51
|
Pan X, Chen Z, Yang X, Liu G. Arabidopsis voltage-dependent anion channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS One 2014; 9:e106941. [PMID: 25192453 PMCID: PMC4156401 DOI: 10.1371/journal.pone.0106941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022] Open
Abstract
The voltage-dependent anion channels (VDACs), prominently localized in the outer mitochondrial membrane, play important roles in the metabolite exchange, energy metabolism and mitochondria-mediated apoptosis process in mammalian cells. However, relatively little is known about the functions of VDACs in plants. To further investigate the function of AtVDAC1 in Arabidopsis, we analyzed a T-DNA insertion line for the AtVDAC1 gene. The knock-out mutant atvdac1 showed reduced seed set due to a large number of undeveloped ovules in siliques. Genetic analyses indicated that the mutation of AtVDAC1 affected female fertility and belonged to a sporophytic mutation. Abnormal ovules in the process of female gametogenesis were observed using a confocal laser scanning microscope. Interestingly, both mitochondrial transmembrane potential (ΔΨ) and ATP synthesis rate were obviously reduced in the mitochondria isolated from atvdac1 plants.
Collapse
Affiliation(s)
- Xiaodi Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
52
|
Reck-Peterson SL. Molecular motors: Shifting gears with light. NATURE NANOTECHNOLOGY 2014; 9:661-662. [PMID: 25182035 DOI: 10.1038/nnano.2014.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
53
|
|
54
|
Arora K, Talje L, Asenjo AB, Andersen P, Atchia K, Joshi M, Sosa H, Allingham JS, Kwok BH. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. J Mol Biol 2014; 426:2997-3015. [PMID: 24949858 DOI: 10.1016/j.jmb.2014.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
Abstract
The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central β-sheet is twisted ~10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins-known as the "rigor-like" state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.
Collapse
Affiliation(s)
- Kritica Arora
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Lama Talje
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Parker Andersen
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Kaleem Atchia
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Monika Joshi
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Hernando Sosa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada.
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada.
| |
Collapse
|
55
|
Cross RA, McAinsh A. Prime movers: the mechanochemistry of mitotic kinesins. Nat Rev Mol Cell Biol 2014; 15:257-71. [PMID: 24651543 DOI: 10.1038/nrm3768] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation.
Collapse
Affiliation(s)
- Robert A Cross
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| | - Andrew McAinsh
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
56
|
Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT. Mechanisms shaping cell membranes. Curr Opin Cell Biol 2014; 29:53-60. [PMID: 24747171 DOI: 10.1016/j.ceb.2014.03.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
Abstract
Membranes of intracellular organelles are characterized by large curvatures with radii of the order of 10-30nm. While, generally, membrane curvature can be a consequence of any asymmetry between the membrane monolayers, generation of large curvatures requires the action of mechanisms based on specialized proteins. Here we discuss the three most relevant classes of such mechanisms with emphasis on the physical requirements for proteins to be effective in generation of membrane curvature. We provide new quantitative estimates of membrane bending by shallow hydrophobic insertions and compare the efficiency of the insertion mechanism with those of the protein scaffolding and crowding mechanisms.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
| | - Felix Campelo
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Nicole Liska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Leonid V Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
57
|
Granger E, McNee G, Allan V, Woodman P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 2014; 31:20-9. [PMID: 24727350 PMCID: PMC4071412 DOI: 10.1016/j.semcdb.2014.04.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022]
Abstract
The endocytic pathway is essential for processes that define how cells interact with their environment, including receptor signalling, cell adhesion and migration, pathogen entry, membrane protein turnover and nutrient uptake. The spatial organisation of endocytic trafficking requires motor proteins that tether membranes or transport them along the actin and microtubule cytoskeletons. Microtubules, actin filaments and motor proteins also provide force to deform and assist in the scission of membranes, thereby facilitating endosomal sorting and the generation of transport intermediates.
Collapse
Affiliation(s)
- Elizabeth Granger
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Gavin McNee
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Allan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Philip Woodman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
58
|
ATP synthase: the right size base model for nanomotors in nanomedicine. ScientificWorldJournal 2014; 2014:567398. [PMID: 24605056 PMCID: PMC3925597 DOI: 10.1155/2014/567398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/05/2013] [Indexed: 11/17/2022] Open
Abstract
Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease conditions. Many such biological nanomotors are found and operate in living systems which could be used for therapeutic purposes. The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base models in the development of nanomotors. We will also describe how the capabilities of molecular modulation can improve catalytic and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications for nanotechnology.
Collapse
|
59
|
Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family. Proc Natl Acad Sci U S A 2014; 111:1837-42. [PMID: 24449904 DOI: 10.1073/pnas.1319848111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities, but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin--the transport motor kinesin-1--is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests otherwise. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and determination of structure at subnanometer resolution, we have visualized conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. After ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drug-binding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N terminus is enzymatically active, and ATP-dependent neck-linker movement and motility are defective, although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N terminus in collaboration with the motor's structured neck-linker and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements.
Collapse
|
60
|
Teamwork in microtubule motors. Trends Cell Biol 2013; 23:575-82. [PMID: 23877011 DOI: 10.1016/j.tcb.2013.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/10/2023]
Abstract
Diverse cellular processes are driven by the collective force from multiple motor proteins. Disease-causing mutations cause aberrant function of motors, but the impact is observed at a cellular level and beyond, therefore necessitating an understanding of cell mechanics at the level of motor molecules. One way to do this is by measuring the force generated by ensembles of motors in vivo at single-motor resolution. This has been possible for microtubule motor teams that transport intracellular organelles, revealing unexpected differences between collective and single-molecule function. Here we review how the biophysical properties of single motors, and differences therein, may translate into collective motor function during organelle transport and perhaps in other processes outside transport.
Collapse
|