51
|
Waldron M, Highton J. Fatigue and pacing in high-intensity intermittent team sport: an update. Sports Med 2015; 44:1645-58. [PMID: 25047854 DOI: 10.1007/s40279-014-0230-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the advancements in player tracking technology, the topic of fatigue and pacing in team sport has become increasingly popular in recent years. Initially based upon a pre-conceived pacing schema, a central metabolic control system is proposed to guide the movement of players during team sport matches, which can be consciously modified based on afferent signals from the various physiological systems and in response to environmental cues. On the basis of this theory, coupled with the collective findings from motion-analysis research, we sought to define the different pacing strategies employed by team sport players. Whole-match players adopt a 'slow-positive' pacing profile (gradual decline in total running intensity), which appears to be global across the different team sports. High-intensity movement also declines in a 'slow-positive' manner across most team sport matches. The duration of the exercise bout appears to be important for the selected exercise intensity, with the first introduction to a match as a substitute or interchange player resulting in a 'one bout, all out' strategy. In a limited interchange environment, a second introduction to the match results in a 'second-bout reserve' strategy; otherwise, the 'one bout, all out' strategy is likely to be adopted. These pacing profiles are proposed to reflect the presence of a central regulator that controls the movement intensity of the player to optimize performance, as well as avoiding the harmful failure of any physiological system. The presence of 'temporary fatigue' reflects this process, whereby exercise intensity is consciously modulated from within the framework of a global pacing schema.
Collapse
Affiliation(s)
- Mark Waldron
- School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia,
| | | |
Collapse
|
52
|
The Effect of High Intensity Intermittent Exercise on Power Output for the Upper Body. Sports (Basel) 2015. [DOI: 10.3390/sports3030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
53
|
Lima FM, Fernandes LFRM, Bertoncello D. Tracking upper limbs fatigue by means of electronic dynamometry. MOTRIZ: REVISTA DE EDUCACAO FISICA 2015. [DOI: 10.1590/s1980-65742015000200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to identify useful electronic grip dynamometry parameters to track differences between trained (TR) and untrained (UT) participants, and between dominant (DO) and non-dominant (ND) limbs as a consequence of upper limbs muscle fatigue following 10 RM tests of the brachial biceps. This experimental study with transversal design involved 18 young adult males, of whom 9 were untrained and 9 were experienced in resistance training.Isometric grip force was evaluated (30 seconds long) previous and after 10RM tests by means of a G200 Model grip dynamometer with precision load cell (Biometrics(r)). Significant differences between initial and final measurements were found only for trained participants: Peak force for TR-DO (67.1 vs 55.5 kgf, p = .0277); Raw average for TR-DO (46.96 vs 42.22 kgf, p = .0464), and for TR-ND (40.34 vs 36.13 kgf, p = .0277). Electronic grip dynamometry efficiently identified upper limbs fatigue in trained participants, being raw average measurements the best parameter.
Collapse
|
54
|
Morel B, Rouffet DM, Saboul D, Rota S, Clémençon M, Hautier CA. Peak torque and rate of torque development influence on repeated maximal exercise performance: contractile and neural contributions. PLoS One 2015; 10:e0119719. [PMID: 25901576 PMCID: PMC4406491 DOI: 10.1371/journal.pone.0119719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/16/2015] [Indexed: 11/28/2022] Open
Abstract
Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial ifmean (0-225 ms) decreased after 20 sets (respectively -21.1±14.1, -25±13%, and ~20%). RTD decrease was correlated to RER decrease (R²=0.36; p<0.05). The eTpeak decreased significantly after 20 sets (24±5%; p<0.05) contrary to EMGpeak (-3.2±19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.
Collapse
Affiliation(s)
- Baptiste Morel
- Center of Research and Innovation on Sport, University of Lyon 1, Villeurbanne, France
- * E-mail:
| | - David M. Rouffet
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
| | - Damien Saboul
- Center of Research and Innovation on Sport, University of Lyon 1, Villeurbanne, France
- Almerys, Clermont-Ferrand, France
| | - Samuel Rota
- Center of Research and Innovation on Sport, University of Lyon 1, Villeurbanne, France
| | - Michel Clémençon
- Center of Research and Innovation on Sport, University of Lyon 1, Villeurbanne, France
| | - Christophe A. Hautier
- Center of Research and Innovation on Sport, University of Lyon 1, Villeurbanne, France
| |
Collapse
|
55
|
Muscle oxygen changes following Sprint Interval Cycling training in elite field hockey players. PLoS One 2015; 10:e0120338. [PMID: 25807517 PMCID: PMC4373931 DOI: 10.1371/journal.pone.0120338] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/21/2015] [Indexed: 12/16/2022] Open
Abstract
This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34 ± 0.14 to 5.50 ± 0.14 m.s(-1)) but not the CON group (pre = 5.37 ± 0.27 to 5.39 ± 0.30 m.s(-1)) significant changes were seen in the 30-15 IFT performance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (-7.59 ± 0.91 to -12.16 ± 2.70%); ΔHHb+HMb (35.68 ± 6.67 to 69.44 ± 26.48 μM.cm); and ΔHbO2+ MbO2 (-74.29 ± 13.82 to -109.36 ± 22.61 μM.cm). No significant differences were seen in ΔtHb (-45.81 ± 15.23 to -42.93 ± 16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes.
Collapse
|
56
|
The physiological responses to repeated upper-body sprint exercise in highly trained athletes. Eur J Appl Physiol 2015; 115:1381-91. [DOI: 10.1007/s00421-015-3128-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
57
|
Pearcey GE, Murphy JR, Behm DG, Hay DC, Power KE, Button DC. Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer. Muscle Nerve 2015; 51:569-79. [DOI: 10.1002/mus.24342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Gregory E.P. Pearcey
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - Justin R. Murphy
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - David G. Behm
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - Dean C. Hay
- Schulich School of Education; Nipissing University North Bay; Ontario Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - Duane C. Button
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
- Faculty of Medicine; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|
58
|
Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur J Appl Physiol 2014; 115:891-903. [DOI: 10.1007/s00421-014-3070-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/27/2014] [Indexed: 01/27/2023]
|
59
|
Matsuura R, Arimitsu T, Yunoki T, Kimura T, Yamanaka R, Yano T. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Biol Sport 2014; 32:15-20. [PMID: 25729145 PMCID: PMC4314599 DOI: 10.5604/20831862.1125286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Seven males performed four 10-s cycling sprints interspersed by 30 s of active recovery on a cycle ergometer in hot-dry and thermoneutral environments. Changes in rectal temperature were similar under the two ambient conditions. The mean 2-s power output over the 1st–4th sprints was significantly lower under the hot-dry condition than under the thermoneutral condition. The amplitude of the electromyogram was lower under the hot-dry condition than under the thermoneutral condition during the early phase (0–3 s) of each cycling sprint. No significant difference was observed for blood lactate concentration between the two ambient conditions. Power output at the onset of a cycling sprint during repeated cycling sprints is decreased due to heat exposure in the absence of hyperthermia.
