51
|
Nakajima H, Goto H, Azuma YT, Fujita A, Takeuchi T. Functional interactions between the SK2 channel and the nicotinic acetylcholine receptor in enteric neurons of the guinea pig ileum. J Neurochem 2007; 103:2428-38. [PMID: 17953675 DOI: 10.1111/j.1471-4159.2007.04960.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurotransmitter acetylcholine (ACh) plays a critical role in gastrointestinal function. The role of the small conductance Ca2+-activated K+ (SK) channel in ACh release was examined using myenteric plexus preparations of guinea pig ileum. Apamin, an inhibitor of the SK channel, significantly enhanced nicotine-induced ACh release, but neither electrical field stimulation- nor 5-hydroxytryptamine-induced ACh release, suggesting that SK channels might be selectively involved in the regulation of nicotine-induced ACh release. Therefore, we investigated the distribution of SK2 and SK3 subunits and the interaction between SK2 channels and nicotinic ACh receptors (nAChRs) in the guinea pig ileum. The immunoreactivity of SK2 subunits was located in enteric neuronal cells. Furthermore, SK2-immunoreactive cells stained with an antibody for choline acetyltransferase, a marker for cholinergic neurons, and with an antibody for the alpha3/5 subunits of nAChR. In contrast, immunoreactivity of SK3 subunits was not found in enteric neurons. A co-immunoprecipitation assay with Triton X-100-soluble membrane fractions prepared from the ileum revealed an association of the SK2 subunit with the alpha3/5 subunits of nAChR. These results suggest that SK2 channels negatively regulate the excitation of enteric neurons via functional interactions with nAChRs.
Collapse
Affiliation(s)
- Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Naka-ku, Sakai, Japan
| | | | | | | | | |
Collapse
|
52
|
Streutker CJ, Huizinga JD, Driman DK, Riddell RH. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 2007; 50:176-89. [PMID: 17222246 DOI: 10.1111/j.1365-2559.2006.02493.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ramon y Cajal (1852-1934) is considered to be one of the founders of the field of neuroscience. In 1911, he described interstitial neurons in the gut, noting that they were primitive accessory components that perhaps modify smooth muscle contraction, themselves subject to regulation from principle neurons. The accuracy of his description of their appearance and activities has led to these cells now being called the interstitial cells of Cajal (ICC). Thuneberg and Faussone-Pellegrini were instrumental in bringing these cells to the attention of gastroenterologists and pathologists in the early 1980s. Subsequently, the development of antibodies to c-kit has allowed routine identification of the ICC in pathology specimens. c-Kit is a transmembrane protein kinase which has as ligand stem cell factor and is involved in cell development in a variety of cell lineages. In the gut musculature, ICC and mast cells are the only cells that have prominent c-kit expression. The ICC are now known to play an important role in gut motility and absent or disordered ICC networks have been identified in a variety of motility disorders.
Collapse
Affiliation(s)
- C J Streutker
- Division of Pathology, St Michael's Hospital and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
53
|
Kito Y, Suzuki H. Role of K+ channels in the regulation of electrical spontaneous activity of the mouse small intestine. Pflugers Arch 2007; 455:505-14. [PMID: 17602242 DOI: 10.1007/s00424-007-0306-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/25/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
The roles of K(+) channels in the regulation of slow waves and pacemaker potentials recorded from mouse small intestine were investigated using intracellular recording techniques in the presence of nifedipine. Iberiotoxin (0.1 microM) and charybdotoxin (0.1 microM) had no effect on the generation of slow waves recorded from circular smooth muscle cells. Apamin (0.3 microM) depolarized the membrane and decreased the amplitude of early, rapid repolarization of slow waves, without altering the amplitude, frequency, duration, or maximum rate of rise of the initial upstroke phase (dV/dt(max)). The early, rapid repolarization was enhanced by phenylephrine (15 microM). 4-Aminopyridine (4-AP, 5 mM) depolarized the membrane and increased the amplitude and dV/dt(max) of slow waves. Both apamin and 4-AP depolarized the membrane and decreased the amplitude and dV/dt(max) of pacemaker potentials recorded from interstitial cells of Cajal distributed in the myenteric region (ICC-MY). Membrane depolarization with a high-K(+) solution decreased the amplitude and dV/dt(max) of slow waves. These results suggest that apamin-sensitive K(+) conductance and 4-AP-sensitive K(+) conductance may contribute to the resting membrane potential of circular smooth muscle cells. The early, rapid repolarization of slow waves appears to result from the opening of apamin-sensitive K(+) conductance. 4-AP-sensitive K(+) conductance is likely to be activated in the initial upstroke component (primary component) of slow waves. In ICC-MY, membrane depolarization induced by apamin or 4-AP may result from electrotonic spread from smooth muscle cells.
