51
|
Ariga K, Mori T, Kitao T, Uemura T. Supramolecular Chiral Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905657. [PMID: 32191374 DOI: 10.1002/adma.201905657] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Indexed: 05/06/2023]
Abstract
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal-organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
52
|
Chitosan Hydrogel Doped with PEG-PLA Nanoparticles for the Local Delivery of miRNA-146a to Treat Allergic Rhinitis. Pharmaceutics 2020; 12:pharmaceutics12100907. [PMID: 32977497 PMCID: PMC7598290 DOI: 10.3390/pharmaceutics12100907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
To prepare a binary formulation delivering miRNA-146 and evaluate a nucleic acid nasal delivery system by investigating its pharmacodynamic effects in allergic rhinitis. The gel/NPs/miR-146a thermosensitive in situ chitosan hydrogel carrying a nucleic acid was prepared and evaluated for its characteristics, including temperature sensitivity, gel strength, mucosal adhesion and drug release profile. After nasal administration of the formulation to ovalbumin-sensitized rats, the treatment of allergic rhinitis was verified by assessing nasal symptoms, hematology, hematoxylin-eosin (HE) staining and immunohistochemistry. Western Blot(WB) was used to analyze nasal inflammatory factors as well as miRNA-146-related factors, and the miR146 expression level was measured by PCR. Subsequently, the effects of the gel/NPs/miR-146a binary formulation were evaluated for the nasal delivery of nucleic acids in rhinitis therapy. The prepared binary formulation quickly formed a gel in the nasal cavity at a temperature of 34 °C with good mucosal adhesion, which delivered nucleic acids into the nasal mucosa stably and continuously. Gel/NPs/miR-146a was able to sustain the delivery of miRNA into the mucosa after nasal administration. When compared with the monolithic formulations, the gel/NPs/miR-146a binary formulation performed better regarding its nucleic acid delivery ability and pharmacodynamic effects. The gel/NPs/miR-146a binary preparation has a suitable nasal mucosal drug delivery ability and has a positive pharmacodynamic effect for the treatment of ovalbumin-induced rhinitis in rats. It can serve as a potential nucleic acid delivery platform for the treatment of allergic rhinitis.
Collapse
|
53
|
Ahmad KS, Talat M, Jaffri SB, Shaheen N. Innovatory role of nanomaterials as bio-tools for treatment of cancer. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Muntaha Talat
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | | |
Collapse
|
54
|
Song J, Jia X, Ariga K. Interfacial nanoarchitectonics for responsive cellular biosystems. Mater Today Bio 2020; 8:100075. [PMID: 33024954 PMCID: PMC7529844 DOI: 10.1016/j.mtbio.2020.100075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
The living cell can be regarded as an ideal functional material system in which many functional systems are working together with high efficiency and specificity mostly under mild ambient conditions. Fabrication of living cell-like functional materials is regarded as one of the final goals of the nanoarchitectonics approach. In this short review article, material-based approaches for regulation of living cell behaviors by external stimuli are discussed. Nanoarchitectonics strategies on cell regulation by various external inputs are first exemplified. Recent approaches on cell regulation with interfacial nanoarchitectonics are also discussed in two extreme cases using a very hard interface with nanoarchitected carbon arrays and a fluidic interface of the liquid-liquid interface. Importance of interfacial nanoarchitectonics in controlling living cells by mechanical and supramolecular stimuli from the interfaces is demonstrated.
