51
|
Yang SX, Polley EC. Systemic treatment and radiotherapy, breast cancer subtypes, and survival after long-term clinical follow-up. Breast Cancer Res Treat 2019; 175:287-295. [PMID: 30746635 PMCID: PMC6533413 DOI: 10.1007/s10549-019-05142-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/21/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND It remains unclear whether breast cancer subtypes are associated with clinical outcome in patients without any treatment including systemic and radiation therapy as an independent entity. Understanding the survival profiles among subtypes by treatment status could impact optimal selection of treatments. METHODS Patients were diagnosed with invasive breast cancer from the community hospitals across four geographical regions of the United States. Expression of hormone receptor (HR) and HER2 in tumor specimens from 1169 patients was centrally determined by immunohistochemistry and fluorescence in situ; breast cancer was classified into HR+/HER2-, HR+/HER2+, triple-negative, and HER2+ subtypes. Overall survival (OS) at a median follow-up of about 15 years among subtypes in untreated patients and those with systemic treatments and radiotherapy was analyzed by Kaplan-Meier method and multivariable analysis adjusting for age, tumor size and grade, number of positive nodes, stage and breast cancer subtypes. RESULTS Without treatment, breast cancer subtypes were not associated with OS (P = 0.983) and remained insignificant for prognosis by multivariable analysis after adjusting for confounders. This contrasted with a significant survival difference across the subtypes in patients with conventional therapies (P < 0.0001). Compared with HR+/HER2- subtype, triple-negative subtype (HR 1.5, 95% CI 1.11-2.04; P = 0.009) and HER2+ subtype (HR 2.18, 95% CI 1.48-3.28; P = 0.0001) were significantly associated with worse survival by multivariable analyses. CONCLUSION Breast cancer subtypes are not associated with survival in untreated patient population and, in contrast, significantly associated with prognosis in patients with conventional therapy. The data provide evidence of treatment-associated differential outcomes among breast cancer subtypes.
Collapse
Affiliation(s)
- Sherry X Yang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Eric C Polley
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
52
|
Baicalein Suppresses Stem Cell-Like Characteristics in Radio- and Chemoresistant MDA-MB-231 Human Breast Cancer Cells through Up-Regulation of IFIT2. Nutrients 2019; 11:nu11030624. [PMID: 30875792 PMCID: PMC6471144 DOI: 10.3390/nu11030624] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to both chemotherapy and radiation therapy is frequent in triple-negative breast cancer (TNBC) patients. We established treatment-resistant TNBC MDA-MB-231/IR cells by irradiating the parental MDA-MB-231 cells 25 times with 2 Gy irradiation and investigated the molecular mechanisms of acquired resistance. The resistant MDA-MB-231/IR cells were enhanced in migration, invasion, and stem cell-like characteristics. Pathway analysis by the Database for Annotation, Visualization and Integrated Discovery revealed that the NF-κB pathway, TNF signaling pathway, and Toll-like receptor pathway were enriched in MDA-MB-231/IR cells. Among 77 differentially expressed genes revealed by transcriptome analysis, 12 genes involved in drug and radiation resistance, including interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were identified. We found that baicalein effectively reversed the expression of IFIT2, which is reported to be associated with metastasis, recurrence, and poor prognosis in TNBC patients. Baicalein sensitized radio- and chemoresistant cells and induced apoptosis, while suppressing stem cell-like characteristics, such as mammosphere formation, side population, expression of Oct3/4 and ABCG2, and CD44highCD24low population in MDA-MB-231/IR cells. These findings improve our understanding of the genes implicated in radio- and chemoresistance in breast cancer, and indicate that baicalein can serve as a sensitizer that overcomes treatment resistance.