Collapse
Affiliation(s)
- Yoshihiko Kito
- Department of Physiology, Nagoya City University Medical School, Nagoya, Japan.
| | | |
Collapse
|
54
|
El-Yazbi AF, Cho WJ, Boddy G, Daniel EE. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine. Br J Pharmacol 2005; 145:1017-26. [PMID: 15937515 PMCID: PMC1576236 DOI: 10.1038/sj.bjp.0706289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1(-/-)) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1(-/-) mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1(-/-) mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10(-4) M), but relaxation of Cav1(-/-) animals was affected much less. Also, Cav1(-/-) mice tissues showed reduced relaxation responses to sodium nitroprusside (100 microM) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3': 5'-cyclic monophosphate (100 microM). Apamin (10(-6) M) significantly reduced relaxations to EFS in NANC conditions in Cav1(-/-) mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Woo-Jung Cho
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Edwin E Daniel
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
55
|
Okishio Y, Takeuchi T, Fujita A, Suenaga K, Fujinami K, Munakata S, Hata F. Examination of the role of cholinergic myenteric neurons with the impairment of neural reflexes in the ileum of c-kit mutant mice. J Smooth Muscle Res 2005; 41:49-60. [PMID: 15855739 DOI: 10.1540/jsmr.41.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study showed that impairment of ascending and descending neural reflexes in the ileum of the c-kit mutant, W/W(V), mice is due to a loss of interstitial cells of Cajal present at the myenteric plexus region (ICC-MY) in the mutant. In the present study, cholinergic interneurons were thought to be involved in these pathways, since hexamethonium, an antagonist of the nicotinic ACh receptor, significantly inhibited both neural reflexes in wild type mice. Therefore, we examined whether the loss of ICC-MY affects cholinergic interneurons involved in these pathways. Immunohistochemistry with anti-choline acetyltransferase revealed that there was no difference in the numbers of immunopositive cells in the myenteric plexus region between the wild type and mutant mice. In addition, there was no difference in the extent of spontaneous and EFS-evoked ACh release from longitudinal muscle with myenteric plexus preparations between the wild type and mutant mice. Exogenously added nicotine induced contraction or relaxation of ileal circular muscle in the absence or presence of atropine, respectively, to a similar extent in both the wild type and mutant mice. These results suggest that loss of ICC-MY resulted in an impairment of the ascending and descending reflex pathways at the step before activation of cholinergic interneurons.
Collapse
Affiliation(s)
- Yutaka Okishio
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Okishio Y, Takeuchi T, Fujita A, Suenaga K, Fujinami K, Munakata S, Takewaki T, Hata F. Ascending contraction and descending relaxation in the distal colon of mice lacking interstitial cells of Cajal. J Smooth Muscle Res 2005; 41:163-74. [PMID: 16006749 DOI: 10.1540/jsmr.41.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently an essential role of interstitial cells of Cajal (ICC) within myenteric plexus (ICC-MY) was suggested in ascending contraction and descending relaxation in the mouse ileum. The role of ICC in these neural reflexes was examined in the distal colonic segments prepared from the wild type and c-kit mutant, W/W(V) mice, in the present study. Localized distension of the segments from the wild type mice by using a small balloon resulted in ascending contraction and descending relaxation. In the segments from the mutant mice, localized distension also induced these neural reflexes similar to those observed in the wild type mice. Immunohistochemical examination demonstrated that ICC-MY and ICC present in muscle layers (ICC-IM) were severely disrupted in the mutant mouse, but only ICC, present within submucosal plexus (ICC-SMP), remained unchanged. In the small strips with ICC-SMP absent prepared from the mutant mouse, electrical field stimulation induced contraction or relaxation in the absence or presence of atropine, respectively. It was suggested that ICC have no important role in the ascending and descending neural reflexes in the mouse distal colon, this is in direct contrast to the role of ICC-MY in the ileum.