Collapse
Affiliation(s)
- Jingwen Song
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
55
|
Ma X, Xing R, Yuan C, Ogino K, Yan X. Tumor therapy based on self‐assembling peptides nanotechnology. VIEW 2020. [DOI: 10.1002/viw.20200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xiaoyan Ma
- State Key Laboratory of Biochemical Engineering Chinese Academy of Sciences Institute of Process Engineering Beijing P. R. China
- Graduate School of Bio‐Applications and Systems Engineering Tokyo University of Agriculture and Technology Tokyo Japan
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering Chinese Academy of Sciences Institute of Process Engineering Beijing P. R. China
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering Chinese Academy of Sciences Institute of Process Engineering Beijing P. R. China
| | - Kenji Ogino
- Graduate School of Bio‐Applications and Systems Engineering Tokyo University of Agriculture and Technology Tokyo Japan
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Chinese Academy of Sciences Institute of Process Engineering Beijing P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
56
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
57
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
58
|
Li X, Li Q, Fei J, Jia Y, Xue H, Zhao J, Li J. Self-Assembled Dipeptide Aerogels with Tunable Wettability. Angew Chem Int Ed Engl 2020; 59:11932-11936. [PMID: 32314502 DOI: 10.1002/anie.202005575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Constructing supramolecular materials with tunable properties and functions is a great challenge due to the complex competition between multiple assembly pathways. Herein, we report that dipeptides can self-assemble into aerogels with entirely different surface wettability through precisely controlling the assembly pathways. Charged groups or aromatic residues are selectively exposed on the surface of their nanoscale building blocks which results either in a superhydrophilic or highly hydrophobic surface. With this special property, single component dipeptide aerogels can play diverse roles in medical care applications. This study suggests great promise in the synthesis of supramolecular materials with different targeted functions from the same molecular unit.
Collapse
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
59
|
Ariga K. Don't Forget Langmuir-Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7158-7180. [PMID: 32501699 DOI: 10.1021/acs.langmuir.0c01044] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Designing interfacial structures with nanoscale (or molecular) components is one of the important tasks in the nanoarchitectonics concept. In particular, the Langmuir-Blodgett (LB) method can become a promising and powerful strategy in interfacial nanoarchitectonics. From this viewpoint, the status of LB films in 2020 will be discussed in this feature article. After one section on the basics of interfacial nanoarchitectonics with the LB technique, various recent research examples of LB films are introduced according to classifications of (i) growing research, (ii) emerging research, and (iii) future research. In recent LB research, various materials other than traditional lipids and typical amphiphiles can be used as film components of the LB techniques. Two-dimensional materials, supramolecular structures such as metal organic frameworks, and biomaterials such as DNA origami pieces are capable of working as functional components in the LB assemblies. Possible working areas of the LB methods would cover emerging demands, including energy, environmental, and biomedical applications with a wide range of functional materials. In addition, forefront research such as molecular manipulation and cell fate control is conducted in LB-related interfacial science. The LB technique is a traditional and well-develop methodology for molecular films with a ca. 100 year history. However, there is plenty of room at the interfaces, as shown in LB research examples described in this feature article. It is hoped that the continuous development of the science and technology of the LB method make this technique an unforgettable methodology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
60
|
Zhang S, Cortes W, Zhang Y. Constructing Cross-Linked Nanofibrous Scaffold via Dual-Enzyme-Instructed Hierarchical Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6261-6267. [PMID: 32418429 DOI: 10.1021/acs.langmuir.0c01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To explore the potential of step-by-step assembly in the fabrication of biological materials, we designed and synthesized two peptide-based molecules for enzyme-instructed hierarchical assembly. Upon the treatment of alkaline phosphatase, one molecule undergoes enzyme-instructed self-assembly forming uniformed nanofibers. The other one that can self-assemble into vesicles undergoes enzyme-induced transformation of self-assembly converting vesicles into irregular aggregates upon the treatment of carboxylesterase. Coadministration of two enzymes to a mixture of these two molecules in a stage-by-stage fashion leads to a physically knotted nanofibrous scaffold that is applicable as a nanostructured matrix for cell culture.