Collapse
|
53
|
Yadav P, Shankar BS. Radio resistance in breast cancer cells is mediated through TGF-β signalling, hybrid epithelial-mesenchymal phenotype and cancer stem cells. Biomed Pharmacother 2019; 111:119-130. [DOI: 10.1016/j.biopha.2018.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
|
54
|
Wang W, Zhang Y, Xu M, Shao Q, Sun T, Yu T, Liu X, Li J. Postmastectomy radiotherapy using three different techniques: a retrospective evaluation of the incidental dose distribution in the internal mammary nodes. Cancer Manag Res 2019; 11:1097-1106. [PMID: 30774438 PMCID: PMC6361227 DOI: 10.2147/cmar.s191047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective To evaluate the incidental coverage dose to the internal mammary nodes (IMN) in patients treated with postmastectomy radiotherapy (PMRT) and its relationship with the treatment plan. Patients and methods We retrospectively analyzed 138 patients undergoing PMRT and divided them into three groups: three-dimensional conformal radiotherapy (3D-CRT), field-in-field forward intensity-modulated radiotherapy (F-IMRT), and inverse intensity-modulated radiotherapy (I-IMRT). The IMN were contoured according to the Radiation Therapy Oncology Group consensus and not included in the planning target volume. We analyzed incidental IMN dose coverage and its relationship with the lung and heart. Results The mean dose (Dmean) to the IMN was 32.85 Gy for all patients, and the dose delivered to the IMN showed no differences in 3D-CRT, F-IMRT, and I-IMRT (33.80, 29.65, and 32.95 Gy, respectively). In addition, 10.42%, 2.04%, and 9.76% of patients achieved ≥45 Gy with 3D-CRT, F-IMRT, and I-IMRT, respectively. No differences were evident among the three treatment plans regarding IMN dose in the first three intercostal spaces (ICS1-3). The Dmean, V20, V30, V40, and V50 of ICS2 and ICS3 were superior to those of ICS1 for all three plans. For 3D-CRT, a moderate positive correlation was evident between the Dmean to the IMN and the Dmean to the heart. For F-IMRT and I-IMRT, positive correlations were evident between the Dmean of the IMN and the Dmean and V20 of the lung. Conclusion The mean incidental dose to the IMN for IMRT (F-IMRT and I-IMRT) and 3D-CRT after modified radical mastectomy was insufficient to treat subclinical disease. A substantial dose was delivered to the IMN in some patients. Higher incidental doses to the IMN were associated with a higher heart mean dose for 3D-CRT and a higher dose to the lung for IMRT. Future prospective studies should further explore subgroups that do not require IMN irradiation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Min Xu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Tao Sun
- Department of Medical Physics, Shandong Cancer Hospital affiliated with Shandong University, Jinan, Shandong 250117, China
| | - Ting Yu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China, .,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong 250117, China,
| |
Collapse
|
55
|
Tribbles Homolog 3 Involved in Radiation Response of Triple Negative Breast Cancer Cells by Regulating Notch1 Activation. Cancers (Basel) 2019; 11:cancers11020127. [PMID: 30678233 PMCID: PMC6406679 DOI: 10.3390/cancers11020127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common cancer for women in Taiwan and post-lumpectomy radiotherapy is one of the therapeutic strategies for this malignancy. Although the 10-year overall survival of breast cancer patients is greatly improved by radiotherapy, the locoregional recurrence is around 10% and triple negative breast cancers (TNBCs) are at a high risk for relapse. The aim of this paper is to understand the mechanisms of radioresistance in breast cancers which may facilitate the development of new treatments in sensitizing breast cancer toward radiation therapy. Tribbles homolog 3 (TRIB3) is a pseudokinase protein and known to function as a protein scaffold within cells. It has been reported that higher TRIB3 expression is a poor prognostic factor in breast cancer patients with radiotherapy. In this study, we investigate the involvement of TRIB3 in the radiation response of TNBC cells. We first found that the expression of TRIB3 and the activation of Notch1, as well as Notch1 target genes, increased in two radioresistant TNBC cells. Knockdown of TRIB3 in radioresistant MDA-MB-231 TNBC cells decreased Notch1 activation, as well as the CD24-CD44+ cancer stem cell population, and sensitized cells toward radiation treatment. The inhibitory effects of TRIB3 knockdown in self-renewal or radioresistance could be reversed by forced expression of the Notch intracellular domain. We also observed an inhibition in cell growth and accumulated cells in the G0/G1 phase in radioresistant MDA-MB-231 cells after knockdown of TRIB3. With immunoprecipitation and mass spectrometry analysis, we found that, BCL2-associated transcription factor 1 (BCLAF1), BCL2 interacting protein 1 (BNIP1), or DEAD-box helicase 5 (DDX5) were the possible TRIB3 interacting proteins and immunoprecipitation data also confirmed that these proteins interacted with TRIB3 in radioresistant MDA-MB-231 cells. In conclusion, the expression of TRIB3 in radioresistant TNBC cells participated in Notch1 activation and targeted TRIB3 expression may be a strategy to sensitize TNBC cells toward radiation therapy.
