51
|
Mukai J, Cannavò E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, Chang CY, Cai Y, Lomvardas S, Takata A, Xu B, Gogos JA. Recapitulation and Reversal of Schizophrenia-Related Phenotypes in Setd1a-Deficient Mice. Neuron 2019; 104:471-487.e12. [PMID: 31606247 DOI: 10.1016/j.neuron.2019.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/28/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
SETD1A, a lysine-methyltransferase, is a key schizophrenia susceptibility gene. Mice carrying a heterozygous loss-of-function mutation of the orthologous gene exhibit alterations in axonal branching and cortical synaptic dynamics accompanied by working memory deficits. We show that Setd1a binds both promoters and enhancers with a striking overlap between Setd1a and Mef2 on enhancers. Setd1a targets are highly expressed in pyramidal neurons and display a complex pattern of transcriptional up- and downregulations shaped by presumed opposing functions of Setd1a on promoters and Mef2-bound enhancers. Notably, evolutionarily conserved Setd1a targets are associated with neuropsychiatric genetic risk burden. Reinstating Setd1a expression in adulthood rescues cognitive deficits. Finally, we identify LSD1 as a major counteracting demethylase for Setd1a and show that its pharmacological antagonism results in a full rescue of the behavioral and morphological deficits in Setd1a-deficient mice. Our findings advance understanding of how SETD1A mutations predispose to schizophrenia (SCZ) and point to novel therapeutic interventions.
Collapse
Affiliation(s)
- Jun Mukai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Enrico Cannavò
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Gregg W Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Ziyi Sun
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pratibha Thakur
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA
| | - Chia-Yuan Chang
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yifei Cai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
52
|
Hara T, Verma IM. Modeling Gliomas Using Two Recombinases. Cancer Res 2019; 79:3983-3991. [PMID: 31315836 PMCID: PMC6677610 DOI: 10.1158/0008-5472.can-19-0717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023]
Abstract
Development of animal models to investigate the complex ecosystem of malignant gliomas using the Cre/loxP recombination system has significantly contributed to our understanding of the molecular underpinnings of this deadly disease. In these model systems, once the tumor is induced by activation of Cre-recombinase in a tissue-specific manner, further genetic manipulations to explore the progression of tumorigenesis are limited. To expand the application of mouse models for gliomas, we developed glial fibrillary acidic protein (GFAP)-FLP recombinase (FLPo) mice that express FLPo recombinase specifically in GFAP-positive cells. Lentivirus-based in vivo delivery of cancer genes conditioned by FLP/FRT-mediated recombination initiated gliomas in GFAP-FLPo mice. Using the Cre-mediated multifluorescent protein-expressing system, we demonstrated that the GFAP-FLPo mouse model enables the analysis of various stages of gliomagenesis. Collectively, we present a new mouse model that will expand our ability to dissect developmental processes of gliomagenesis and to provide new avenues for therapeutic approaches. SIGNIFICANCE: This study presents a new glioma mouse model derived using lentiviral vectors and two recombination systems that will expand the ability to dissect developmental processes of gliomagenesis.
Collapse
Affiliation(s)
- Toshiro Hara
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California.