Collapse
Affiliation(s)
- Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| | - William Cortes
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| |
Collapse
|
61
|
Li X, Li Q, Fei J, Jia Y, Xue H, Zhao J, Li J. Self‐Assembled Dipeptide Aerogels with Tunable Wettability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
62
|
Ariga K, Shrestha LK. Fullerene Nanoarchitectonics with Shape-Shifting. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2280. [PMID: 32429148 PMCID: PMC7287900 DOI: 10.3390/ma13102280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
This short review article introduces several examples of self-assembly-based structural formation and shape-shifting using very simple molecular units, fullerenes (C60, C70, and their derivatives), as fullerene nanoarchitectonics. Fullerene molecules are suitable units for the basic science of self-assembly because they are simple zero-dimensional objects with only a single elemental component, carbon, without any charged or interactive functional groups. In this review article, self-assembly of fullerene molecules and their shape-shifting are introduced as fullerene nanoarchitectonics. An outline and a background of fullerene nanoarchitectonics are first described, followed by various demonstrations, including fabrication of various fullerene nanostructures, such as rods on the cube, holes in the cube, interior channels in the cube, and fullerene micro-horns, and also a demonstration of a new concept, supramolecular differentiation.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
63
|
Pandurangan K, Roy B, Rajasekhar K, Suseela YV, Nagendra P, Chaturvedi A, Satwik UR, Murugan NA, Ramamurty U, Govindaraju T. Molecular Architectonics of Cyclic Dipeptide Amphiphiles and Their Application in Drug Delivery. ACS APPLIED BIO MATERIALS 2020; 3:3413-3422. [DOI: 10.1021/acsabm.0c00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Komala Pandurangan
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Yelisetty Venkata Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Prachitha Nagendra
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Abhishek Chaturvedi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Upadrasta R. Satwik
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - N. Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
64
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
65
|
Ariga K, Ishii M, Mori T. 2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry 2020; 26:6461-6472. [PMID: 32159246 DOI: 10.1002/chem.202000789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Soft and flexible two-dimensional (2D) systems, such as liquid interfaces, would have much more potentials in dynamic regulation on nano-macro connected functions. In this Minireview article, we focus especially on dynamic motional functions at liquid dynamic interfaces as 2D material systems. Several recent examples are selected to be explained for overviewing features and importance of dynamic soft interfaces in a wide range of action systems. The exemplified research systems are mainly classified into three categories: (i) control of microobjects with motional regulations; (ii) control of molecular machines with functions of target discrimination and optical outputs; (iii) control of living cells including molecular machine functions at cell membranes and cell/biomolecular behaviors at liquid interface. Sciences on soft 2D media with motional freedom and their nanoarchitectonics constructions will have increased importance in future technology in addition to popular rigid solid 2D materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Ishii
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Pure and Applied Chemistry, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
66
|
Roy B, Pal S, Govindaraju T. Intrinsic Role of Molecular Architectonics in Enhancing the Catalytic Activity of Lead in Glucose Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14057-14063. [PMID: 32134618 DOI: 10.1021/acsami.0c01803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lewis acidity plays a key role in the catalytic activity of lead ion (PbII) in the hydrolysis of glucose in solution under harsh synthetic conditions. We report a number of structurally similar d-gluconamide amphiphiles as functional organic ligands with active an -NH center capable of coordinating PbII (viz., PbII-N-C) in basic condition to enhance the catalytic efficiency through the scheme of molecular architectonics. Amphiphiles with different hydrophobic unit form assembly-architectures with a varying second coordination sphere around the active metal ion center. As a result, the active PbII center in each architecture exhibits substantially different efficiency toward catalyzing the glucose hydrolysis under ambient temperature. The catalytic performance of the dynamic and reversible gluconamide-PbII assembly-architectures are highly dependent on their chemical environments in solution. Further, the active PbII center of gluconamide-PbII complex in the assembly architecture and dispersed states exhibits distinct outcomes with the former being a superior catalyst than the latter as well as PbII alone. The current study demonstrates the potential of molecular architectonics that relies on the hydrophobic units of designer functional amphiphiles to enrich surface electron density with enhanced σ-donation ability through space which substantially improves the catalytic efficiency of PbII toward glucose hydrolysis at ambient temperature.