Collapse
|
56
|
Wimmer T, Ortmann O, Gerken M, Klinkhammer-Schalke M, Koelbl O, Inwald EC. Adherence to guidelines and benefit of adjuvant radiotherapy in patients with invasive breast cancer: results from a large population-based cohort study of a cancer registry. Arch Gynecol Obstet 2019; 299:1131-1140. [PMID: 30607594 DOI: 10.1007/s00404-018-5030-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE According to German S3 guidelines, radiotherapy (RT) is indicated in patients with invasive breast cancer after breast-conserving therapy (BCT). The aim of this analysis was to assess adherence to guidelines, long-term survival, recurrence rates, and recurrence-free survival after adjuvant RT in patients with BCT in daily clinical practice. METHODS This retrospective cohort study comprised data from the population-based clinical cancer registry of the Tumor Centre Regensburg (Bavaria, Germany). 6370 patients with non-metastatic invasive breast cancer and UICC tumor stages I, II, and III who were treated in certified breast cancer centers by BCT and diagnosed between 2003 and 2013 were included in the study. RESULTS 6184 (97.1%) breast cancer patients received guideline concordant RT and showed a 3-year overall survival (OAS) of 96.8% in contrast to 90.9% in patients without RT (5-year OAS of 93.1% vs. 79.0%, p < 0.001). In multivariable Cox regression models, better overall survival was confirmed for the RT group (HR 0.64, 95% CI 0.46-0.88, p = 0.007). The 5-year local recurrence-free survival rate (RFS) in the irradiated patients was 92.1% vs. 62.0% in the comparison group (p < 0.001). The 10-year RFS was 80.5% vs. 36.0% (p < 0.001). This difference persisted after adjusting in multivariable analysis (HR 0.20, 95% CI 0.16-0.26, p < 0.001). CONCLUSIONS This population-based analysis showed that the implementation of German guidelines in clinical routine was successful and guideline concordant adjuvant radiotherapy after BCT leads to better overall and recurrence-free survival and lower local recurrence rates.
Collapse
Affiliation(s)
- Theresa Wimmer
- Faculty of Medicine, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Michael Gerken
- Tumor Center-Institute for Quality Management and Health Services Research, University of Regensburg, Am BioPark 9, 93053, Regensburg, Germany
| | - Monika Klinkhammer-Schalke
- Department for Radiotherapy, Regensburg University Medical Center Regensburg, Franz-Josef-Strauss-Allee 24, 93053, Regensburg, Germany.