Collapse
Affiliation(s)
- R Matsuura
- Living and Health Sciences Education, Specialized Subject Fields of Education, Graduate School of Education, Joetsu University of Education, 1 Yamayashiki-machi, Joetsu, 943-8512, Japan
| | - T Arimitsu
- Department of Sports Science, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan
| | - T Yunoki
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University Kita-11, Nishi-7, Kita-ku, Sapporo 060-0811, Japan
| | - T Kimura
- Second Division of Physical Therapy, School of Health Science, Sapporo Medical University, Minami-1, Nishi-17, Chuo-ku, Sapporo 060-8556, Japan
| | - R Yamanaka
- Department of Sports Science, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan
| | - T Yano
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University Kita-11, Nishi-7, Kita-ku, Sapporo 060-0811, Japan
| |
Collapse
|
60
|
Christian RJ, Bishop DJ, Billaut F, Girard O. Peripheral fatigue is not critically regulated during maximal, intermittent, dynamic leg extensions. J Appl Physiol (1985) 2014; 117:1063-73. [PMID: 25213635 DOI: 10.1152/japplphysiol.00988.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central motor drive to active muscles is believed to be reduced during numerous exercise tasks to prevent excessive peripheral fatigue development. The purpose of the present study was to use hypoxia to exacerbate physiological perturbations during a novel, intermittent exercise task and to explore the time-course and interplay between central and peripheral neuromuscular adjustments. On separate days, 14 healthy men performed four sets of 6 × 5 maximal-intensity, isokinetic leg extensions (1 repetition lasting ∼7 s) at 300°/s (15 and 100 s of passive rest between repetitions and sets, respectively) under normoxia (NM, fraction of inspired O2 0.21), moderate (MH, 0.14), and severe normobaric hypoxia (SH, 0.10). Neuromuscular assessments of the knee extensors were conducted before and immediately after each set. There was an interaction between time and condition on the mean peak torque produced during each set (P < 0.05). RMS/M-wave activity of the rectus femoris decreased across the four sets of exercise, but there was no difference between conditions (8.3 ± 5.1% all conditions compounded, P > 0.05). Potentiated twitch torque decreased post set 1 in all conditions (all P < 0.05) with greater reductions following each set in SH compared with NM but not MH (end-exercise reductions 41.3 ± 3.0% vs. 28.0 ± 3.2%, P < 0.05 and 32.1 ± 3.3%, P > 0.05). In conclusion, severe hypoxia exacerbates both peripheral fatigue development and performance decrements during maximal, intermittent, dynamic leg extensions. In contrast to observations with other exercise modes, during exercise involving a single muscle group the attenuation of central motor drive does not appear to independently regulate the development of peripheral muscle fatigue.
Collapse
Affiliation(s)
- Ryan J Christian
- College of Sport and Exercise Science, Victoria University, Melbourne, Australia; Aspetar - Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar;
| | - David J Bishop
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
| | - François Billaut
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia; Université Laval, Département de Kinésiologie, Québec, Québec, Canada; and
| | - Olivier Girard
- Aspetar - Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar; Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
61
|
Sidhu SK, Weavil JC, Venturelli M, Garten RS, Rossman MJ, Richardson RS, Gmelch BS, Morgan DE, Amann M. Spinal μ-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. J Physiol 2014; 592:5011-24. [PMID: 25172953 DOI: 10.1113/jphysiol.2014.275438] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the influence of group III/IV lower limb muscle afferents on the development of supraspinal fatigue and the responsiveness of corticospinal projections to an arm muscle. Eight males performed constant-load leg cycling exercise (80% peak power output) for 30 s (non-fatiguing) and to exhaustion (∼9 min; fatiguing) both under control conditions and with lumbar intrathecal fentanyl impairing feedback from μ-opioid receptor-sensitive lower limb muscle afferents. Voluntary activation (VA) of elbow flexors was assessed via transcranial magnetic stimulation (TMS) during maximum voluntary contraction (MVC) and corticospinal responsiveness was monitored via TMS-evoked potentials (MEPs) during a 25% MVC. Accompanied by a significant 5 ± 1% reduction in VA from pre- to post-exercise, elbow flexor MVC progressively decreased during the fatiguing trial (P < 0.05). By contrast, with attenuated feedback from locomotor muscle afferents, MVC and VA remained unchanged during fatiguing exercise (P > 0.3). MEPs decreased by 36 ± 6% (P < 0.05) from the start of exercise to exhaustion under control conditions, but this reduction was prevented with fentanyl blockade. Furthermore, fentanyl blockade prevented the significant increase in elbow flexor MEP observed from rest to non-fatiguing exercise under control conditions and resulted in a 14% lower corticospinal responsiveness during this short bout (P < 0.05). Taken together, in the absence of locomotor muscle fatigue, group III/IV-mediated leg muscle afferents facilitate responsiveness of the motor pathway to upper limb flexor muscles. By contrast, in the presence of cycling-induced leg fatigue, group III/IV locomotor muscle afferents facilitate supraspinal fatigue in remote muscle not involved in the exercise and disfacilitate, or inhibit, the responsiveness of corticospinal projections to upper limb muscles.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Joshua C Weavil
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Massimo Venturelli
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ryan S Garten
- Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center (VAMC), Salt Lake City, UT, USA
| | - Matthew J Rossman
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center (VAMC), Salt Lake City, UT, USA
| | - Benjamin S Gmelch
- Department of Anaesthesiology, University of Utah, Salt Lake City, UT, USA
| | - David E Morgan
- Department of Anaesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center (VAMC), Salt Lake City, UT, USA Department of Anaesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
62
|
Galvin HM, Cooke K, Sumners DP, Mileva KN, Bowtell JL. Repeated sprint training in normobaric hypoxia. Br J Sports Med 2014; 47 Suppl 1:i74-9. [PMID: 24282212 PMCID: PMC3903144 DOI: 10.1136/bjsports-2013-092826] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Repeated sprint ability (RSA) is a critical success factor for intermittent sport performance. Repeated sprint training has been shown to improve RSA, we hypothesised that hypoxia would augment these training adaptations. Thirty male well-trained academy rugby union and rugby league players (18.4±1.5 years, 1.83±0.07 m, 88.1±8.9 kg) participated in this single-blind repeated sprint training study. Participants completed 12 sessions of repeated sprint training (10×6 s, 30 s recovery) over 4 weeks in either hypoxia (13% FiO2) or normoxia (21% FiO2). Pretraining and post-training, participants completed sports specific endurance and sprint field tests and a 10×6 s RSA test on a non-motorised treadmill while measuring speed, heart rate, capillary blood lactate, muscle and cerebral deoxygenation and respiratory measures. Yo-Yo Intermittent Recovery Level 1 test performance improved after RS training in both groups, but gains were significantly greater in the hypoxic (33±12%) than the normoxic group (14±10%, p<0.05). During the 10×6 s RS test there was a tendency for greater increases in oxygen consumption in the hypoxic group (hypoxic 6.9±9%, normoxic (−0.3±8.8%, p=0.06) and reductions in cerebral deoxygenation (% changes for both groups, p=0.09) after hypoxic than normoxic training. Twelve RS training sessions in hypoxia resulted in twofold greater improvements in capacity to perform repeated aerobic high intensity workout than an equivalent normoxic training. Performance gains are evident in the short term (4 weeks), a period similar to a preseason training block.
Collapse
|
63
|
Grant MC, Watson H, Baker JS. Assessment of the upper body contribution to multiple-sprint cycling in men and women. Clin Physiol Funct Imaging 2014; 35:258-66. [PMID: 24810490 DOI: 10.1111/cpf.12159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effect of repeated cycling sprints on power profiles while assessing upper body muscle contraction. Eighteen physically active participants performed 8 × 10 s repeated sprints while muscle activity was recorded via surface electromyography (sEMG) from the brachioradialis (BR), biceps brachii (BB), triceps brachii (TB) and upper trapezius (UT). Measurements were obtained at rest, during a functional maximum contraction (FMC) while participants were positioned in a seated position on the cycle ergometer and during the repeated sprint protocol. Results suggest that mainly type I muscle fibres (MFs) are being recruited within the upper body musculature due to the submaximal and intermittent nature of the contractions. Subsequently, there is no evidence of upper body fatigue across the sprints, which is reflected in the lack of changes in the median frequency of the power spectrum (P<0·05).
Collapse
Affiliation(s)
- Marie Clare Grant
- Institute of Clinical Exercise and Health Science, Exercise Science Research Laboratory, School of Science, Faculty of Science and Technology, University of the West of Scotland, Hamilton, UK.,Division of Sport and Exercise Sciences, School of Social & Health Sciences, Abertay University, Dundee, UK
| | - Hugh Watson
- Institute of Clinical Exercise and Health Science, Exercise Science Research Laboratory, School of Science, Faculty of Science and Technology, University of the West of Scotland, Hamilton, UK
| | - Julien S Baker
- Institute of Clinical Exercise and Health Science, Exercise Science Research Laboratory, School of Science, Faculty of Science and Technology, University of the West of Scotland, Hamilton, UK
| |
Collapse
|
64
|
Racinais S, Buchheit M, Girard O. Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Front Physiol 2014; 5:142. [PMID: 24782786 PMCID: PMC3990045 DOI: 10.3389/fphys.2014.00142] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/24/2014] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.