Collapse
Affiliation(s)
- Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Satyajit Pal
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
67
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Insulin Delivery from Glucose‐Responsive, Self‐Assembled, Polyamine Nanoparticles: Smart “Sense‐and‐Treat” Nanocarriers Made Easy. Chemistry 2020; 26:2456-2463. [DOI: 10.1002/chem.201905075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Maximiliano L. Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Santiago E. Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - M. Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química FísicaINQUIMAE-CONICETFacultad de Ciencias Exactas y NaturalesCiudad Universitaria Pabellón 2 Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| |
Collapse
|
68
|
Geng H, Dai Q, Sun H, Zhuang L, Song A, Caruso F, Hao J, Cui J. Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis. ACS APPLIED BIO MATERIALS 2020; 3:1258-1266. [PMID: 35019326 DOI: 10.1021/acsabm.9b01138] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qiong Dai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Liping Zhuang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
69
|
Ghosh D, Datta LP, Govindaraju T. Molecular architectonics of DNA for functional nanoarchitectures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:124-140. [PMID: 31976202 PMCID: PMC6964666 DOI: 10.3762/bjnano.11.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 05/08/2023]
Abstract
DNA is the key biomolecule central to almost all processes in living organisms. The eccentric idea of utilizing DNA as a material building block in molecular and structural engineering led to the creation of numerous molecular-assembly systems and materials at the nanoscale. The molecular structure of DNA is believed to have evolved over billions of years, with structure and stability optimizations that allow life forms to sustain through the storage and transmission of genetic information with fidelity. The nanoscale structural characteristics of DNA (2 nm thickness and ca. 40-50 nm persistence length) have inspired the creation of numerous functional patterns and architectures through noncovalent conventional and unconventional base pairings as well as through mutual templating-interactions with small organic molecules and metal ions. The recent advancements in structural DNA nanotechnology allowed researchers to design new DNA-based functional materials with chemical and biological properties distinct from their parent components. The modulation of structural and functional properties of hybrid DNA ensembles of small functional molecules (SFMs) and short oligonucleotides by adapting the principles of molecular architectonics enabled the creation of novel DNA nanoarchitectures with potential applications, which has been termed as templated DNA nanotechnology or functional DNA nanoarchitectonics. This review highlights the molecular architectonics-guided design principles and applications of the derived DNA nanoarchitectures. The advantages and ability of functional DNA nanoarchitectonics to overcome the trivial drawbacks of classical DNA nanotechnology to fulfill realistic and practical applications are highlighted, and an outlook on future developments is presented.
Collapse
Affiliation(s)
- Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Lakshmi P Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
70
|
Ariga K. Nanoarchitectonics: bottom-up creation of functional materials and systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:450-452. [PMID: 32215232 PMCID: PMC7082705 DOI: 10.3762/bjnano.11.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 05/03/2023]
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
71
|
Cui G, Zhao K, You K, Gao Z, Kakuchi T, Feng B, Duan Q. Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:1-10. [PMID: 32002087 PMCID: PMC6968588 DOI: 10.1080/14686996.2019.1700394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 05/06/2023]
Abstract
Thermo-, pH- and glucose-responsive polymeric nanoparticles are of great interest in developing a self-regulated drug delivery system. The novel core-shell nanoparticles were synthesized by self-assembly of a phenylboronic acid-based block copolymer poly-(N-isopropylacrylamide)-block-poly(3-acrylamidophenylboronic acid) (PNIPAM136-b-PAPBA16) and a fluorescent complex glucosamine-poly(N-isopropylacrylamide)/Eu(III) (GA-PNIPAM)/Eu(III) based on the cross-linking between PBA- and GA-containing blocks in this work. The nanoparticles can be tuned via thermo-induced collapse or glucose-induced swelling at appropriate pH and temperatures; they had an average kinetic radius was about 80nm, and which showed excellent fluorescence. MTT assays revealed the nanocarriers had no significant cytotoxic response of the micelle when it was observed in the cell line over the concentration range from 0.1 to 1000 μg/ml at any exposure times.