| | - Oliver Koelbl
- Department for Radiotherapy, Regensburg University Medical Center Regensburg, Franz-Josef-Strauss-Allee 24, 93053, Regensburg, Germany
| | - Elisabeth C Inwald
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| |
Collapse
|
57
|
Yuan M, Liao J, Luo J, Cui M, Jin F. Significance of Vesicle-Associated Membrane Protein 8 Expression in Predicting Survival in Breast Cancer. J Breast Cancer 2018; 21:399-405. [PMID: 30607161 PMCID: PMC6310720 DOI: 10.4048/jbc.2018.21.e57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose Vesicle-associated membrane protein 8 (VAMP8) is a soluble N-ethylmaleimide-sensitive factor receptor protein that participates in autophagy by directly regulating autophagosome membrane fusion and has been reported to be involved in tumor progression. Nevertheless, the expression and prognostic value of VAMP8 in breast cancer (BC) remain unknown. This study aimed to evaluate the clinical significance and biological function of VAMP8 in BC. Methods A total of 112 BC samples and 30 normal mammary gland samples were collected. The expression of VAMP8 was assessed in both BC tissues and normal mammary gland tissues via a two-step immunohistochemical detection method. Results The expression of VAMP8 in BC tissues was significantly higher than that in normal breast tissues. Furthermore, increased VAMP8 expression was significantly correlated with tumor size (p=0.007), lymph node metastasis (p=0.024) and recurrence (p=0.001). Patients with high VAMP8 expression had significantly lower cumulative recurrence-free survival and overall survival (p<0.001 for both) than patients with low VAMP8 expression. In multivariate logistic regression and Cox regression analyses, lymph node metastasis and VAMP8 expression were independent prognostic factors for BC. Conclusion VAMP8 is significantly upregulated in human BC tissues and can thus be a practical and potentially effective surrogate marker for survival in BC patients.
Collapse
Affiliation(s)
- Mengci Yuan
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianhua Liao
- Department of General Surgery, Zhejiang Hospital, Hangzhou, China
| | - Ji Luo
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyao Cui
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
58
|
Thakur V, Zhang K, Savadelis A, Zmina P, Aguila B, Welford SM, Abdul-Karim F, Bonk KW, Keri RA, Bedogni B. The membrane tethered matrix metalloproteinase MT1-MMP triggers an outside-in DNA damage response that impacts chemo- and radiotherapy responses of breast cancer. Cancer Lett 2018; 443:115-124. [PMID: 30502358 DOI: 10.1016/j.canlet.2018.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
Abstract
Breast cancer is the second leading cause of death among women in the US. Targeted therapies exist, however resistance is common and patients resort to chemotherapy. Chemotherapy is also a main treatment for triple negative breast cancer (TNBC) patients; while radiation is delivered to patients with advanced disease to counteract metastasis. Yet, resistance to both chemo- and radiotherapy is still frequent, highlighting a need to provide novel sensitizers. We discovered that MT1-MMP modulates DNA damage responses (DDR) in breast cancer. MT1-MMP expression inversely correlates to chemotherapy response of breast cancer patients. Inhibition of MT1-MMP sensitizes TNBC cells to IR and doxorubicin in vitro, and in vivo in an orthotopic breast cancer model. Specifically, depletion of MT1-MMP causes stalling of replication forks and Double Strand Breaks (DBSs), leading to increased sensitivity to additional genotoxic stresses. These effects are mediated by integrinβ1, as a constitutive active integrinβ1 reverts replication defects and protects cells depleted of MT1-MMP from IR and chemotherapy. These data highlight a novel DNA damage response triggered by MT1-MMP-integrinβ1 and provide a new point of therapeutic targeting that may improve breast cancer patient outcomes.