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
53
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
54
|
Chen YW, Das M, Oyarzabal EA, Cheng Q, Plummer NW, Smith KG, Jones GK, Malawsky D, Yakel JL, Shih YYI, Jensen P. Genetic identification of a population of noradrenergic neurons implicated in attenuation of stress-related responses. Mol Psychiatry 2019; 24:710-725. [PMID: 30214043 PMCID: PMC6416086 DOI: 10.1038/s41380-018-0245-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/09/2022]
Abstract
Noradrenergic signaling plays a well-established role in promoting the stress response. Here we identify a subpopulation of noradrenergic neurons, defined by developmental expression of Hoxb1, that has a unique role in modulating stress-related behavior. Using an intersectional chemogenetic strategy, in combination with behavioral and physiological analyses, we show that activation of Hoxb1-noradrenergic (Hoxb1-NE) neurons decreases anxiety-like behavior and promotes an active coping strategy in response to acute stressors. In addition, we use cerebral blood volume-weighted functional magnetic resonance imaging to show that chemoactivation of Hoxb1-NE neurons results in reduced activity in stress-related brain regions, including the bed nucleus of the stria terminalis, amygdala, and locus coeruleus. Thus, the actions of Hoxb1-NE neurons are distinct from the well-documented functions of the locus coeruleus in promoting the stress response, demonstrating that the noradrenergic system contains multiple functionally distinct subpopulations.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Manasmita Das
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Grace K. Jones
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Daniel Malawsky
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
55
|
Blasco MT, Navas C, Martín-Serrano G, Graña-Castro O, Lechuga CG, Martín-Díaz L, Djurec M, Li J, Morales-Cacho L, Esteban-Burgos L, Perales-Patón J, Bousquet-Mur E, Castellano E, Jacob HKC, Cabras L, Musteanu M, Drosten M, Ortega S, Mulero F, Sainz B, Dusetti N, Iovanna J, Sánchez-Bueno F, Hidalgo M, Khiabanian H, Rabadán R, Al-Shahrour F, Guerra C, Barbacid M. Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell 2019; 35:573-587.e6. [PMID: 30975481 PMCID: PMC10132447 DOI: 10.1016/j.ccell.2019.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022]
Abstract
Five-year survival for pancreatic ductal adenocarcinoma (PDAC) patients remains below 7% due to the lack of effective treatments. Here, we report that combined ablation of EGFR and c-RAF expression results in complete regression of a significant percentage of PDAC tumors driven by Kras/Trp53 mutations in genetically engineered mice. Moreover, systemic elimination of these targets induces toxicities that are well tolerated. Response to this targeted therapy correlates with transcriptional profiles that resemble those observed in human PDACs. Finally, inhibition of EGFR and c-RAF expression effectively blocked tumor progression in nine independent patient-derived xenografts carrying KRAS and TP53 mutations. These results open the door to the development of targeted therapies for PDAC patients.
Collapse
Affiliation(s)
- María Teresa Blasco
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Carolina Navas
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Carmen G Lechuga
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Martín-Díaz
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Magdolna Djurec
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Jing Li
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Lucia Morales-Cacho
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Esteban-Burgos
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Javier Perales-Patón
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Emilie Bousquet-Mur
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Eva Castellano
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Harrys K C Jacob
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Lavinia Cabras
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Monica Musteanu
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Matthias Drosten
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Sagrario Ortega
- Transgenic Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Bruno Sainz
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; Department of Biochemistry, School of Medicine, Autonomous University of Madrid, 28018 Madrid, Spain
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163, Avenue de Luminy, 13288 Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163, Avenue de Luminy, 13288 Marseille, France
| | - Francisco Sánchez-Bueno
- Department of Surgery, Clinical University Hospital 'Virgen Arrixaca' - Murcian Institute of Biomedical Investigation (IMIB), 30120 Murcia, Spain
| | - Manuel Hidalgo
- Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hossein Khiabanian
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Raul Rabadán
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| | - Mariano Barbacid
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
56
|
Abstract
In this review, Leach and Morrisey focus on lung regeneration to explore the importance of facultative regeneration controlled by functional and differentiated cell lineages as well as how they are positioned and regulated by distinct tissue niches. Tissue regeneration involves various types of cellular and molecular responses depending on the type of tissue and the injury or disease that is inflicted. While many tissues contain dedicated stem/progenitor cell lineages, many others contain cells that, during homeostasis, are considered physiologically functional and fully differentiated but, after injury or in disease states, exhibit stem/progenitor-like activity. Recent identification of subsets of defined cell types as facultative stem/progenitor cells has led to a re-examination of how certain tissues respond to injury to mount a regenerative response. In this review, we focus on lung regeneration to explore the importance of facultative regeneration controlled by functional and differentiated cell lineages as well as how they are positioned and regulated by distinct tissue niches. Additionally, we discuss the molecular signals to which cells respond in their differentiated state during homeostasis and those signals that promote effective regeneration of damaged or lost cells and structures after injury.
Collapse
Affiliation(s)
- John P Leach
- Department of Medicine, Department of Cell and Developmental Biology, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
57
|
Powell JM, Plummer NW, Scappini EL, Tucker CJ, Jensen P. DEFiNE: A Method for Enhancement and Quantification of Fluorescently Labeled Axons. Front Neuroanat 2019; 12:117. [PMID: 30687025 PMCID: PMC6336715 DOI: 10.3389/fnana.2018.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 11/29/2022] Open
Abstract
Visualization and quantification of fluorescently labeled axonal fibers are widely employed in studies of neuronal connectivity in the brain. However, accurate analysis of axon density is often confounded by autofluorescence and other fluorescent artifacts. By the time these problems are detected in labeled tissue sections, significant time and resources have been invested, and the tissue may not be easy to replace. In response to these difficulties, we have developed Digital Enhancement of Fibers with Noise Elimination (DEFiNE), a method for eliminating fluorescent artifacts from digital images based on their morphology and fluorescence spectrum, thus permitting enhanced visualization and quantification of axonal fibers. Application of this method is facilitated by a DEFiNE macro, written using ImageJ Macro Language (IJM), which includes an automated and customizable procedure for image processing and a semi-automated quantification method that accounts for any remaining local variation in background intensity. The DEFiNE macro is open-source and used with the widely available FIJI software for maximum accessibility.