Collapse
Affiliation(s)
- Guihua Cui
- Center for Biomaterials, Jilin Medical University, Jilin, China
- Department of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin, China
| | - Kunming Zhao
- Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Kewei You
- Department of Research, Redpharm Biotechnology Co., Ltd, Beijing, China
| | - Zhengguo Gao
- Chemical and Engineering College, Yantai University, Yantai, Shandong, China
| | - Toyoji Kakuchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Bo Feng
- Department of Pharmacy, Jilin Medical University, Jilin, China
- CONTACT Bo Feng Department of Pharmacy, Jilin Medical University, Jilin, China
| | - Qian Duan
- Department of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin, China
- Qian Duan Department of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin, China
| |
Collapse
|
72
|
Tanaka M, Sawada T, Li X, Serizawa T. Controlled assembly of filamentous viruses into hierarchical nano- to microstructures at liquid/liquid interfaces. RSC Adv 2020; 10:26313-26318. [PMID: 35519761 PMCID: PMC9055535 DOI: 10.1039/d0ra04529b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, viruses have been regarded as useful molecular assemblies for materials applications rather than as disease-causing agents. The orderly assembled structures of the viruses are highly related to the resultant properties and functions of the assemblies; however, methods to control the assembly are still limited. Here, we demonstrated the assembly of filamentous viruses into hierarchical nano- to microstructures at liquid/liquid interfaces through emulsification in a controlled manner. The viruses form fibrous nanostructures of several micrometers length, which are much longer than the original virus. Subsequently, the fibers self-assemble into well-packed ordered microstructures. Furthermore, the resultant hierarchically assembled structures showed long-term stability and potential applicability through the desired functionalization. Assembly of filamentous viruses into hierarchical nano- to microstructures in a controlled manner was demonstrated using the liquid/liquid interface.![]()
Collapse
Affiliation(s)
- Michihiro Tanaka
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Xiang Li
- Institute for Solid State Physics
- The University of Tokyo
- Kashiwa
- Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
73
|
Rodon Fores J, Criado‐Gonzalez M, Chaumont A, Carvalho A, Blanck C, Schmutz M, Serra CA, Boulmedais F, Schaaf P, Jierry L. Supported Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry. Angew Chem Int Ed Engl 2019; 58:18817-18822. [DOI: 10.1002/anie.201909424] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer Rodon Fores
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Miryam Criado‐Gonzalez
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche MédicaleINSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de StrasbourgFaculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de StrasbourgFaculté de Chimie, UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Alain Carvalho
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christian Blanck
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Marc Schmutz
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christophe A. Serra
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - F. Boulmedais
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Pierre Schaaf
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche MédicaleINSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de StrasbourgFaculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Loïc Jierry
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
74
|
Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
75
|
Qiu W, Patil A, Hu F, Liu XY. Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903948. [PMID: 31657136 DOI: 10.1002/smll.201903948] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Indexed: 05/21/2023]
Abstract
A comprehensive review on the five levels of hierarchical structures of silk materials and the correlation with macroscopic properties/performance of the silk materials, that is, the toughness, strain-stiffening, etc., is presented. It follows that the crystalline binding force turns out to be very important in the stabilization of silk materials, while the β-crystallite networks or nanofibrils and the interactions among helical nanofibrils are two of the most essential structural elements, which to a large extent determine the macroscopic performance of various forms of silk materials. In this context, the characteristic structural factors such as the orientation, size, and density of β-crystallites are very crucial. It is revealed that the formation of these structural elements is mainly controlled by the intermolecular nucleation of β-crystallites. Consequently, the rational design and reconstruction of silk materials can be implemented by controlling the molecular nucleation via applying sheering force and seeding (i.e., with carbon nanotubes). In general, the knowledge of the correlation between hierarchical structures and performance provides an understanding of the structural reasons behind the fascinating behaviors of silk materials.
Collapse
Affiliation(s)
- Wu Qiu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Aniruddha Patil
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Fan Hu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Xiang Yang Liu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
76
|
Xing R, Liu Y, Zou Q, Yan X. Self-assembled injectable biomolecular hydrogels towards phototherapy. NANOSCALE 2019; 11:22182-22195. [PMID: 31728467 DOI: 10.1039/c9nr06266a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomolecular hydrogels assembled from biomolecules, such as proteins, peptides, and polysaccharides, are promising candidates for facilitating biomedical applications due to their advantages of high biocompatibility, adjustable mechanical properties, functional diversity, and good degradability. This review focuses on current progress in the field of supramolecular injectable biomolecular hydrogels and their applications in antitumor photodynamic therapy (PDT), photothermal therapy (PTT), combined PDT and PTT, and antibacterial phototherapy with emphasis on biomolecular hydrogelators, injectable behaviors, phototherapeutic functions, and the remaining challenges. We hope that this review can provide useful inspiration for the construction and biological applications of novel photo-functional hydrogels as well as phototherapies.