Collapse
Affiliation(s)
- Varsha Thakur
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alyssa Savadelis
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Patrick Zmina
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Brittany Aguila
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fadi Abdul-Karim
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, 44119, USA
| | - Kristen W Bonk
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
59
|
Tanić M, Krivokuća A, Čavić M, Mladenović J, Plesinac Karapandžić V, Beck S, Radulović S, Susnjar S, Janković R. Molecular signature of response to preoperative radiotherapy in locally advanced breast cancer. Radiat Oncol 2018; 13:193. [PMID: 30285791 PMCID: PMC6167820 DOI: 10.1186/s13014-018-1129-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Background Radiation therapy is an indispensable part of various treatment modalities for breast cancer. Specifically, for non-inflammatory locally advanced breast cancer (LABC) patients, preoperative radiotherapy (pRT) is currently indicated as a second line therapy in the event of lack of response to neoadjuvant chemotherapy. Still approximately one third of patients fails to respond favourably to pRT. The aim of this study was to explore molecular mechanisms underlying differential response to radiotherapy (RT) to identify predictive biomarkers and potential targets for increasing radiosensitivity. Methods The study was based on a cohort of 134 LABC patients, treated at the Institute of Oncology and Radiology of Serbia (IORS) with pRT, without previous or concomitant systemic therapy. Baseline transcriptional profiles were established using Agilent 60 K microarray platform in a subset of 23 formalin-fixed paraffin-embedded (FFPE) LABC tumour samples of which 11 radiotherapy naïve and 3 post-radiotherapy samples passed quality control and were used for downstream analysis. Biological networks and signalling pathways underlying differential response to RT were identified using Ingenuity Pathways Analysis software. Predictive value of candidate genes in the preoperative setting was further validated by qRT-PCR in an independent subset of 60 LABC samples of which 42 had sufficient quality for data analysis, and in postoperative setting using microarray data from 344 node-negative breast cancer patients (Erasmus cohort, GSE2034 and GSE5327) treated either with surgery only (20%) or surgery with RT (80%). Results We identified 192 significantly differentially expressed genes (FDR < 0.10) between pRT-responsive and non-responsive tumours, related to regulation of cellular development, growth and proliferation, cell cycle control of chromosomal replication, glucose metabolism and NAD biosynthesis II route. APOA1, MAP3K4, and MMP14 genes were differentially expressed (FDR < 0.20) between pRT responders and non-responders in preoperative setting, while MAP3K4 was further validated as RT-specific predictive biomarker of distant metastasis free survival (HR = 2.54, [95%CI:1.42–4.55], p = 0.002) in the postoperative setting. Conclusions This study pinpoints MAP3K4 as a putative biomarker of response to RT in both preoperative and postoperative settings and a potential target for radiosensitising combination therapy, warranting further pre-clinical studies and prospective clinical validation. Electronic supplementary material The online version of this article (10.1186/s13014-018-1129-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miljana Tanić
- Laboratory for Molecular Genetics, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia. .,Medical Genomics, UCL Cancer Institute, University College London, London, UK.
| | - Ana Krivokuća
- Laboratory for Molecular Genetics, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Milena Čavić
- Laboratory for Molecular Genetics, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jasmina Mladenović
- Radiology and Radiotherapy Department, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Siniša Radulović
- Laboratory for Molecular Genetics, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Snezana Susnjar
- Medical Oncology Department, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Radmila Janković
- Laboratory for Molecular Genetics, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
60
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
61
|
Post AEM, Smid M, Nagelkerke A, Martens JWM, Bussink J, Sweep FCGJ, Span PN. Interferon-Stimulated Genes Are Involved in Cross-resistance to Radiotherapy in Tamoxifen-Resistant Breast Cancer. Clin Cancer Res 2018; 24:3397-3408. [PMID: 29661777 DOI: 10.1158/1078-0432.ccr-17-2551] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/07/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Treatment resistance is the main cause of adverse disease outcome in breast cancer patients. Here, we aimed to investigate common features in tamoxifen-resistant and radioresistant breast cancer, as tamoxifen-resistant breast cancer cells are cross-resistant to irradiation in vitroExperimental Design: RNA sequencing of tamoxifen-resistant and radioresistant breast cancer cells was performed and validated by quantitative PCR. Pathways were further investigated in vitro and in breast cancer patient cohorts to establish their relation with treatment resistance.Results: Both tamoxifen-resistant and radioresistant breast cancer cells had increased expression levels of genes involved in type I IFN signaling compared with nonresistant cells. IFN-stimulated genes (ISG) were induced in a dose-dependent and time-dependent manner after tamoxifen treatment and irradiation. Tamoxifen treatment also led to ssDNA presence in the cytoplasm, which is known to induce expression of ISGs, a phenomenon that has already been described for irradiation. Moreover, in a breast cancer patient cohort, high expression levels of ISGs were found in the primary tumor in around half of the patients. This was associated with a tumor-infiltrating lymphocyte (TIL) expression signature, although the ISGs were also expressed by the tumor cells themselves. Importantly, the expression of ISGs correlated with outcome in breast cancer patients treated with adjuvant tamoxifen or radiotherapy, but not in systemically untreated patients or chemotherapy-treated patients.Conclusions: Our data indicate that expression of ISGs by tumor cells is involved in acquired, treatment-induced resistance to tamoxifen and radiotherapy, and might play a role in intrinsic resistance via interaction with TILs. Clin Cancer Res; 24(14); 3397-408. ©2018 AACR.