Collapse
Affiliation(s)
- Yutaka Okishio
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Takeuchi T, Fujinami K, Goto H, Fujita A, Taketo MM, Manabe T, Matsui M, Hata F. Roles of M2 and M4 Muscarinic Receptors in Regulating Acetylcholine Release From Myenteric Neurons of Mouse Ileum. J Neurophysiol 2005; 93:2841-8. [PMID: 15574798 DOI: 10.1152/jn.00986.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the subtype of presynaptic muscarinic receptors associated with inhibition of acetylcholine (ACh) release in the mouse small intestine. We measured endogenous ACh released from longitudinal muscle with myenteric plexus (LMMP) preparations obtained from M1–M5 receptor knockout (KO) mice. Electrical field stimulation (EFS) increased ACh release in all LMMP preparations obtained from M1–M5 receptor single KO mice. The amounts of ACh released in all preparations were equal to that in the wild-type mice. Atropine further increased EFS-induced ACh release in the wild-type mice. Unexpectedly, atropine also increased, to a similar extent, EFS-induced ACh release to the wild-type mice in all M1–M5 receptor single KO mice. In M2 and M4 receptor double KO mice, the amount of EFS-induced ACh release was equivalent to an atropine-evoked level in the wild-type mouse, and further addition of atropine had no effect. M2 receptor immunoreactivity was located in both smooth muscle cells and enteric neurons. M4 receptor immunoreactivity was located in the enteric neurons, being in co-localization with M2 receptor immunoreactivity. These results indicate that both M2 and M4 receptors mediate the muscarinic autoinhibition in ACh release in the LMMP preparation of the mouse ileum, and loss of one of these subtypes can be compensated functionally by a receptor that remained. M1, M3, and M5 receptors do not seem to be involved in this mechanism.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai Osaka 599-8531, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Waseda K, Takeuchi T, Ohta M, Okishio Y, Fujita A, Hata F, Takewaki T. Participation of ATP in nonadrenergic, noncholinergic relaxation of longitudinal muscle of wistar rat jejunum. J Pharmacol Sci 2005; 97:91-100. [PMID: 15644591 DOI: 10.1254/jphs.fp0040486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A role of ATP in nonadrenergic, noncholinergic (NANC) relaxations was examined in the Wistar rat jejunum. Electrical field stimulation (EFS) induced NANC relaxation of longitudinal muscle of the jejunal segments in a frequency-dependent manner. A purinoceptor antagonist, adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS, 100 muM) inhibited the relaxation: relaxations induced by EFS at lower or higher frequencies were either completely or partially inhibited, respectively. After the jejunal segments had been desensitized to ATP, the relaxations were decreased to the same extent as those inhibited by A3P5PS. An inhibitor of small conductance Ca(2+)-activated K(+) channels (SK channels), apamin (100 nM), completely inhibited EFS-induced relaxations. Treatment of the segments with an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, thapsigargin (1 muM), significantly inhibited the relaxations. The exogenous ATP-induced relaxation of longitudinal muscle occurred with a concomitant decrease in intracellular Ca(2+) levels. Apamin and thapsigargin abolished these ATP-induced responses. A3P5PS significantly inhibited the inhibitory junction potentials which were induced in the longitudinal muscle cells. In addition, apamin significantly inhibited the hyperpolarization that was induced by exogenous ATP in the cells. These findings in the Wistar rat jejunum suggest that ATP participates in the NANC relaxation via activation of SK channels induced by Ca(2+) ions that are released from the thapsigargin-sensitive store site.