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
77
|
Roy B, Govindaraju T. Amino Acids and Peptides as Functional Components in Arylenediimide-Based Molecular Architectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190215] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru-560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru-560064, Karnataka, India
| |
Collapse
|
78
|
Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK, Leong DT. Nanoparticles' interactions with vasculature in diseases. Chem Soc Rev 2019; 48:5381-5407. [PMID: 31495856 DOI: 10.1039/c9cs00309f] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever-growing use of inorganic nanoparticles (NPs) in biomedicine provides an exciting approach to develop novel imaging and drug delivery systems, owing to the ease with which these NPs can be functionalized to cater to various applications. In cancer therapeutics, nanomedicine generally relies on the enhanced permeability and retention (EPR) effect observed in tumour vasculature to deliver anti-cancer drugs across the endothelium. However, such a phenomenon is dependent on the tumour microenvironment and is not consistently observed in all tumour types, thereby limiting drug transport to the tumour site. On the other hand, there is a rise in utilizing inorganic NPs to intentionally induce endothelial leakiness, creating a window of opportunity to control drug delivery across the endothelium. While this active targeting approach creates a similar phenomenon compared to the EPR effect arising from tumour tissues, its drug delivery applications extend beyond cancer therapeutics and into other vascular-related diseases. In this review, we summarize the current findings of the EPR effect and assess its limitations in the context of anti-cancer drug delivery systems. While the EPR effect offers a possible route for drug passage, we further explore alternative uses of NPs to create controllable endothelial leakiness within short exposures, a phenomenon we coined as nanomaterial-induced endothelial leakiness (NanoEL). Furthermore, we discuss the main mechanistic features of the NanoEL effect that make it unique from conventionally established endothelial leakiness in homeostatic and pathologic conditions, as well as examine its potential applicability in vascular-related diseases, particularly cancer. Therefore, this new paradigm changes the way inorganic NPs are currently being used for biomedical applications.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Rodon Fores J, Criado‐Gonzalez M, Chaumont A, Carvalho A, Blanck C, Schmutz M, Serra CA, Boulmedais F, Schaaf P, Jierry L. Supported Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jennifer Rodon Fores
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Miryam Criado‐Gonzalez
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche MédicaleINSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de StrasbourgFaculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de StrasbourgFaculté de Chimie, UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Alain Carvalho
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christian Blanck
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Marc Schmutz
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christophe A. Serra
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - F. Boulmedais
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Pierre Schaaf
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche MédicaleINSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de StrasbourgFaculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Loïc Jierry
- Université de StrasbourgCNRSInstitut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
80
|
|
81
|
Cao F, Mei L, Zhu G, Song M, Zhang X. An injectable molecular hydrogel assembled by antimicrobial peptide PAF26 for antimicrobial application. RSC Adv 2019; 9:30803-30808. [PMID: 35529366 PMCID: PMC9072196 DOI: 10.1039/c9ra06130d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/16/2019] [Indexed: 12/01/2022] Open
Abstract
Wound infection is a crucial factor that inhibits wound recovery. A feasible measure to solve this problem is using antimicrobial biomaterials to suppress the microbial growth. In this work, an amphipathic antimicrobial peptide (Ac-RKKWFW-NH2, PAF26) was investigated to form the antimicrobial hydrogel. Triggered by pH, PAF26 peptide could self-assemble into a hydrogel, and the hydrogel formed was injectable and exhibited shear-thinning ability. Antimicrobial experiments demonstrated that the self-assembled hydrogel had an outstanding antimicrobial ability against pathogenic microbes such as Candida albicans, Staphylococcus aureus, and Escherichia coli via destroying the cell membrane structure. Thus, this study provides a novel method for preparing an injectable antimicrobial peptide hydrogel for antimicrobial therapies.