Collapse
Affiliation(s)
- Jeanne M Powell
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, United States
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, United States
| | - Erica L Scappini
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, United States
| | - Charles J Tucker
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, United States
| |
Collapse
|
58
|
A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Sci Rep 2018; 8:14453. [PMID: 30262904 PMCID: PMC6160450 DOI: 10.1038/s41598-018-32802-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022] Open
Abstract
Site-specific recombinases (SSR) are utilized as important genome engineering tools to precisely modify the genome of mice and other model organisms. Reporter mice that mark cells that at any given time had expressed the enzyme are frequently used for lineage tracing and to characterize newly generated mice expressing a recombinase from a chosen promoter. With increasing sophistication of genome alteration strategies, the demand for novel SSR systems that efficiently and specifically recombine their targets is rising and several SSR-systems are now used in combination to address complex biological questions in vivo. Generation of reporter mice for each one of these recombinases is cumbersome and increases the number of mouse lines that need to be maintained in animal facilities. Here we present a multi-reporter mouse line for loci-of-recombination (X) (MuX) that streamlines the characterization of mice expressing prominent recombinases. MuX mice constitutively express nuclear green fluorescent protein after recombination by either Cre, Flp, Dre or Vika recombinase, rationalizing the number of animal lines that need to be maintained. We also pioneer the use of the Vika/vox system in mice, illustrating its high efficacy and specificity, thereby facilitating future designs of sophisticated recombinase-based in vivo genome engineering strategies.
Collapse
|
59
|
Liu K, Yu W, Tang M, Tang J, Liu X, Liu Q, Li Y, He L, Zhang L, Evans SM, Tian X, Lui KO, Zhou B. A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme. Development 2018; 145:dev.167775. [PMID: 30111655 DOI: 10.1242/dev.167775] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
Abstract
In vivo genomic engineering is instrumental for studying developmental biology and regenerative medicine. Development of novel systems with more site-specific recombinases (SSRs) that complement with the commonly used Cre-loxP would be valuable for more precise lineage tracing and genome editing. Here, we introduce a new SSR system via Nigri-nox. By generating tissue-specific Nigri knock-in and its responding nox reporter mice, we show that the Nigri-nox system works efficiently in vivo by targeting specific tissues. As a new orthogonal system to Cre-loxP, Nigri-nox provides an additional control of genetic manipulation. We also demonstrate how the two orthogonal systems Nigri-nox and Cre-loxP could be used simultaneously to map the cell fate of two distinct developmental origins of cardiac valve mesenchyme in the mouse heart, providing dynamics of cellular contribution from different origins for cardiac valve mesenchyme during development. This work provides a proof-of-principle application of the Nigri-nox system for in vivo mouse genomic engineering. Coupled with other SSR systems, Nigri-nox would be valuable for more precise delineation of origins and cell fates during development, diseases and regeneration.
Collapse
Affiliation(s)
- Kuo Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Muxue Tang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Tang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuxiu Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaozhen Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Libo Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Kathy O Lui
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China .,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
60
|
Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med 2017; 23:1488-1498. [PMID: 29131159 DOI: 10.1038/nm.4437] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
The Cre-loxP recombination system is the most widely used technology for in vivo tracing of stem or progenitor cell lineages. The precision of this genetic system largely depends on the specificity of Cre recombinase expression in targeted stem or progenitor cells. However, Cre expression in nontargeted cell types can complicate the interpretation of lineage-tracing studies and has caused controversy in many previous studies. Here we describe a new genetic lineage tracing system that incorporates the Dre-rox recombination system to enhance the precision of conventional Cre-loxP-mediated lineage tracing. The Dre-rox system permits rigorous control of Cre-loxP recombination in lineage tracing, effectively circumventing potential uncertainty of the cell-type specificity of Cre expression. Using this new system we investigated two topics of recent debates-the contribution of c-Kit+ cardiac stem cells to cardiomyocytes in the heart and the contribution of Sox9+ hepatic progenitor cells to hepatocytes in the liver. By overcoming the technical hurdle of nonspecific Cre-loxP-mediated recombination, this new technology provides more precise analysis of cell lineage and fate decisions and facilitates the in vivo study of stem and progenitor cell plasticity in disease and regeneration.