Collapse
Affiliation(s)
- Sebastien Racinais
- Research and Education Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Martin Buchheit
- Sport Science Department, Myorobie Association Montvalezan, France
| | - Olivier Girard
- Research and Education Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital Doha, Qatar ; Department of Physiology, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
65
|
McGawley K, Bishop DJ. Oxygen uptake during repeated-sprint exercise. J Sci Med Sport 2014; 18:214-8. [PMID: 24602687 DOI: 10.1016/j.jsams.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/10/2013] [Accepted: 02/01/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Repeated-sprint ability appears to be influenced by oxidative metabolism, with reductions in fatigue and improved sprint times related to markers of aerobic fitness. The aim of the current study was to measure the oxygen uptake (VO₂) during the first and last sprints during two, 5 × 6-s repeated-sprint bouts. DESIGN Cross-sectional study. METHODS Eight female soccer players performed two, consecutive, 5 × 6-s maximal sprint bouts (B1 and B2) on five separate occasions, in order to identify the minimum time (trec) required to recover total work done (Wtot) in B1. On a sixth occasion, expired air was collected during the first and last sprint of B1 and B2, which were separated by trec. RESULTS The trec was 10.9 ± 1.1 min. The VO₂ during the first sprint was significantly less than the last sprint in each bout (p<0.001), and the estimated aerobic contribution to the final sprint (measured in kJ) was significantly related to VO₂max in both B1 (r=0.81, p=0.015) and B2 (r=0.93, p=0.001). In addition, the VO₂ attained in the final sprint was not significantly different from VO₂max in B1 (p=0.284) or B2 (p=0.448). CONCLUSIONS The current study shows that the VO₂ increases from the first to the last of 5 × 6-s sprints and that VO₂max may be a limiting factor to performance in latter sprints. Increasing V˙O₂max in team-sport athletes may enable increased aerobic energy delivery, and consequently work done, during a bout of repeated sprints.
Collapse
Affiliation(s)
- Kerry McGawley
- Institution of Health Sciences, Mid Sweden University, Sweden; School of Sport Science, Exercise and Health, The University of Western Australia, Australia.
| | - David J Bishop
- School of Sport Science, Exercise and Health, The University of Western Australia, Australia; Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Australia
| |
Collapse
|
66
|
Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol 2014; 5:24. [PMID: 24550837 PMCID: PMC3909945 DOI: 10.3389/fphys.2014.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/11/2014] [Indexed: 01/29/2023] Open
Abstract
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.
Collapse
Affiliation(s)
- Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology Kelvin Grove, Brisbane, QLD, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology Kelvin Grove, Brisbane, QLD, Australia
| | - Rob Duffield
- Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney Lindfield, Sydney, NSW, Australia
| |
Collapse
|
67
|
Hader K, Mendez-Villanueva A, Ahmaidi S, Williams BK, Buchheit M. Changes of direction during high-intensity intermittent runs: neuromuscular and metabolic responses. BMC Sports Sci Med Rehabil 2014; 6:2. [PMID: 24417863 PMCID: PMC3904414 DOI: 10.1186/2052-1847-6-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The ability to sustain brief high-intensity intermittent efforts (HIE) is meant to be a major attribute for performance in team sports. Adding changes of direction to HIE is believed to increase the specificity of training drills with respect to game demands. The aim of this study was to investigate the influence of 90°-changes of direction (COD) during HIE on metabolic and neuromuscular responses. METHODS Eleven male, team sport players (30.5 ± 3.6 y) performed randomly HIE without (straight-line, 2×[10× 22 m]) or with (2×[10× ~16.5 m]) two 90°-COD. To account for the time lost while changing direction, the distance for COD runs during HIE was individually adjusted using the ratio between straight-line and COD sprints. Players also performed 2 countermovement (CMJ) and 2 drop (DJ) jumps, during and post HIE. Pulmonary oxygen uptake (VO2), quadriceps and hamstring oxygenation, blood lactate concentration (Δ[La]b), electromyography amplitude (RMS) of eight lower limb muscles and rating of perceived exertion (RPE) were measured for each condition. RESULTS During HIE, CODs had no substantial effects on changes in VO2, oxygenation, CMJ and DJ performance and RPE (all differences in the changes rated as unclear). Conversely, compared with straight-line runs, COD-runs were associated with a possibly higher Δ[La]b (+9.7 ± 10.4%, with chances for greater/similar/lower values of 57/42/0%) and either a lower (i.e., -11.9 ± 14.6%, 2/13/85 for semitendinosus and -8.5 ± 9.3%, 1/21/78 for lateral gastrocnemius) or equivalent decrease in electromyography amplitude. CONCLUSION Adding two 90°-CODs on adjusted distance during two sets of HIE is likely to elicit equivalent decreases in CMJ and DJ height, and similar cardiorespiratory and perceptual responses, despite a lower average running speed. A fatigue-induced modification in lower limb control observed with CODs may have elicited a selective reduction of electromyography activity in hamstring muscles and may induce, in turn, a potential mechanical loss of knee stability. Therefore, changing direction during HIE, with adjusted COD running distances, might be an effective training practice 1) to manipulate some components of the acute physiological load of HIE, 2) to promote long-term COD-specific neuromuscular adaptations aimed at improving performance and knee joint stability.
Collapse
Affiliation(s)
| | | | | | | | - Martin Buchheit
- Sport Science Department, ASPIRE Academy for Sports Excellence, Doha, Qatar.
| |
Collapse
|
68
|
Dahlstrom BK, Duff WR, Poloskei S, Schaerz S, Len TK, Neary JP. Neuromuscular changes following simulated high-intensity cycling performance in moderate hypoxia. J Exerc Sci Fit 2013. [DOI: 10.1016/j.jesf.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
69
|
Caffeine increases anaerobic work and restores cycling performance following a protocol designed to lower endogenous carbohydrate availability. PLoS One 2013; 8:e72025. [PMID: 23977198 PMCID: PMC3747083 DOI: 10.1371/journal.pone.0072025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
The purpose this study was to examine the effects of caffeine ingestion on performance and energy expenditure (anaerobic and aerobic contribution) during a 4-km cycling time trial (TT) performed after a carbohydrate (CHO) availability-lowering exercise protocol. After preliminary and familiarization trials, seven amateur cyclists performed three 4-km cycling TT in a double-blind, randomized and crossover design. The trials were performed either after no previous exercise (CON), or after a CHO availability-lowering exercise protocol (DEP) performed in the previous evening, followed by either placebo (DEP-PLA) or 5 mg.kg(-1) of caffeine intake (DEP-CAF) 1 hour before the trial. Performance was reduced (-2.1%) in DEP-PLA vs CON (421.0±12.3 vs 412.4±9.7 s). However, performance was restored in DEP-CAF (404.6±17.1 s) compared with DEP-PLA, while no differences were found between DEP-CAF and CON. The anaerobic contribution was increased in DEP-CAF compared with both DEP-PLA and CON (67.4±14.91, 47. 3±14.6 and 55.3±14.0 W, respectively), and this was more pronounced in the first 3 km of the trial. Similarly, total anaerobic work was higher in DEP-CAF than in the other conditions. The integrated electromyographic activity, plasma lactate concentration, oxygen uptake, aerobic contribution and total aerobic work were not different between the conditions. The reduction in performance associated with low CHO availability is reversed with caffeine ingestion due to a higher anaerobic contribution, suggesting that caffeine could access an anaerobic "reserve" that is not used under normal conditions.
Collapse
|
70
|
Cairns SP. Holistic approaches to understanding mechanisms of fatigue in high-intensity sport. FATIGUE-BIOMEDICINE HEALTH AND BEHAVIOR 2013. [DOI: 10.1080/21641846.2013.765086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
71
|
Bowtell JL, Cooke K, Turner R, Mileva KN, Sumners DP. Acute physiological and performance responses to repeated sprints in varying degrees of hypoxia. J Sci Med Sport 2013; 17:399-403. [PMID: 23809839 DOI: 10.1016/j.jsams.2013.05.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Our aim was to determine the effects of different inspired oxygen fractions on repeated sprint performance and cardiorespiratory and neuromuscular responses, to construct a hypoxic dose response. DESIGN Nine male well-trained multi-sport athletes completed 10×6s all-out running sprints with 30s recovery in 5 conditions with different inspired oxygen fraction (FIO2: 12%, 13%, 14%, 15%, 21%). METHODS Peak running speed was measured in each sprint and electromyography data were recorded from m. vastus lateralis in parallel with heart rate and blood oxygen saturation. Cardiorespiratory response was assessed via breath by breath expired air analysis and muscle oxygenation status was evaluated via near infrared spectroscopy. RESULTS In parallel with the higher heart rate, minute ventilation, blood lactate concentration, and muscle deoxygenation; lower blood oxygen saturation, pulmonary oxygen uptake and integrated EMG (all p<0.05) were registered in all hypoxic conditions, with the greatest changes from baseline observed during the 13% trial. However, fatigue index and speed decrement were significantly greater only during the 12% vs 21% trial (p<0.05). CONCLUSIONS Physiological responses associated with performing 10×6s sprints interspersed with 30s passive recovery was incrementally greater as FIO2 decreased to 13%, yet fatigue development was significantly exacerbated relative to normoxia (FIO2: 21%) only at the 12% FIO2.