Collapse
Affiliation(s)
- Kaori Waseda
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Takeuchi T, Fujinami K, Fujita A, Okishio Y, Takewaki T, Hata F. Essential role of the interstitial cells of Cajal in nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum. J Pharmacol Sci 2005; 95:71-80. [PMID: 15153653 DOI: 10.1254/jphs.95.71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The role of interstitial cells of Cajal (ICC) in electrical field stimulation (EFS)-induced neurogenic responses in ileum was studied by using the ICC-deficient mutant (SLC-W/W(V)) mouse and its wild type. In the immunohistochemical study with anti-c-Kit antibody, ICC was observed in the myenteric plexus (MY) and deep muscular plexus (DMP) region in the wild type. In the mutant, ICC-MY were lost, only ICC-DMP were present. EFS induced a rapid contraction of the ileal segments from the wild type mouse in the direction of longitudinal muscle. In the mutant mouse, onset of contraction was delayed and its rate was slowed. EFS induced nonadrenergic, noncholinergic (NANC) relaxation in the presence of atropine and guanethidine in the wild type. A nitric oxide synthase inhibitor inhibited the relaxation and L-arginine reversed it. In the mutant, EFS did not induce NANC relaxation. There was no difference between the responsiveness of the segments from wild type and mutant mice to exogenously added acetylcholine or Nor-1. Taking into account the selective loss of ICC-MY in the mutant mice, it seems likely that ICC-MY have an essential role in inducing nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum and that ICC-MY partly participate in EFS-induced contraction.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan.
| | | | | | | | | | | |
Collapse
|
60
|
Sakurai S, Hasegawa T, Sakuma Y, Takazawa Y, Motegi A, Nakajima T, Saito K, Fukayama M, Shimoda T. Myxoid epithelioid gastrointestinal stromal tumor (GIST) with mast cell infiltrations: a subtype of GIST with mutations of platelet-derived growth factor receptor alpha gene. Hum Pathol 2004; 35:1223-30. [PMID: 15492989 DOI: 10.1016/j.humpath.2004.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We analyzed 30 gastrointestinal stromal tumors (GISTs) that were immunohistochemically weak or negative for KIT. Histologically, all 30 GISTs consisted of epithelioid tumor cells in at least a part of the tumor. The tumor cells showed different morphologies and arranged themselves in different histological patterns. In 20 of the 30 GISTs, round or oval epithelioid tumor cells often showed a less cohesive pattern of growth and showed eosinophilic cytoplasm and peripherally placed nuclei with myxoid stroma, whereas in the remaining 10 cases, tumor cells were arranged in a more cohesive pattern without myxoid stroma. The former type of tumors is called myxoid epithelioid GISTs in this study. Subsequent mutational analyses showed that the platelet-derived growth factor receptor alpha (PDGFRA) gene mutations in exon 12 or exon 18 were identified in 20 (66.7%) of the 30 GISTs, and especially in 18 (90%) of the 20 myxoid epithelioid GISTs. Moreover, 17 (85%) of the 20 myxoid epithelioid GISTs were accompanied by mast cell infiltrations within the tumor nodules. In the remaining cases, 2 (6.7%) of the 30 GISTs had c-kit gene mutations in exon 11, and no mutation was found in 8 (26.7%) of 30 GISTs. None of the patients with myxoid epithelioid GISTs died of disease. These results suggest that myxoid epithelioid GISTs are a distinct subtype of GISTs that are closely correlated with the PDGFRA gene mutation and that recognition of such histological characteristics should be helpful for molecular subclassification of GISTs that are important for molecular targeting therapy by imatinib mesylate (STI571).
Collapse
Affiliation(s)
- Shinji Sakurai
- Department of Pathology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Goto K, Matsuoka S, Noma A. Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 2004; 559:411-22. [PMID: 15235097 PMCID: PMC1665116 DOI: 10.1113/jphysiol.2004.063875] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To explore the electrophysiological properties of the interstitial cells of Cajal (ICCs) and fibroblast-like cells (FLCs), we developed a new preparation by treating the murine small intestine with collagenase. This thin muscle layer preparation contained at least two types of interstitial cells around the enteric nerve bundles, and the cluster of smooth muscle cells displayed a rhythmic contraction. We morphologically identified ICCs and FLCs and conducted patch clamp experiments on each type of cell. The c-kit-positive CD34-negative ICCs showed spontaneous and rhythmic potential fluctuations, and a large transient inward current was evoked by depolarization under voltage clamp conditions. Once the inward current was triggered, it took a regenerative time course and lasted approximately 500 ms. The current was inactivated by continuous depolarization, and by removal of external Ca2+. The application of acetylcholine (ACh) prolonged the duration of spontaneous depolarization as well as the depolarization-induced inward current. This inward current showed a reversal potential of around +3 mV and was considered to be due to non-selective cation channels. The c-kit-negative CD34-positive FLCs showed irregular or regular potential fluctuations, and spontaneous outward current was observed under voltage clamp conditions. This outward current showed a reversal potential of around -80 mV and might be classified as a potassium current. We failed to observe major time- and voltage-dependent currents except the above two currents in the interstitial cells.