Collapse
|
61
|
Plummer NW, Ungewitter EK, Smith KG, -C. Yao HH, Jensen P. A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch. Genesis 2017; 55:10.1002/dvg.23067. [PMID: 28875587 PMCID: PMC5671341 DOI: 10.1002/dvg.23067 10.1002/dvg.23067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 09/25/2023]
Abstract
Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations.
Collapse
Affiliation(s)
- Nicholas W. Plummer
- Neurobiology Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Erica K. Ungewitter
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Humphrey H. -C. Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
62
|
Plummer NW, Ungewitter EK, Smith KG, -C. Yao HH, Jensen P. A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch. Genesis 2017; 55:10.1002/dvg.23067. [PMID: 28875587 PMCID: PMC5671341 DOI: 10.1002/dvg.23067+10.1002/dvg.23067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/05/2023]
Abstract
Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations.
Collapse
Affiliation(s)
- Nicholas W. Plummer
- Neurobiology Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Erica K. Ungewitter
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Humphrey H. -C. Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
63
|
Plummer NW, Ungewitter EK, Smith KG, Yao HHC, Jensen P. A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch. Genesis 2017; 55. [PMID: 28875587 DOI: 10.1002/dvg.23067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023]
Abstract
Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations.
Collapse
Affiliation(s)
- Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| | - Erica K Ungewitter
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| | - Kathleen G Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
64
|
Plummer NW, Scappini EL, Smith KG, Tucker CJ, Jensen P. Two Subpopulations of Noradrenergic Neurons in the Locus Coeruleus Complex Distinguished by Expression of the Dorsal Neural Tube Marker Pax7. Front Neuroanat 2017; 11:60. [PMID: 28775681 PMCID: PMC5518464 DOI: 10.3389/fnana.2017.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
Abstract
Central noradrenergic neurons, collectively defined by synthesis of the neurotransmitter norepinephrine, are a diverse collection of cells in the hindbrain, differing in their anatomy, physiological and behavioral functions, and susceptibility to disease and environmental insult. To investigate the developmental basis of this heterogeneity, we have used an intersectional genetic fate mapping strategy in mice to study the dorsoventral origins of the En1-derived locus coeruleus (LC) complex which encompasses virtually all of the anatomically defined LC proper, as well as a portion of the A7 and subcoeruleus (SubC) noradrenergic nuclei. We show that the noradrenergic neurons of the LC complex originate in two different territories of the En1 expression domain in the embryonic hindbrain. Consistent with prior studies, we confirm that the majority of the LC proper arises from the alar plate, the dorsal domain of the neural tube, as defined by expression of Pax7Cre. In addition, our analysis shows that a large proportion of the En1-derived A7 and SubC nuclei also originate in the Pax7Cre-defined alar plate. Surprisingly, however, we identify a smaller subpopulation of the LC complex that arises from outside the Pax7Cre expression domain. We characterize the distribution of these neurons within the LC complex, their cell morphology, and their axonal projection pattern. Compared to the broader LC complex, the newly identified Pax7Cre-negative noradrenergic subpopulation has very sparse projections to thalamic nuclei, suggestive of distinct functions. This developmental genetic analysis opens new avenues of investigation into the functional diversity of the LC complex.