Collapse
Affiliation(s)
- Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China +86 371 69975784
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China +86 371 69975784
| | - Genxing Zhu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China +86 371 69975784
| | - Meng Song
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China +86 371 69975784
| | - Xueli Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China +86 371 69975784
| |
Collapse
|
82
|
Liu C, Guo X, Ruan C, Hu H, Jiang BP, Liang H, Shen XC. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 2019; 96:281-294. [PMID: 31319202 DOI: 10.1016/j.actbio.2019.07.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
Near-infrared (NIR)-responsive hydrogels have exhibited remarkable advantages in biomedical applications especially for in situ therapeutic delivery, because of their deep-tissue penetration capacity, minimal invasiveness, and high spatiotemporal selectivity. Nevertheless, conventional NIR-responsive nanocomposite hydrogels suffer from the disadvantages of limited photothermal effect and potential leakage of the physically mixed photothermal nanoagents. To overcome these limitations, we herein designed an injectable thermosensitive photothermal-network hydrogel (PNT-gel) through the host-guest self-assembly of a photothermal conjugated polymers and ɑ-cyclodextrin. The conjugated-polymer backbones can directly convert incident light into heat, endowing the PNT-gel with high photothermal conversion efficiency (η = 52.6%) and enhanced photothermal stability. Meanwhile, the mild host-guest assembly enable the shear-thinning injectability, photothermally-driven and reversible gel-sol conversion of the hydrogel. Consequently, the remotely controlled on-demand release of doxorubicin (DOX) was achieved via photothermal-induced gel-sol transition. Because the backbone of the hydrogel absorbs NIR light and mediates the photothermal conversion itself, the PNT-gel demonstrated the advantage of a prolonged retention time and thus permitting repeatable NIR treatment after a one-time intratumoral injection of this hydrogel. Under repeated NIR laser irradiation (0.15 W cm-2), the synergistic photothermal-chemotherapy mediated by the PNT-gel almost completely eradicated 4T1 breast cancer. This work not only presents a multifunctional therapeutic platform integrated with inherent photothermal characteristic and reversible stimuli responsiveness for on-demand delivery and combinatorial photothermal-chemotherapy, but also provides a new strategy for the development of the next-generation of light-modulated intelligent hydrogels. STATEMENT OF SIGNIFICANCE: The conventional NIR-responsive nanocomposite hydrogels suffer from the disadvantages of limited photothermal effect and possible leakage of the physically mixed photothermal nano-components. To overcome these limitations, we hereby fabricated a NIR-responsive themosensitive photothermal-network hydrogel through the supramolecular assembly of conjugated polymer. The conjugated polymeric backbones of the hydrogel directly convert NIR light to heat, endowing the hydrogel with good photothermal effect and long-term photothermal stability. Meanwhile, the dynamic crosslinkages via supramolecular assembly enabled the shear-thinning injectability and reversible gel-sol transition of the hydrogel, facilitating the photothermal-induced drug release. Our strategy demonstrated the efficacy of using conjugated polymer as the backbone of hydrogel for the construction of a new injectable NIR-responsive hydrogel system with enhanced photothermal capabilities and improved therapy outcomes.
Collapse
|
83
|
Hata Y, Fukaya Y, Sawada T, Nishiura M, Serizawa T. Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1778-1788. [PMID: 31501749 PMCID: PMC6720341 DOI: 10.3762/bjnano.10.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 05/05/2023]
Abstract
Crystalline poly- and oligosaccharides such as cellulose can form extremely robust assemblies, whereas the construction of self-assembled materials from such molecules is generally difficult due to their complicated chemical synthesis and low solubility in solvents. Enzyme-catalyzed oligomerization-induced self-assembly has been shown to be promising for creating nanoarchitectured crystalline oligosaccharide materials. However, the controlled self-assembly into organized hierarchical structures based on a simple method is still challenging. Herein, we demonstrate that the use of organic solvents as small-molecule additives allows for control of the oligomerization-induced self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown higher-order structures. This finding indicates that small-molecule additives provide control over the self-assembly of crystalline oligosaccharides for the creation of hierarchically structured materials with high robustness in a simple manner.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Masahito Nishiura
- DKS Co. Ltd., 5 Ogawaracho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8391, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
84
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Nanocarbon Assembly and Composite. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01294-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
85
|
Ariga K, Ahn E, Park M, Kim BS. Layer-by-Layer Assembly: Recent Progress from Layered Assemblies to Layered Nanoarchitectonics. Chem Asian J 2019; 14:2553-2566. [PMID: 31172648 DOI: 10.1002/asia.201900627] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 12/17/2022]
Abstract