Collapse
Affiliation(s)
| | | | - Rachel Turner
- Physical Education and Sports Sciences, Limerick University, Ireland
| | - Katya N Mileva
- Sports and Exercise Science, London South Bank University, United Kingdom
| | - D Paul Sumners
- Sports and Exercise Science, London South Bank University, United Kingdom
| |
Collapse
|
72
|
Girard O, Bishop DJ, Racinais S. Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints. PLoS One 2013; 8:e61793. [PMID: 23650503 PMCID: PMC3641084 DOI: 10.1371/journal.pone.0061793] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study investigated the supraspinal processes of fatigue of the quadriceps muscle in response to repeated cycling sprints. METHODS Twelve active individuals performed 10 × 6-s "all-out" sprints on a cycle ergometer (recovery = 30 s), followed 6 min later by 5 × 6-s sprints (recovery = 30 s). Transcranial magnetic and electrical femoral nerve stimulations during brief (5-s) and sustained (30-s) isometric contractions of the knee extensors were performed before and 3 min post-exercise. RESULTS Maximal strength of the knee extensors decreased during brief and sustained contractions (~11% and 9%, respectively; P<0.001). Peripheral and cortical voluntary activation, motor evoked potential amplitude and silent period duration responses measured during briefs contractions were unaltered (P>0.05). While cortical voluntary activation declined (P<0.01) during the sustained maximal contraction in both test sessions, larger reductions occurred (P<0.05) after exercise. Lastly, resting twitch amplitude in response to both femoral nerve and cortical stimulations was largely (> 40%) reduced (P<0.001) following exercise. CONCLUSION The capacity of the motor cortex to optimally drive the knee extensors following a repeated-sprint test was shown in sustained, but not brief, maximal isometric contractions. Additionally, peripheral factors were largely involved in the exercise-induced impairment in neuromuscular function, while corticospinal excitability was well-preserved.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.
| | | | | |
Collapse
|
73
|
Oksa J, Rintamäki H, Takatalo K, Mäkinen T, Lusa S, Lindholm H, Rissanen S. Firefighters muscular recovery after a heavy work bout in the heat. Appl Physiol Nutr Metab 2013; 38:292-9. [PMID: 23537021 DOI: 10.1139/apnm-2012-0180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Occasionally firefighters need to perform very heavy bouts of work, such as smoke diving or clearing an accident site, which induce significant muscle fatigue. The time span for muscular recovery from such heavy work is not known. The purpose of this study was to evaluate firefighters' force-, neural-, metabolic-, and structural-related recovery after task-specific heavy work in the heat. Fifteen healthy firefighters (14 males and 1 female) performed a 20-min heavy work bout that simulated smoke diving and the clearance of an accident site at 35 °C. After the work, muscular recovery was evaluated by wrist flexion maximal voluntary contraction (MVC), average electromyography during MVC and during 10%MVC, rate of force production, motor response and stretch reflex responses, muscle oxygen consumption and oxygenation level, and wrist flexor muscle pennation angle. Recovery was followed for 4 h. Each of the 12 measured parameters changed significantly (p < 0.05) from those at baseline during the follow-up. Muscle oxygen consumption and the wrist flexor pennation angle remained elevated throughout the follow-up (oxygen consumption baseline, 12.9 ± 1.7 mL O2·min(-1)·(100 g)(-1); 4-h value, 17.5 ± 1.6 mL O2·min(-1)·(100 g)(-1); p < 0.05 and pennation angle baseline, 15.7 ± 0.8°; 4-h value, 17.8 ± 0.8°; p < 0.05). Muscle reoxygenation rate was elevated for up to 2 h (baseline, 2.3 ± 0.4 μmol·L(-1)·min(-1); 2-h value, 3.4 ± 0.4 μmol·L(-1)·min(-1); p < 0.05). The other 9 parameters recovered (were no longer significantly different from baseline) after 20 to 60 min. We concluded that the recovery order in main components of muscle function from fastest to slowest was force, neural, metabolic, and structural.
Collapse
Affiliation(s)
- Juha Oksa
- a Physical Work Capacity Team, Finnish Institute of Occupational Health, Aapistie 1, FIN-90220 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
74
|
Corticospinal Responses to Sustained Locomotor Exercises: Moving Beyond Single-Joint Studies of Central Fatigue. Sports Med 2013; 43:437-49. [DOI: 10.1007/s40279-013-0020-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
75
|
Billaut F, Gore CJ, Aughey RJ. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med 2013; 42:751-67. [PMID: 22845561 DOI: 10.1007/bf03262293] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60-120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, 'altitude' training (i.e. living and/or training in O(2)-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.
Collapse
Affiliation(s)
- François Billaut
- School of Sport and Exercise Science, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
76
|
Faiss R, Léger B, Vesin JM, Fournier PE, Eggel Y, Dériaz O, Millet GP. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One 2013; 8:e56522. [PMID: 23437154 PMCID: PMC3577885 DOI: 10.1371/journal.pone.0056522] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022] Open
Abstract
While intermittent hypoxic training (IHT) has been reported to evoke cellular responses via hypoxia inducible factors (HIFs) but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA) performed in normoxia via improved glycolysis and O2 utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m) or normoxia (RSN, 485 m). Before (Pre-) and after (Post-) training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1∶2) with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01) to the same extent (6% vs 7%, NS) in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4±4.8 vs. 13.0±6.2 sprints, p<0.01) but not in RSN (9.3±4.2 vs. 8.9±3.5). mRNA concentrations of HIF-1α (+55%), carbonic anhydrase III (+35%) and monocarboxylate transporter-4 (+20%) were augmented (p<0.05) whereas mitochondrial transcription factor A (−40%), peroxisome proliferator-activated receptor gamma coactivator 1α (−23%) and monocarboxylate transporter-1 (−36%) were decreased (p<0.01) in RSH only. Besides, the changes in total hemoglobin variations (Δ[tHb]) during sprints throughout RSA test increased to a greater extent (p<0.01) in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.
Collapse
Affiliation(s)
- Raphael Faiss
- ISSUL-Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
77
|
The influence of hot humid and hot dry environments on intermittent-sprint exercise performance. Int J Sports Physiol Perform 2013; 9:387-96. [PMID: 23412624 DOI: 10.1123/ijspp.2012-0247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine the effect of a hot humid (HH) compared with a hot dry (HD) environment, matched for heat stress, on intermittent-sprint performance. In comparison with HD, HH environments compromise evaporative heat loss and decrease exercise tolerance. It was hypothesized that HH would produce greater physiological strain and reduce intermittent-sprint exercise performance compared with HD. METHOD Eleven male team-sport players completed the cycling intermittent-sprint protocol (CISP) in 3 conditions, temperate (TEMP; 21.2°C ± 1.3°C, 48.6% ± 8.4% relative humidity [rh]), HH (33.7°C ± 0.5°C, 78.2% ± 2.3% rh), and HD (40.2°C ± 0.2°C, 33.1% ± 4.9% rh), with both heat conditions matched for heat stress. RESULTS All participants completed the CISP in TEMP, but 3 failed to completed the full protocol of 20 sprints in HH and HD. Peak power output declined in all conditions (P < .05) but was not different between any condition (sprints 1-14 [N = 11]: HH 1073 ± 150 W, HD 1104 ± 127 W, TEMP, 1074± 134; sprints 15-20 [N = 8]: HH 954 ± 114 W, HD 997 ± 115 W, TEMP 993 ± 94; P > .05). Physiological strain was not significantly different in HH compared with HD, but HH was higher than TEMP (P < .05). CONCLUSION Intermittent-sprint exercise performance of 40 min duration is impaired, but it is not different in HH and HD environments matched for heat stress despite evidence of a trend toward greater physiological strain in an HH environment.