Collapse
Affiliation(s)
- Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Erica L Scappini
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Kathleen G Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Charles J Tucker
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| |
Collapse
|
65
|
McCall JG, Siuda ER, Bhatti DL, Lawson LA, McElligott ZA, Stuber GD, Bruchas MR. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 2017; 6. [PMID: 28708061 PMCID: PMC5550275 DOI: 10.7554/elife.18247] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms. DOI:http://dx.doi.org/10.7554/eLife.18247.001
Collapse
Affiliation(s)
- Jordan G McCall
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Washington University Pain Center, Washington University School of Medicine, St. Louis, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, United States.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, United States
| | - Edward R Siuda
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Washington University Pain Center, Washington University School of Medicine, St. Louis, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, United States.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, United States
| | - Dionnet L Bhatti
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, United States
| | - Lamley A Lawson
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States
| | - Zoe A McElligott
- Department of Psychiatry, University of North Carolina, Chapel Hill, United States.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States.,Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Washington University Pain Center, Washington University School of Medicine, St. Louis, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, United States.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, United States.,Department of Biomedical Engineering, Washington University, St. Louis, United States
| |
Collapse
|
66
|
Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 2017; 19:1131-41. [PMID: 27571192 DOI: 10.1038/nn.4366] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Cellular specialization is particularly prominent in mammalian nervous systems, which are composed of millions to billions of neurons that appear in thousands of different 'flavors' and contribute to a variety of functions. Even in a single brain region, individual neurons differ greatly in their morphology, connectivity and electrophysiological properties. Systematic classification of all mammalian neurons is a key goal towards deconstructing the nervous system into its basic components. With the recent advances in single-cell gene expression profiling technologies, it is now possible to undertake the enormous task of disentangling neuronal heterogeneity. High-throughput single-cell RNA sequencing and multiplexed quantitative RT-PCR have become more accessible, and these technologies enable systematic categorization of individual neurons into groups with similar molecular properties. Here we provide a conceptual and practical guide to classification of neural cell types using single-cell gene expression profiling technologies.
Collapse
Affiliation(s)
| | - Bosiljka Tasic
- Department of Molecular Genetics, Allen Institute for Brain Science, Seattle, Washington, USA
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
67
|
Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 2017; 18:92. [PMID: 28511701 PMCID: PMC5434640 DOI: 10.1186/s13059-017-1220-4] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. RESULTS Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. CONCLUSIONS Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
Collapse
MESH Headings
- Animals
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Endonucleases/genetics
- Endonucleases/metabolism
- Founder Effect
- Gene Editing/methods
- Genes, Reporter
- Genetic Loci
- Integrases/genetics
- Integrases/metabolism
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/growth & development
- Microinjections
- Mutagenesis, Insertional/methods
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Recombinational DNA Repair
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Zygote/growth & development
- Zygote/metabolism
Collapse
Affiliation(s)
- Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hisako Akatsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Host Defense Mechanism, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takehito Sato
- Department of Host Defense Mechanism, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510, Japan
- Laboratory of Recombinant Animals, MRI, TMDU, 2-3-10, 2-3-10, Surugadai, Kanda, Chiyoda, Tokyo, 101-0062, Japan
- Present address: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ronald Redder
- High-Throughput DNA Sequencing and Genotyping Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guy P Richardson
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Sakai
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shannon M Buckley
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, 52241, USA
| | - Sarah A Zeiner
- Integrated DNA Technologies, Inc., Coralville, IA, 52241, USA
| | - Ashley M Jacobi
- Integrated DNA Technologies, Inc., Coralville, IA, 52241, USA
| | - Yayoi Izu
- Department of Animal Risk Management, Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lisa D Urness
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA.
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
68
|
Nouri N, Awatramani R. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development 2017; 144:916-927. [PMID: 28174244 DOI: 10.1242/dev.144949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
The mesodiencephalic floor plate (mdFP) is the source of diverse neuron types. Yet, how this structure is compartmentalized has not been clearly elucidated. Here, we identify a novel boundary subdividing the mdFP into two microdomains, defined by engrailed 1 (En1) and developing brain homeobox 1 (Dbx1). Utilizing simultaneous dual and intersectional fate mapping, we demonstrate that this boundary is precisely formed with minimal overlap between En1 and Dbx1 microdomains, unlike many other boundaries. We show that the En1 microdomain gives rise to dopaminergic (DA) neurons, whereas the Dbx1 microdomain gives rise to subthalamic (STN), premammillary (PM) and posterior hypothalamic (PH) populations. To determine whether En1 is sufficient to induce DA neuron production beyond its normal limit, we generated a mouse strain that expresses En1 in the Dbx1 microdomain. In mutants, we observed ectopic production of DA neurons derived from the Dbx1 microdomain, at the expense of STN and PM populations. Our findings provide new insights into subdivisions in the mdFP, and will impact current strategies for the conversion of stem cells into DA neurons.