Collapse
Affiliation(s)
- Annemarie E M Post
- Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud university medical center, Nijmegen, the Netherlands. .,Department of Laboratory Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Anika Nagelkerke
- Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud university medical center, Nijmegen, the Netherlands.,Department of Laboratory Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud university medical center, Nijmegen, the Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
62
|
Zhou KX, Xie LH, Peng X, Guo QM, Wu QY, Wang WH, Zhang GL, Wu JF, Zhang GJ, Du CW. CXCR4 antagonist AMD3100 enhances the response of MDA-MB-231 triple-negative breast cancer cells to ionizing radiation. Cancer Lett 2018; 418:196-203. [PMID: 29317253 DOI: 10.1016/j.canlet.2018.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
Radiation therapy (RT) is one of the primary modalities for triple-negative breast cancer (TNBC) treatment. However, due to the pro-metastatic potential of radiation and the intrinsic radiation resistance of some tumors, many patients experience RT failure, which leads to cancer relapse and distant metastasis. This preclinical study evaluated the efficacy of the antagonist of the SDF-1 receptor CXCR4, AMD3100, as a radiosensitizer in TNBC models. The combined effect of ionizing radiation and AMD3100 was determined in vitro by surviving fraction, cell cycle distribution, Bax and Bcl-2 expression, and apoptosis assays in a TNBC cell line (MDA-MB-231). For in vivo studies, human xenograft athymic nude mice were used. Treatment of TNBC cells with AMD3100 significantly augmented cellular radiosensitivity. Radiosensitivity was enhanced specifically through increased Bax expression, reduced Bcl-2 expression, prolonged G2-M arrest, and increased apoptosis. Combined treatment with AMD3100 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.5 to 1.8. These findings support the evaluation of antagonists of the SDF-1 receptor CXCR4, such as AMD3100, as potent radiosensitizers in TNBC.
Collapse
Affiliation(s)
- K X Zhou
- The Third Affiliated Hospital of ChongQing Medical University, No.1 Shuanghu Road, ChongQing, 410013, PR China
| | - L H Xie
- Department of Medical Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, No. 114 Waima Road, Shantou, 515031, PR China
| | - X Peng
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, 515031, PR China
| | - Q M Guo
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China
| | - Q Y Wu
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China
| | - W H Wang
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China
| | - G L Zhang
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China
| | - J F Wu
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China
| | - G J Zhang
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China; Xiang'an Hospital, Xiamen University, 2000 East Xiang'an Road, Xiamen, 361000, PR China
| | - C W Du
- Shantou University Medical College, No.22 Xinling Road, Shantou, 515041, PR China; Breast Medical Oncology, National Cancer Center/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, ShengZhen, 518116, China.