Collapse
Affiliation(s)
- Kazunori Goto
- Department of Physiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
62
|
Imaeda K, Kato T, Okayama N, Imai S, Sasaki M, Kataoka H, Nakazawa T, Ohara H, Kito Y, Itoh M. Effects of endothelin-1 on the membrane potential and slow waves in circular smooth muscle of rat gastric antrum. J Smooth Muscle Res 2004; 40:199-210. [PMID: 15655307 DOI: 10.1540/jsmr.40.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological effects of endothelin-1 (ET-1) on circular smooth muscle of rat gastric antrum were investigated by using intracellular membrane potential recording techniques. ET-1 (10 nM) caused an initial hyperpolarization of the membrane which was followed by a sustained depolarization. ET-1 also increased the frequency but not the amplitude of slow waves. In the presence of the endothelin type A (ETA) receptor antagonist, BQ123 (1 microM), ET-1 (10 nM) depolarized the membrane and increased the frequency of slow waves, but without the initial hyperpolarization. The selective endothelin type B (ETB) receptor agonist, sarafotoxin S6c (10 nM), also depolarized the membrane and increased the frequency of slow waves. In the presence of the ETB receptor antagonist, BQ788 (1 microM), ET-1 (10 nM) hyperpolarized the membrane. However, in the presence of BQ788, ET-1 caused neither the depolarization nor the increase in the frequency of the slow waves. The ET-1-induced hyperpolarization was completely abolished by apamin (0.1 microM). In the presence of apamin, ET-1 depolarized the membrane and increased the frequency of slow waves. The ET-1-induced depolarization was significantly attenuated by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS, 0.3 mM). The increase of the frequency by ET-1 was observed both in the presence and absence of DIDS. These results suggest that, ET-1 hyperpolarizes the membrane by the activation of Ca2+-activated K+ channels via ETA receptors, and depolarizes the membrane by the activation of Ca2+-activated Cl- channels via ETB receptors. ET-1 also appears to increase the frequency of slow waves via ETB receptors, however this mechanism would seem to be independent of membrane depolarization.
Collapse
Affiliation(s)
- Kenro Imaeda
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Rumessen JJ, Vanderwinden JM. Interstitial Cells in the Musculature of the Gastrointestinal Tract: Cajal and Beyond. ACTA ACUST UNITED AC 2003; 229:115-208. [PMID: 14669956 DOI: 10.1016/s0074-7696(03)29004-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expression of the receptor tyrosine kinase KIT on cells referred to as interstitial cells of Cajal (ICC) has been instrumental during the past decade in the tremendous interest in cells in the interstitium of the smooth muscle layers of the digestive tract. ICC generate the pacemaker component (electrical slow waves of depolarization) of the smooth musculature and are involved in neurotransmission. By integration of ICC functions, substantial progress has been made in our understanding of the neuromuscular control of gastrointestinal motility, opening novel therapeutic perspectives. In this article, the ultrastructure and light microscopic morphology, as well as the functions and the development of ICC and of neighboring fibroblast-like cells (FLC), are critically reviewed. Directions for future research are considered and a unifying concept of mesenchymal cells, either KIT positive (the "ICC") or KIT negative "non-Cajal" (including the FLC and possibly also other cell types) cell types in the interstitium of the smooth musculature of the gastrointestinal tract, is proposed. Furthermore, evidence is accumulating to suggest that, as postulated by Santiago Ramon y Cajal, the concept of interstitial cells is not likely to be restricted to the gastrointestinal musculature.
Collapse
Affiliation(s)
- Jüri J Rumessen
- Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|