As an emerging concept for the development of new materials with nanoscale features, nanoarchitectonics has received significant recent attention. Among the various approaches that have been developed in this area, the fixed-direction construction of functional materials, such as layered fabrication, offers a helpful starting point to demonstrate the huge potential of nanoarchitectonics. In particular, the combination of nanoarchitectonics with layer-by-layer (LbL) assembly and a large degree of freedom in component availability and technical applicability would offer significant benefits to the fabrication of functional materials. In this Minireview, recent progress in LbL assembly is briefly summarized. After introducing the basics of LbL assembly, recent advances in LbL research are discussed, categorized according to physical, chemical, and biological innovations, along with the fabrication of hierarchical structures. Examples of LbL assemblies with graphene oxide are also described to demonstrate the broad applicability of LbL assembly, even with a fixed material.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki Prefecture, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture, 277-8561, Japan
| | - Eungjin Ahn
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minju Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
86
|
Yang M, Xing R, Shen G, Yuan C, Yan X. A versatile cyclic dipeptide hydrogelator: Self-assembly and rheology in various physiological conditions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
87
|
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Self-assembly as a key player for materials nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:51-95. [PMID: 30787960 PMCID: PMC6374972 DOI: 10.1080/14686996.2018.1553108] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 05/07/2023]
Abstract
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taizo Mori
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Lok Kumar Shrestha
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jonathan P. Hill
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
88
|
You Y, Xing R, Zou Q, Shi F, Yan X. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1894-1901. [PMID: 31598455 PMCID: PMC6774068 DOI: 10.3762/bjnano.10.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/05/2019] [Indexed: 05/20/2023]
Abstract
Peptide-based supramolecular hydrogels, as a new type of biological nanoarchitectonic structure, hold great promise for a wide range of biomedical and nanotechnological applications, such as tissue engineering, drug delivery, and electronic and photonic energy storage. In this work, a cyclic dipeptide (CDP) cyclo-(Trp-Tyr) (C-WY), which has exceptional structural rigidity and high stability, is selected as a hydrogelator for the formation of supramolecular hydrogels. The unique hydrogen bonding in C-WY endows a high propensity for self-assembly and the resulting hydrogels are revealed to be crystalline. The crystalline hydrogels possess excellent mechanical capacity and superior tolerance to various harsh conditions, including in the presence of charged biopolymers, extreme acid/base environments, and changing thermal conditions. Such high tolerance enables the crystalline hydrogels to be applied in the complex and harsh environments of electrochemistry. In addition, this study demonstrates that the self-assembly of cyclic dipeptides results in highly robust hydrogels which can be applied for electrochemical applications such as electrochemical supercapacitors.
Collapse
Affiliation(s)
- Yongcai You
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
89
|
Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J. Review of advanced sensor devices employing nanoarchitectonics concepts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2014-2030. [PMID: 31667049 PMCID: PMC6808193 DOI: 10.3762/bjnano.10.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/06/2019] [Indexed: 05/09/2023]
Abstract
Many recent advances in sensor technology have been possible due to nanotechnological advancements together with contributions from other research fields. Such interdisciplinary collaborations fit well with the emerging concept of nanoarchitectonics, which is a novel conceptual methodology to engineer functional materials and systems from nanoscale units through the fusion of nanotechnology with other research fields, including organic chemistry, supramolecular chemistry, materials science and biology. In this review article, we discuss recent advancements in sensor devices and sensor materials that take advantage of advanced nanoarchitectonics concepts for improved performance. In the first part, recent progress on sensor systems are roughly classified according to the sensor targets, such as chemical substances, physical conditions, and biological phenomena. In the following sections, advancements in various nanoarchitectonic motifs, including nanoporous structures, ultrathin films, and interfacial effects for improved sensor function are discussed to realize the importance of nanoarchitectonic structures. Many of these examples show that advancements in sensor technology are no longer limited by progress in microfabrication and nanofabrication of device structures - opening a new avenue for highly engineered, high performing sensor systems through the application of nanoarchitectonics concepts.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Tatsuyuki Makita
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masato Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Shun Watanabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Jun Takeya
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
90
|
Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1559-1587. [PMID: 31467820 PMCID: PMC6693411 DOI: 10.3762/bjnano.10.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/16/2019] [Indexed: 05/06/2023]
Abstract
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michio Matsumoto
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|