Collapse
|
78
|
Billaut F, Buchheit M. Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O₂ availability. Scand J Med Sci Sports 2013; 23:e185-93. [PMID: 23362832 DOI: 10.1111/sms.12052] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
This study examined the influence of muscle deoxygenation and reoxygenation on repeated-sprint performance via manipulation of O2 delivery. Fourteen team-sport players performed 10 10-s sprints (30-s recovery) under normoxic (NM: FI O2 0.21) and acute hypoxic (HY: FI O2 0.13) conditions in a randomized, single-blind fashion and crossover design. Mechanical work was calculated and arterial O2 saturation (Sp O2 ) was estimated via pulse oximetry for every sprint. Muscle deoxyhemoglobin concentration ([HHb]) was monitored continuously by near-infrared spectroscopy. Differences between NM and HY data were analyzed for practical significance using magnitude-based inferences. HY reduced Sp O2 (-10.7 ± 1.9%, with chances to observe a higher/similar/lower value in HY of 0/0/100%) and mechanical work (-8.2 ± 2.1%; 0/0/100%). Muscle deoxygenation increased during sprints in both environments, but was almost certainly higher in HY (12.5 ± 3.1%, 100/0/0%). Between-sprint muscle reoxygenation was likely more attenuated in HY (-11.1 ± 11.9%; 2/7/91%). The impairment in mechanical work in HY was very largely correlated with HY-induced attenuation in muscle reoxygenation (r = 0.78, 90% confidence limits: 0.49; 0.91). Repeated-sprint performance is related, in part, to muscle reoxygenation capacity during recovery periods. These results extend previous findings that muscle O2 availability is important for prolonged repeated-sprint performance, in particular when the exercise is taken in hypoxia.
Collapse
Affiliation(s)
- F Billaut
- Institut national du sport du Québec, Montréal, Canada.
| | | |
Collapse
|
79
|
Abstract
1. There is a reversible decline in force production by muscles when they are contracting at or near their maximum capacity. The task-dependent nature of fatigue means that the mechanisms of fatigue may differ between different types of contractions. This paper examines how fatigue manifests during whole-body, intermittent-sprint exercise and discusses the potential muscular and neural mechanisms that underpin this fatigue. 2. Fatigue is defined as a reversible, exercise-induced reduction in maximal power output (e.g. during cycling exercise) or speed (e.g. during running exercise), even though the task can be continued. 3. The small changes in surface electromyogram (EMG), along with a lack of change in voluntary muscle activation (estimated from both percutaneous motor nerve stimulations and trans-cranial magnetic stimulation), indicate that there is little change in neural drive to the muscles following intermittent-sprint exercise. This, along with the observation that the decrease in EMG is much less than that which would be predicted from the decrease in power output, suggests that peripheral mechanisms are the predominant cause of fatigue during intermittent-sprint exercise. 4. At the muscle level, limitations in energy supply, including phosphocreatine hydrolysis and the degree of reliance on anaerobic glycolysis and oxidative metabolism, and the intramuscular accumulation of metabolic by-products, such as hydrogen ions, emerge as key factors responsible for fatigue.
Collapse
Affiliation(s)
- David J Bishop
- Institute of Sport, Exercise and Active Living, School of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
80
|
Liu K, Sun G, Li B, Jiang Q, Yang X, Li M, Li L, Qian S, Zhao L, Zhou Z, von Deneen KM, Liu Y. The impact of passive hyperthermia on human attention networks: an fMRI study. Behav Brain Res 2013; 243:220-30. [PMID: 23333840 DOI: 10.1016/j.bbr.2013.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 01/21/2023]
Abstract
An attention network test (ANT) provides a behavioral measure of the efficiency of the three attention networks (alerting, orienting and executive networks) within a single task. In the present study, we investigated the effect of passive hyperthermia on the attention network with event-related functional magnetic resonance imaging (fMRI). The behavioral results showed that passive hyperthermia of 50 °C and 40% relative humidity impaired the executive function, but showed no effect on the alerting and orienting networks. The fMRI results showed that: (i) passive hyperthermia enhanced the activity in the right superior frontal gyrus and depressed the activity in the right middle occipital gyrus, left inferior parietal lobule and left culmen in the alerting network, (ii) passive hyperthermia enhanced the activity in the temporal lobe and depressed the activity in the frontal lobe, parietal lobe and occipital lobe in the orienting network, and (iii) passive hyperthermia enhanced the activity in the dorsolateral prefrontal cortex but did not affect the activity in the anterior cingulate. We concluded that passive hyperthermia impaired executive function, especially the efficiency of resolving conflict and the negative effects of passive hyperthermia on alerting and orienting were overcome through variant regional brain activation.
Collapse
Affiliation(s)
- Kai Liu
- Department of Medical Imaging, Jinan Military General Hospital, Shandong, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hesford C, Cardinale M, Laing S, Cooper CE. NIRS measurements with elite speed skaters: comparison between the ice rink and the laboratory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 765:81-86. [PMID: 22879018 DOI: 10.1007/978-1-4614-4989-8_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Wearable, wireless near-infrared (NIR) spectrometers were used to compare changes in on-ice short-track skating race simulations over 1,500 m with a 3-min cycle ergometry test at constant power output (400 W). The subjects were six male elite short-track speed skaters. Both protocols elicited a rapid desaturation (∆TSI%) in the muscle during early stages (initial 20 s); however, asymmetry between right and left legs was seen in ΔTSI% for the skating protocol, but not for cycling. Individual differences between skaters were present in both protocols. Notably, one individual who showed a relatively small TSI% change (-10.7%, group mean = -26.1%) showed a similarly small change during the cycling protocol (-5.8%, group mean = -14.3%). We conclude that NIRS-detected leg asymmetry is due to the specific demands of short-track speed skating. However, heterogeneity between individuals is not specific to the mode of exercise. Whether this is a result of genuine differences in physiology or a reflection of differences in the optical properties of the leg remains to be determined.
Collapse
Affiliation(s)
- Catherine Hesford
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK. .,British Olympic Medical Institute, University College London Hospital, London, UK.
| | - Marco Cardinale
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Stewart Laing
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Chris E Cooper
- British Olympic Medical Institute, University College London Hospital, London, UK
| |
Collapse
|
82
|
Electromyography normalization methods for high-velocity muscle actions: review and recommendations. J Appl Biomech 2012; 29:600-8. [PMID: 23270917 DOI: 10.1123/jab.29.5.600] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electromyograms used to assess neuromuscular demand during high-velocity tasks require normalization to aid interpretation. This paper posits that, to date, methodological approaches to normalization have been ineffective and have limited the application of electromyography (EMG). There is minimal investigation seeking alternative normalization methods, which must be corrected to improve EMG application in sports. It is recognized that differing normalization methods will prevent cross-study comparisons. Users of EMG should aim to identify normalization methods that provide good reliability and a representative measure of muscle activation. The shortcomings of current normalization methods in high-velocity muscle actions assessment are evident. Advances in assessing alternate normalization methods have been done in cycling and sprinting. It is advised that when normalizing high-intensity muscle actions, isometric methods are used with caution and a dynamic alternative, where the muscle action is similar to that of the task is preferred. It is recognized that optimal normalization methods may be muscle and task dependent.
