important developmental gene in Drosophila, provides support for this view. Given the importance of even-skipped expression in early Drosophila development, it might be predicted that many structural features of the stripe 2 enhancer will be evolutionarily conserved, including the DNA sequences of protein binding sites and the spacing between them. To test this hypothesis, we compared sequences of the stripe 2 enhancer between four species of Drosophila: D. melanogaster, D. yakuba, D. erecta and D. pseudoobscura. Our analysis revealed a large number of nucleotide substitutions in regulatory protein binding sites for bicoid, hunchback, Kruppel and giant, as well as a systematic change in the size of the enhancer. Some of the binding sites in D. melanogaster are either absent or modified in other species. One functionally important bicoid-binding site in D. melanogaster appears to be recently evolved. We, therefore, investigated possible functional consequences of sequence differences among these stripe 2 enhancers by P-element-mediated transformation. This analysis revealed that the eve stripe 2 enhancer from each of the four species drove reporter gene expression at the identical time and location in D. melanogaster embryos. Double staining of native eve protein and transgene mRNA in early embryos showed that the reporter gene mimicked native eve expression and, in every case, produced sharply defined stripes at the blastoderm stage that were coincident with eve stripe 2 protein. We argue that stripe 2 eve expression in Drosophila evolution can be viewed as being under constant stabilizing selection with respect to the location of the anterior and posterior borders of the stripe. We further hypothesize that the stripe 2 enhancer is functionally robust, so that its evolution may be governed by the fixation of both slightly deleterious and adaptive mutations in regulatory protein binding sites as well as in the spacing between binding sites. This view allows for a slow but continual turnover of functionally important changes in the stripe 2 enhancer.
Collapse
Affiliation(s)
- M Z Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
86
|
Armes NA, Smith JC. The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds. Development 1997; 124:3797-804. [PMID: 9367435 DOI: 10.1242/dev.124.19.3797] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TGFbeta family member activin induces different mesodermal cell types in a dose-dependent fashion in the Xenopus animal cap assay. High concentrations of activin induce dorsal and anterior cell types such as notochord and muscle, while low concentrations induce ventral and posterior tissues such as mesenchyme and mesothelium. In this paper we investigate whether this threshold phenomenon involves the differential effects of the two type I activin receptors ALK-2 and ALK-4. Injection of RNA encoding constitutively active forms of the receptors (here designated ALK-2* and ALK-4*) reveals that ALK-4* strongly induces the more posterior mesodermal marker Xbra and the dorsoanterior marker goosecoid in animal cap explants. Maximal levels of Xbra expression are attained using lower concentrations of RNA than are required for the strongest activation of goosecoid, and at the highest doses of ALK-4*, levels of Xbra transcription decrease, as is seen with high concentrations of activin. By contrast, the ALK-2* receptor activates Xbra but fails to induce goosecoid to significant levels. Analysis at later stages reveals that ALK-4* signalling induces the formation of a variety of mesodermal derivatives, including dorsal cell types, in a dose-dependent fashion, and that high levels also induce endoderm. By contrast, the ALK-2* receptor induces only ventral mesodermal markers. Consistent with these observations, ALK-4* is capable of inducing a secondary axis when injected into the ventral side of 32-cell stage embryos whilst ALK-2* cannot. Co-injection of RNAs encoding constitutively active forms of both receptors reveals that ventralising signals from ALK-2* antagonise the dorsal mesoderm-inducing signal derived from ALK-4*, suggesting that the two receptors use distinct and interfering signalling pathways. Together, these results show that although ALK-2* and ALK-4* transduce distinct signals, the threshold responses characteristic of activin cannot be due to interactions between these two pathways; rather, thresholds can be established by ALK-4* alone. Furthermore, the effects of ALK-2* signalling are at odds with it behaving as an activin receptor in the early Xenopus embryo.
Collapse
Affiliation(s)
- N A Armes
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, London, UK
| | | |
Collapse
|
87
|
Bonneton F, Shaw PJ, Fazakerley C, Shi M, Dover GA. Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster. Mech Dev 1997; 66:143-56. [PMID: 9376318 DOI: 10.1016/s0925-4773(97)00100-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Co-evolution between developmental regulatory elements is an important mechanism of evolution. This work compares the hunchback-bicoid interaction in the housefly Musca domestica with Drosophila melanogaster. The Musca HUNCHBACK protein is 66% conserved and partially rescues a hunchback mutant, yet the BICOID-dependent promoter (P2) of Musca hunchback is unexpectedly diverged from D. melanogaster. Introduced into D. melanogaster, this promoter drives a normal P2 pattern during the syncytial blastoderm stage but is expressed ectopically at the anterior pole of the embryo at later stages. We also report differences in the early expression of hunchback in Musca. We suggest that conservation of the morphogenetic function of bicoid in different sized embryos of higher diptera requires co-evolution of bicoid and its target binding sites.
Collapse
Affiliation(s)
- F Bonneton
- Department of Genetics, University of Leicester, UK
| | | | | | | | | |
Collapse
|
88
|
Haerry TE, Gehring WJ. A conserved cluster of homeodomain binding sites in the mouse Hoxa-4 intron functions in Drosophila embryos as an enhancer that is directly regulated by Ultrabithorax. Dev Biol 1997; 186:1-15. [PMID: 9188748 DOI: 10.1006/dbio.1997.8582] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The evolutionary conservation of the homeodomains suggests that their in vivo DNA binding sites may also be conserved between vertebrates and invertebrates. The regulatory function of the mouse Hoxa-4 and Hoxb-4 introns were analyzed in Drosophila since they both contain a cluster of three homeodomain binding sites, the HB1 element, which was also found in the introns of other Hox genes ranging from fish to humans as well as in the Ultrabithorax (Ubx) and decapentaplegic (dpp) genes of Drosophila. The enhancer of the Hoxa-4 intron was found to respond to several homeobox genes activating a lacZ reporter gene in particular cells of the epidermis in Drosophila embryos. The enhancer activity was found to be similar to previously described autoregulatory elements of Deformed (Dfd), the Drosophila homolog of Hoxa-4, but additional expression was observed in more posterior segments activated by Ubx and repressed by abdominal-A (abd-A). Point mutations in the homeodomain binding sites in HB1 abolished the enhancer activity. A second site suppression experiment showed that UBX interacts directly with the HB1 element. When the HB1 element in the Hoxa-4 intron was replaced by that of the mesodermal enhancer of dpp, which was previously shown to be directly controlled by Ubx, Ubx-dependent activation was retained, but repression by abd-A was lost. The same result was obtained when the third binding site of HB1 was altered, suggesting that this site is responsible for abd-A-dependent repression. Finally, deletion of potential cofactor binding sites flanking the HB1 element that are also conserved in the medaka, chicken, and mouse genes revealed that they are important for enhancer function in Drosophila and that the Dfd-dependent and the Ubx-dependent expression requires different sites. The evolutionary and functional conservation of the HB1 elements indicates that not only the homeodomains but also some of their in vivo binding sites are conserved between vertebrates and invertebrates.
Collapse
Affiliation(s)
- T E Haerry
- Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
89
|
Yuan D, Ma X, Ma J. Sequences Outside the Homeodomain of Bicoid Are Required for Protein-Protein Interaction. J Biol Chem 1996. [DOI: 10.1074/jbc.271.35.21660] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
90
|
Affiliation(s)
- P A Lawrence
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|