| |
Collapse
|
63
|
Veenstra C, Pérez-Tenorio G, Stelling A, Karlsson E, Mirwani SM, Nordensköljd B, Fornander T, Stål O. Met and its ligand HGF are associated with clinical outcome in breast cancer. Oncotarget 2018; 7:37145-37159. [PMID: 27175600 PMCID: PMC5095065 DOI: 10.18632/oncotarget.9268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Few biomarkers exist to predict radiotherapy response in breast cancer. In vitro studies suggest a role for Met and its ligand HGF. To study this suggested role, MET and HGF gene copy numbers were determined by droplet digital PCR in tumours from 205 pre-menopausal and 184 post-menopausal patients, both cohorts randomised to receive either chemo- or radiotherapy. MET amplification was found in 8% of the patients in both cohorts and HGF amplification in 7% and 6% of the patients in the pre- and post-menopausal cohort, respectively. Met, phosphorylated Met (pMet), and HGF protein expression was determined by immunohistochemistry in the pre-menopausal cohort. Met, pMet, and HGF was expressed in 33%, 53%, and 49% of the tumours, respectively. MET amplification was associated with increased risk of distant recurrence for patients receiving chemotherapy. For the pre-menopausal patients, expression of cytoplasmic pMet and HGF significantly predicted benefit from radiotherapy in terms of loco-regional recurrence. Similar trends were seen for MET and HGF copy gain. In the post-menopausal cohort, no significant association of benefit from radiotherapy with neither genes nor proteins was found. The present results do not support that inhibition of Met prior to radiotherapy would be favourable for pre-menopausal breast cancer, as previously suggested.
Collapse
Affiliation(s)
- Cynthia Veenstra
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Anna Stelling
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Elin Karlsson
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Sanam Mirwani Mirwani
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Bo Nordensköljd
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| |
Collapse
|
64
|
Meksiarun P, Aoki PHB, Van Nest SJ, Sobral-Filho RG, Lum JJ, Brolo AG, Jirasek A. Breast cancer subtype specific biochemical responses to radiation. Analyst 2018; 143:3850-3858. [DOI: 10.1039/c8an00345a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
External beam radiotherapy is a common form of treatment for breast cancer.
Collapse
Affiliation(s)
- Phiranuphon Meksiarun
- Department of Physics
- I.K. Barber School of Arts and Sciences
- University of British Columbia – Okanagan
- Kelowna
- Canada
| | - Pedro H. B. Aoki
- São Paulo State University (UNESP)
- School of Sciences
- Humanities and Languages
- Campus Assis
- Brazil
| | | | | | - Julian J. Lum
- University of Victoria
- Department of Biochemistry and Microbiology
- Victoria
- Canada
- Trev and Joyce Deeley Research Centre
| | | | - Andrew Jirasek
- Department of Physics
- I.K. Barber School of Arts and Sciences
- University of British Columbia – Okanagan
- Kelowna
- Canada
| |
Collapse
|
65
|
Arenas M, García-Heredia A, Cabré N, Luciano-Mateo F, Hernández-Aguilera A, Sabater S, Bonet M, Gascón M, Fernández-Arroyo S, Fort-Gallifa I, Camps J, Joven J. Effect of radiotherapy on activity and concentration of serum paraoxonase-1 in breast cancer patients. PLoS One 2017; 12:e0188633. [PMID: 29176871 PMCID: PMC5703554 DOI: 10.1371/journal.pone.0188633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/11/2017] [Indexed: 12/30/2022] Open
Abstract
Paraoxonase-1 (PON1) is an intra-cellular antioxidant enzyme found also in the circulation associated with high-density lipoproteins. The activity of this enzyme has been shown to be decreased in breast cancer (BC) patients. The aims of our study were to investigate the changes produced by radiotherapy (RT) on activity and concentration of serum PON1 in BC patients, and to evaluate the observed variations in relation to clinical and pathological characteristics of patients and tumors, and the response to treatment. We studied 200 women with BC who were scheduled to receive RT following excision of the tumor. Blood for analyses was obtained before and after the irradiation procedure. The control group was composed of 200 healthy women. Relative to control, BC patients had significantly lower serum PON1 activities pre-RT, while PON1 concentrations were at similar levels. RT was associated with a significant increase in serum PON1 activities and concentrations. We observed significant differences in serum PON1 concentrations post-RT between patients with luminal A or luminal B tumors. Serum PON1 concentration post-RT was markedly lower in BC patients with metastases. We conclude that benefit from RT accrues to the BC patients not only through its direct effect on cancer cells but also indirectly by improving the organism’s anti-oxidant defense mechanisms. In addition, our preliminary evidence suggests that the measurement of serum PON1 concentration post-RT could be an efficient prognostic biomarker, and may be used as an index of the efficacy of the RT.