Collapse
|
83
|
Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One 2012; 7:e51977. [PMID: 23284836 PMCID: PMC3524088 DOI: 10.1371/journal.pone.0051977] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
The physiological equivalents of power output maintenance and recovery during repeated-sprint exercise (RSE) remain to be fully elucidated. In an attempt to improve our understanding of the determinants of RSE performance we therefore aimed to determine its recovery following exhaustive exercise (which affected intramuscular and neural factors) concomitantly with those of intramuscular concentrations of adenosine triphosphate [ATP], phosphocreatine [PCr] and pH values and electromyography (EMG) activity (a proxy for net motor unit activity) changes. Eight young men performed 10, 6-s all-out sprints on a cycle ergometer, interspersed with 30 s of recovery, followed, after 6 min of passive recovery, by five 6-s sprints, again interspersed by 30 s of passive recovery. Biopsies of the vastus lateralis were obtained at rest, immediately after the first 10 sprints and after 6 min of recovery. EMG activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Total work (TW), [ATP], [PCr], pH and EMG amplitude decreased significantly throughout the first ten sprints (P<0.05). After 6 min of recovery, TW during sprint 11 recovered to 86.3±7.7% of sprint 1. ATP and PCr were resynthesized to 92.6±6.0% and 85.3±10.3% of the resting value, respectively, but muscle pH and EMG amplitude remained depressed. PCr resynthesis was correlated with TW done in sprint 11 (r = 0.79, P<0.05) and TW done during sprints 11 to 15 (r = 0.67, P<0.05). There was a ∼2-fold greater decrease in the TW/EMG ratio in the last five sprints (sprint 11 to 15) than in the first five sprints (sprint 1 to 5) resulting in a disproportionate decrease in mechanical power (i.e., TW) in relation to EMG. Thus, we conclude that the inability to produce power output during repeated sprints is mostly mediated by intramuscular fatigue signals probably related with the control of PCr metabolism.
Collapse
|
84
|
Girard O, Bishop DJ, Racinais S. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol 2012; 113:359-69. [PMID: 22743981 DOI: 10.1007/s00421-012-2444-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/13/2012] [Indexed: 11/24/2022]
Abstract
This study investigated the effect of hot conditions on repeated sprint cycling performance and post-exercise alterations in isometric knee extension function. Twelve physically active participants performed 10 × 6-s "all-out" sprints on a cycle ergometer (recovery = 30 s), followed 6 min later by 5 × 6-s sprints (recovery = 30 s) in either a neutral (24 °C/30 %rH) or a hot (35 °C/40 %rH) environment. Neuromuscular tests including voluntary and electrically evoked isometric contractions of the knee extensors were performed before and after exercise. Average core temperature during exercise was higher (38.0 ± 0.1 vs. 37.7 ± 0.1 °C, respectively; P < 0.05) in hot versus neutral environments. Peak power output decreased (-17.9 % from sprint 1 to sprint 10 and -17.0 % from sprint 11 to sprint 15; P < 0.001) across repetitions. Average peak power output during the first ten sprints was higher (+3.1 %; P < 0.01) in the hot ambient temperature condition. Maximal strength (-12 %) and rate of force development (-15 to -26 %, 30-200 ms from the onset of contraction) decreased (P < 0.001) during brief contractions after exercise, irrespectively of the ambient temperature. During brief maximal contractions, changes in voluntary activation (~80 %) were not affected by exercise or temperature. Voluntary activation declined (P < 0.01) during the sustained contraction, with these reductions being more pronounced (P < 0.05) after exercise but not affected by the ambient temperature. Resting twitch amplitude declined (P < 0.001) by ~42 %, independently of the ambient temperature. In conclusion, heat exposure has no effect on the pattern and the extent of isometric knee extensor fatigue following repeated cycling sprints in the absence of hyperthermia.
Collapse
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.
| | | | | |
Collapse
|
85
|
Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol 2012; 3:142. [PMID: 22629249 PMCID: PMC3355468 DOI: 10.3389/fphys.2012.00142] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/27/2012] [Indexed: 12/22/2022] Open
Abstract
The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being.
Collapse
Affiliation(s)
- Gregory C Bogdanis
- Department of Physical Education and Sports Science, University of Athens Athens, Greece
| |
Collapse
|
86
|
Gomes PSC, Matsuura C, Bhambhani YN. Effects of hypoxia on cerebral and muscle haemodynamics during knee extensions in healthy subjects. Eur J Appl Physiol 2012; 113:13-23. [PMID: 22544440 DOI: 10.1007/s00421-012-2408-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/15/2012] [Indexed: 11/28/2022]
Abstract
A hypoxic model was used to investigate changes in localized cerebral and muscle haemodynamics during knee extension (KE) in healthy individuals. Thirty-one young healthy volunteers performed one set of KE until failure under hypoxia (14 % O(2)) or normoxia (21 % O(2)) at 50, 75 or 100 % of 1 repetition maximum, in random order, on three occasions. Prefrontal cerebral and vastus lateralis muscle oxygenation and blood volume (Cox, Mox, Cbv and Mbv, respectively) were recorded simultaneously by near-infrared spectroscopy. Hypoxia induced significant declines in Cox [-0.017 ± 0.016 optical density (OD) units] and Mox (-0.014 ± 0.026 OD units) and increases in Cbv (0.017 ± 0.027 OD units) and Mbv (0.016 ± 0.023 OD units) at rest. Hypoxia significantly reduced total work (TW) performed during KE at each exercise intensity. Cox, Cbv, Mox, and Mbv changes during KE did not differ between normoxia and hypoxia. Correlations between TW done and Cox changes under normoxia (r = 0.04, p = 0.182) and hypoxia (r = 0.05, p = 0.122) were not significant. However, TW was significantly correlated with Mox under both normoxia (R (2) = 0.24, p = 0.000) and hypoxia (R (2) = 0.15, p = 0.004). Since changes in Cox and Mox reflect alterations in the balance between oxygen delivery and extraction in these tissues, which, in the brain, is an index of neuronal activation, we conclude that: (1) limitation of KE performance was mediated peripherally under both normoxia and hypoxia, with no additional effect of hypoxia, and (2) because of the low common variance with Mox additional intramuscular factors likely play a role in limiting KE performance.
Collapse
Affiliation(s)
- Paulo Sergio Chagas Gomes
- Laboratório Crossbridges, Programa de Pós-graduação em Ciências do Exercício e do Esporte, Universidade Gama Filho, Rua Manoel Vitorino 553, Piedade, Rio de Janeiro, RJ 20748-900, Brazil.
| | | | | |
Collapse
|
87
|
Racinais S, Girard O. Neuromuscular failure is unlikely to explain the early exercise cessation in hot ambient conditions. Psychophysiology 2012; 49:853-65. [DOI: 10.1111/j.1469-8986.2012.01360.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Racinais
- Research and Education Centre; ASPETAR-Qatar Orthopaedic and Sports Medicine Hospital; Doha; Qatar
| | - Olivier Girard
- Research and Education Centre; ASPETAR-Qatar Orthopaedic and Sports Medicine Hospital; Doha; Qatar
| |
Collapse
|
88
|
Hot ambient conditions do not alter intermittent cycling sprint performance. J Sci Med Sport 2012; 15:148-52. [DOI: 10.1016/j.jsams.2011.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/14/2011] [Accepted: 07/30/2011] [Indexed: 11/23/2022]
|
89
|
Tissue Oxygenation in Men and Women During Repeated-Sprint Exercise. Int J Sports Physiol Perform 2012; 7:59-67. [DOI: 10.1123/ijspp.7.1.59] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose:To understand the role of O2 utilization in the sex differences of fatigue during intermittent activity, we compared the cerebral (prefrontal lobe) and muscle (vastus lateralis) oxygenation of men and women during repeated-sprint exercise (RSE).Methods:Ten men and 10 women matched for initial-sprint mechanical work performed ten, 10 s cycle sprints (with 30 s of rest) under normoxic (NM: 21% FIO2) and acute hypoxic (HY: 13% FIO2) conditions in a randomized single-blind and crossover design. Mechanical work was calculated and arterial O2 saturation (SpO2) was estimated via pulse oximetry during every sprint. Cerebral and muscle oxy- (O2Hb) and deoxy-hemoglobin (HHb) were monitored continuously by near-infrared spectroscopy.Results:Compared with NM, work decrement was accentuated (P = 0.01) in HY for both men (–16.4 ± 10.3%) and women (–16.8 ± 9.0%). This was associated with lower SpO2 and lower cerebral Δ[O2Hb] in both sexes (–13.6 ± 7.5%, P = .008, and –134.5 ± 73.8%, P = .003, respectively). These HY-induced changes were nearly identical in these men and women matched for initial-sprint work. Muscle Δ[HHb] increased 9-fold (P = .009) and 5-fold (P = .02) in men and women, respectively, and plateaued. This muscle deoxygenation was not exacerbated in HY.Conclusions:Results indicate that men and women matched for initial-sprint work experience similar levels of fatigue and systemic, cerebral, and peripheral adjustments during RSE performed in NM and HY. These data suggest that cerebral deoxygenation imposes a limitation to repeated-sprint performance.