Collapse
Affiliation(s)
- Navid Nouri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
69
|
Plummer NW, de Marchena J, Jensen P. A knock-in allele of En1 expressing dre recombinase. Genesis 2016; 54:447-54. [PMID: 27313055 DOI: 10.1002/dvg.22954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
Engrailed 1 (En1) is a homeobox-containing transcription factor expressed during development in diverse tissues, including the embryonic midbrain and anterior hindbrain. To facilitate investigation of genetic and developmental heterogeneity among cells with a history of En1 expression, we have generated En1(Dre) , a knock-in allele expressing Dre recombinase. En1(Dre) can be used with existing Cre and Flp recombinase lines for genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by transient expression of En1. To avoid disrupting En1 function, the Dre cDNA is inserted at the 3' end of the En1 coding sequence, together with a viral 2A peptide to mediate translation of separate EN1 and Dre proteins. Consequently, viable and fertile En1(Dre) homozygotes can be used to increase the proportion of useful genotypes produced in complex crosses. The pattern of Dre expression from En1(Dre) is indistinguishable from wild-type En1 expression in mid-gestation mouse embryos, and En1(Dre) controls Dre-responsive indicator alleles by efficiently recombining rox sites in vivo. Through the application of genetic tools that allow manipulation of cells based on combinatorial expression of multiple distinct recombinases, En1(Dre) will significantly extend the ability to target important subpopulations of neurons and other cells within the broader En1 expression domain. genesis 54:447-454, 2016. Published 2016. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - Jacqueline de Marchena
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
70
|
Sciolino NR, Plummer NW, Chen YW, Alexander GM, Robertson SD, Dudek SM, McElligott ZA, Jensen P. Recombinase-Dependent Mouse Lines for Chemogenetic Activation of Genetically Defined Cell Types. Cell Rep 2016; 15:2563-73. [PMID: 27264177 DOI: 10.1016/j.celrep.2016.05.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022] Open
Abstract
Chemogenetic technologies, including the mutated human Gq-coupled M3 muscarinic receptor (hM3Dq), have greatly facilitated our ability to directly link changes in cellular activity to altered physiology and behavior. Here, we extend the hM3Dq toolkit with recombinase-responsive mouse lines that permit hM3Dq expression in virtually any cell type. These alleles encode a fusion protein designed to increase effective expression levels by concentrating hM3Dq to the cell body and dendrites. To illustrate their broad utility, we targeted three different genetically defined cell populations: noradrenergic neurons of the compact, bilateral locus coeruleus and two dispersed populations, Camk2a+ neurons and GFAP+ glia. In all three populations, we observed reproducible expression and confirmed that activation of hM3Dq is sufficient to dose-dependently evoke phenotypic changes, without extreme phenotypes associated with hM3Dq overexpression. These alleles offer the ability to non-invasively control activity of diverse cell types to uncover their function and dysfunction at any developmental stage.
Collapse
Affiliation(s)
- Natale R Sciolino
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA
| | - Yu-Wei Chen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA
| | - Sabrina D Robertson
- Biotechnology Program, Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Serena M Dudek
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
71
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
72
|
Uncovering diversity in the development of central noradrenergic neurons and their efferents. Brain Res 2015; 1641:234-44. [PMID: 26612521 DOI: 10.1016/j.brainres.2015.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
Abstract
Uncovering the mechanisms that underlie central noradrenergic neuron heterogeneity is essential to understanding selective subtype vulnerability to disease and environmental insult. Using recombinase-based intersectional genetic fate mapping we have previously demonstrated that molecularly distinct progenitor populations give rise to mature noradrenergic neurons differing in their anatomical location, axon morphology and efferent projection pattern. Here we review the findings from our previous study and extend our analysis of the noradrenergic subpopulation defined by transient developmental expression of Hoxb1. Using a combination of intersectional genetic fate mapping and analysis of a targeted loss of function mutation in Hoxb1, we have now uncovered additional heterogeneity based on the requirement of some noradrenergic neurons for Hoxb1 expression. By comparing the distribution of noradrenergic neurons derived from the Hoxb1 expression domain in wild-type and mutant mice, we demonstrate that Hoxb1 expression is required by a subset of neurons in the pons. Additional fate mapping, using a Hoxb1 enhancer element that drives Cre recombinase expression exclusively in rhombomere 4 of the hindbrain, reveals the existence of a subpopulation of noradrenergic neurons in the pons with more restricted axonal targets than the full Hoxb1-derived subpopulation. The unique projection profile of this newly defined subpopulation suggests that it may be functionally distinct. These analyses shed new light on the molecular determinants of noradrenergic identity in the pons and the overall complexity of the central noradrenergic system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|