Collapse
|
90
|
Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med 2011; 41:741-56. [PMID: 21846163 DOI: 10.2165/11590560-000000000-00000] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Short-duration sprints, interspersed with brief recoveries, are common during most team sports. The ability to produce the best possible average sprint performance over a series of sprints (≤10 seconds), separated by short (≤60 seconds) recovery periods has been termed repeated-sprint ability (RSA). RSA is therefore an important fitness requirement of team-sport athletes, and it is important to better understand training strategies that can improve this fitness component. Surprisingly, however, there has been little research about the best training methods to improve RSA. In the absence of strong scientific evidence, two principal training theories have emerged. One is based on the concept of training specificity and maintains that the best way to train RSA is to perform repeated sprints. The second proposes that training interventions that target the main factors limiting RSA may be a more effective approach. The aim of this review (Part II) is to critically analyse training strategies to improve both RSA and the underlying factors responsible for fatigue during repeated sprints (see Part I of the preceding companion article). This review has highlighted that there is not one type of training that can be recommended to best improve RSA and all of the factors believed to be responsible for performance decrements during repeated-sprint tasks. This is not surprising, as RSA is a complex fitness component that depends on both metabolic (e.g. oxidative capacity, phosphocreatine recovery and H+ buffering) and neural factors (e.g. muscle activation and recruitment strategies) among others. While different training strategies can be used in order to improve each of these potential limiting factors, and in turn RSA, two key recommendations emerge from this review; it is important to include (i) some training to improve single-sprint performance (e.g. 'traditional' sprint training and strength/power training); and (ii) some high-intensity (80-90% maximal oxygen consumption) interval training to best improve the ability to recover between sprints. Further research is required to establish whether it is best to develop these qualities separately, or whether they can be developed concurrently (without interference effects). While research has identified a correlation between RSA and total sprint distance during soccer, future studies need to address whether training-induced changes in RSA also produce changes in match physical performance.
Collapse
Affiliation(s)
- David Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), School of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
91
|
Morin JB, Dupuy J, Samozino P. Performance and fatigue during repeated sprints: what is the appropriate sprint dose? J Strength Cond Res 2011; 25:1918-24. [PMID: 21701281 DOI: 10.1519/jsc.0b013e3181e075a3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When testing the ability of sportsmen to repeat maximal intensity efforts, or when designing specific training exercises to improve it, fatigue during repeated sprints is usually investigated through a number of sprints identical for all subjects, which induces a high intersubject variability in performance decrement in a typical heterogeneous group of athletes (e.g., team sport group, students, and research protocol volunteers). Our aim was to quantify the amplitude of the reduction in this variability when individualizing the sprint dose, that is, when requiring subjects to perform the number of sprints necessary to reach a target level of performance decrement. Fifteen healthy men performed 6-second sprints on a cycle ergometer with 24 seconds of rest until exhaustion or until 20 repetitions in case no failure occurred. Peak power output (PPO) was measured and a fatigue index (FI) computed. The variability in PPO decrement was compared between the 10th sprint and the sprint at which subject reached the target FI of 10%. Individual FI values after the 10th sprint were 14.6 ± 6.9 vs. 11.1 ± 1.2%, when individualizing the sprint dose, which corresponded to coefficients of interindividual variability of ∼47.3 and ∼10.8%, respectively. Individualizing the sprint dose substantially reduced intersubject variability in performance decrement, enabling a more standardized state of fatigue in repeated-sprints protocols designed to induce fatigue and test or train this specific repeated-sprint ability in a heterogeneous group of athletes. A direct feedback on the values of performance parameters is necessary between each sprint for the experimenter to set this individualized sprint dose.
Collapse
Affiliation(s)
- Jean-Benoît Morin
- Laboratory of Exercise Physiology, University of Saint-Etienne, PRES Lyon, France.
| | | | | |
Collapse
|
92
|
Bogdanis GC, Papaspyrou A, Souglis AG, Theos A, Sotiropoulos A, Maridaki M. Effects of two different half-squat training programs on fatigue during repeated cycling sprints in soccer players. J Strength Cond Res 2011; 25:1849-56. [PMID: 21572356 DOI: 10.1519/jsc.0b013e3181e83a1e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compared the effects of two different half-squat training programs on the repeated-sprint ability of soccer players during the preseason. Twenty male professional soccer players were divided into 2 groups: One group (S-group) performed 4 sets of 5 repetitions with 90% of their 1-repetition maximum (1RM), and the other group (H-group) performed 4 sets of 12 repetitions with 70% of 1RM, 3 times per week for 6 weeks, in addition to their common preseason training program. Repeated-sprint ability was assessed before and after training by 10 × 6-second cycle ergometer sprints separated by 24 seconds of passive recovery. Maximal half-squat strength increased significantly in both groups (p < 0.01), but this increase was significantly greater in the S-group compared with the H-group (17.3 ± 1.9 vs. 11.0 ± 1.9%, p < 0.05). Lean leg volume (LLV) increased only in the H-group. Total work over the 10 sprints improved in both groups after training, but this increase was significantly greater in the second half (8.9 ± 2.6%) compared with the first half of the sprint test (3.2 ± 1.7%) only in the S-group. Mean power output (MPO) expressed per liter of LLV was better maintained during the last 6 sprints posttraining only in the S-group, whereas there was no change in MPO per LLV in the H-group over the 10 sprints. These results suggest that resistance training with high loads is superior to a moderate-load program, because it increases strength without a change in muscle mass and also results in a greater improvement in repeated sprint ability. Therefore, resistance training with high loads may be preferable when the aim is to improve maximal strength and fatigue during sprinting in professional soccer players.
Collapse
Affiliation(s)
- Gregory C Bogdanis
- Department of Sports Medicine and Biology of Physical Activity, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
93
|
Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med 2011; 41:673-94. [PMID: 21780851 DOI: 10.2165/11590550-000000000-00000] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Short-duration sprints (<10 seconds), interspersed with brief recoveries (<60 seconds), are common during most team and racket sports. Therefore, the ability to recover and to reproduce performance in subsequent sprints is probably an important fitness requirement of athletes engaged in these disciplines, and has been termed repeated-sprint ability (RSA). This review (Part I) examines how fatigue manifests during repeated-sprint exercise (RSE), and discusses the potential underpinning muscular and neural mechanisms. A subsequent companion review to this article will explain a better understanding of the training interventions that could eventually improve RSA. Using laboratory and field-based protocols, performance analyses have consistently shown that fatigue during RSE typically manifests as a decline in maximal/mean sprint speed (i.e. running) or a decrease in peak power or total work (i.e. cycling) over sprint repetitions. A consistent result among these studies is that performance decrements (i.e. fatigue) during successive bouts are inversely correlated to initial sprint performance. To date, there is no doubt that the details of the task (e.g. changes in the nature of the work/recovery bouts) alter the time course/magnitude of fatigue development during RSE (i.e. task dependency) and potentially the contribution of the underlying mechanisms. At the muscle level, limitations in energy supply, which include energy available from phosphocreatine hydrolysis, anaerobic glycolysis and oxidative metabolism, and the intramuscular accumulation of metabolic by-products, such as hydrogen ions, emerge as key factors responsible for fatigue. Although not as extensively studied, the use of surface electromyography techniques has revealed that failure to fully activate the contracting musculature and/or changes in inter-muscle recruitment strategies (i.e. neural factors) are also associated with fatigue outcomes. Pending confirmatory research, other factors such as stiffness regulation, hypoglycaemia, muscle damage and hostile environments (e.g. heat, hypoxia) are also likely to compromise fatigue resistance during repeated-sprint protocols.
Collapse
Affiliation(s)
- Olivier Girard
- ASPETAR Qatar Orthopaedic and Sports Medicine Hospital, Research and Education Centre, Doha, Qatar.
| | | | | |
Collapse
|
94
|
Morin JB, Tomazin K, Samozino P, Edouard P, Millet GY. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior. Eur J Appl Physiol 2011; 112:1419-28. [DOI: 10.1007/s00421-011-2103-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/26/2011] [Indexed: 11/29/2022]
|
95
|
Chtourou H, Zarrouk N, Chaouachi A, Dogui M, Behm DG, Chamari K, Hug F, Souissi N. Diurnal variation in Wingate-test performance and associated electromyographic parameters. Chronobiol Int 2011; 28:706-13. [PMID: 21793694 DOI: 10.3109/07420528.2011.596295] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study was designed to evaluate time-of-day effects on electromyographic (EMG) activity changes during a short-term intense cycling exercise. In a randomized order, 22 male subjects were asked to perform a 30-s Wingate test against a constant braking load of 0.087 kg·kg(-1) body mass during two experimental sessions, which were set up either at 07:00 or 17:00 h. During the test, peak power (P(peak)), mean power (P(mean)), fatigue index (FI; % of decrease in power output throughout the 30 s), and evolution of power output (5-s span) throughout the exercise were analyzed. Surface EMG activity was recorded in both the vastus lateralis and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root mean square (RMS) and mean power frequency (MPF) of EMG were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Resting core temperature, P(peak), P(mean), and FI were significantly higher (p < .05) in the evening than morning test (e.g., P(peak): 11.6 ± 0.8 vs. 11.9 ± 1 W·kg(-1)). The results showed that power output decreased following two phases. During the first phase (first 20s), power output decreased rapidly and values were higher (p < .05) in the evening than in the morning. During the second phase (last 10s), power decreased slightly and appeared independent of the time of day of testing. This power output decrease was paralleled by evolution of the MPF and NME. During the first phase, NME and MPF were higher (p < .05) in the evening. During the second phase, NME and MPF were independent of time of day. In addition, no significant differences were noticed between 7:00 and 17:00 h for EMG RMS during the whole 30 s. Taken together, these results suggest that peripheral mechanisms (i.e., muscle power and fatigue) are more likely the cause of the diurnal variation of the Wingate-test performance rather than central mechanisms.
Collapse
Affiliation(s)
- Hamdi Chtourou
- Research Laboratory Sports Performance Optimisation, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
96
|
BILLAUT FRANÇOIS, BISHOP DAVIDJ, SCHAERZ SIMON, NOAKES TIMOTHYD. Influence of Knowledge of Sprint Number on Pacing during Repeated-Sprint Exercise. Med Sci Sports Exerc 2011; 43:665-72. [DOI: 10.1249/mss.0b013e3181f6ee3b] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Abstract
A well designed diet is the foundation upon which optimal training and performance can be developed. However, as long as competitive sports have existed, athletes have attempted to improve their performance by ingesting a variety of substances. This practice has given rise to a multi-billion-dollar industry that aggressively markets its products as performance enhancing, often without objective, scientific evidence to support such claims. While a number of excellent reviews have evaluated the performance-enhancing effects of most dietary supplements, less attention has been paid to the performance-enhancing claims of dietary supplements in the context of team-sport performance. Dietary supplements that enhance some types of athletic performance may not necessarily enhance team-sport performance (and vice versa). Thus, the first aim of this review is to critically evaluate the ergogenic value of the most common dietary supplements used by team-sport athletes. The term dietary supplements will be used in this review and is defined as any product taken by the mouth, in addition to common foods, that has been proposed to have a performance-enhancing effect; this review will only discuss substances that are not currently banned by the World Anti-Doping Agency. Evidence is emerging to support the performance-enhancing claims of some, but not all, dietary supplements that have been proposed to improve team-sport-related performance. For example, there is good evidence that caffeine can improve single-sprint performance, while caffeine, creatine and sodium bicarbonate ingestion have all been demonstrated to improve multiple-sprint performance. The evidence is not so strong for the performance-enhancing benefits of β-alanine or colostrum. Current evidence does not support the ingestion of ribose, branched-chain amino acids or β-hydroxy-β-methylbutyrate, especially in well trained athletes. More research on the performance-enhancing effects of the dietary supplements highlighted in this review needs to be conducted using team-sport athletes and using team-sport-relevant testing (e.g. single- and multiple-sprint performance). It should also be considered that there is no guarantee that dietary supplements that improve isolated performance (i.e. single-sprint or jump performance) will remain effective in the context of a team-sport match. Thus, more research is also required to investigate the effects of dietary supplements on simulated or actual team-sport performance. A second aim of this review was to investigate any health issues associated with the ingestion of the more commonly promoted dietary supplements. While most of the supplements described in the review appear safe when using the recommended dose, the effects of higher doses (as often taken by athletes) on indices of health remain unknown, and further research is warranted. Finally, anecdotal reports suggest that team-sport athletes often ingest more than one dietary supplement and very little is known about the potential adverse effects of ingesting multiple supplements. Supplements that have been demonstrated to be safe and efficacious when ingested on their own may have adverse effects when combined with other supplements. More research is required to investigate the effects of ingesting multiple supplements (both on performance and health).
Collapse
Affiliation(s)
- David Bishop
- Institute of Sport, Exercise and Active Living (ISEAL) and School of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
98
|
Girard O, Racinais S, Kelly L, Millet GP, Brocherie F. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol 2011; 111:2547-55. [DOI: 10.1007/s00421-011-1884-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 02/18/2011] [Indexed: 11/25/2022]
|
99
|
Dietrich A, Audiffren M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev 2011; 35:1305-25. [PMID: 21315758 DOI: 10.1016/j.neubiorev.2011.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/16/2022]
Abstract
We present here a comprehensive, neurocognitive model to account for the psychological consequences of acute exercise. There is a substantial amount of disparate research and the proposed mechanistic explanation meaningfully integrates this body of brain and behavioral data into a single, unified model. The model's central feature is a cascading, two-step process. First, exercise engages arousal mechanisms in the reticular-activating system. This activation process, which involves a number of neurotransmitter systems, has several interrelated effects on cognition and emotion but, in general, has evolved to facilitate implicit information processing. Second, exercise disengages the higher-order functions of the prefrontal cortex. This deactivation process, which is caused in part by resource limitations, also has several interrelated effects but, in general, has evolved to keep the inefficient explicit system and unhelpful emotional processes from compromising the implicit system's functioning when optimal motor execution is needed most. In this article, we review evidence in support of this reticular-activating hypofrontality (RAH) model of acute exercise and place it into a larger evolutionary context.
Collapse
Affiliation(s)
- Arne Dietrich
- Department of Social and Behavioral Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| | | |
Collapse
|
100
|
Matsuura C, Gomes PSC, Haykowsky M, Bhambhani Y. Cerebral and muscle oxygenation changes during static and dynamic knee extensions to voluntary fatigue in healthy men and women: a near infrared spectroscopy study. Clin Physiol Funct Imaging 2010; 31:114-23. [PMID: 21029329 DOI: 10.1111/j.1475-097x.2010.00986.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the study was to examine the changes in cerebral and muscle blood volume (Cbv, Mbv) and oxygenation (Cox, Mox) during static and dynamic knee extensions to fatigue in men (N=10; 29±9 years) and women (N=14; 27±8 years). After assessment of 1 repetition maximum (1RM) during unilateral knee extensions with the dominant limb, each subject exercised at 50%, 75% and 100% of 1 RM in random order on separate occasions. Simultaneous changes in Cbv, Cox, Mbv and Mox from the contralateral prefrontal lobe and the dominant limb were measured by near infrared spectroscopy. During all three contractions, Cbv and Cox increased while Mbv and Mox decreased until fatigue in both genders. There were no signs of levelling off or decline in Cbv and Cox during any of these contractions, implying that there was no reduction in cerebral neuronal activation. Conversely, there was a rapid decline in Mbv and Mox during the early stages of the contractions, with a plateau or slight increase towards the end. The respective delta values at 50%, 75% and 100% of 1RM for Cbv (0·088 versus 0·062 versus 0·070), Cox (0·042 versus 0·033 versus 0·038), Mbv (-0·225 versus -0·198 versus -0·196), and Mox (-0·169 versus -0·146 versus -0·158) were not significantly different in the total group (N=24). These findings suggest that fatigue during resistance exercise lasting up to 60 s is mediated peripherally because of reduced blood volume and oxygen availability and is independent of the type and intensity of muscle contraction and gender.
Collapse
Affiliation(s)
- Cristiane Matsuura
- Escola de Educação Física do Exército, Exército Brasileiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|