Collapse
Affiliation(s)
- Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Noemí Cabré
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Sebastià Sabater
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Marta Bonet
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Marina Gascón
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Isabel Fort-Gallifa
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
- * E-mail:
| | - Jorge Joven
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
66
|
Luo J, Pi G, Xiao H, Ye Y, Li Q, Zhao L, Huang H, Luo H, Zhang Q, Wang D, Wang G. Torin2 enhances the radiosensitivity of MCF‑7 breast cancer cells by downregulating the mTOR signaling pathway and ATM phosphorylation. Mol Med Rep 2017; 17:366-373. [PMID: 29115478 DOI: 10.3892/mmr.2017.7848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/23/2017] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy has an important role in the comprehensive treatment of breast cancer. However, the clinical outcome of adjuvant radiotherapy may be limited due to intrinsic radioresistance, it is necessary to explore efficient radiosensitization methods that improve the clinical outcome of patients undergoing radiotherapy. The present study aimed to investigate whether the novel mechanistic target of rapamycin (mTOR) inhibitor Torin2 enhances the radiosensitivity of MCF‑7 breast cancer cells. A Cell Counting Kit‑8 (CCK‑8) assay was performed to measure the effect of Torin2 on cell proliferation, while clonogenic assays were employed to determine the effect of Torin2 in combination with radiation on the proliferation of MCF‑7 cells. The effect of Torin2 and/or radiation on the cell cycle was analyzed using flow cytometry. Furthermore, the protein expression of components of the phosphatidylinositol 3‑kinase/Akt/mTOR pathway, and the expression of proteins involved in DNA damage repair, was measured by western blot analysis. The results demonstrated that Torin2 exhibited a higher potency in MCF‑7 cells, while MDA‑MB‑231 cells were less sensitive to Torin2. Compared with irradiation alone, pretreatment with 20 nM Torin2 followed by irradiation resulted in an increased level of γ‑H2A histone family member X. Radiation induced the activation of the Akt/mTOR signaling pathway and upregulated the expression of phosphorylated (p)‑Akt473 and p‑eukaryotic translation initiation factor 4E binding protein 1 (4EBP1)37/46. Notably, pretreatment with Torin2 attenuated the radiation‑induced activation of the Akt/mTOR signaling pathway. In addition, Torin2 partially blocked the repair of double‑strand breaks induced by radiation by reducing the activation of ataxia telangiectasia‑mutated, and sensitized MCF‑7 cells to radiation. In conclusion, administration of Torin2 prior to irradiation enhanced the radiotherapeutic effect on breast cancer cells in vitro, and these results may provide a foundation for the rational use of combined therapy with irradiation and Torin2 for breast cancer in clinical practice.
Collapse
Affiliation(s)
- Jia Luo
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Guocheng Pi
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - He Xiao
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Yunfei Ye
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Qing Li
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Lianhua Zhao
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Huan Huang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Hong Luo
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Qin Zhang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Dong Wang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ge Wang
- Cancer Center of Daping Hospital and The Research Institute of Surgery, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
67
|
Radiation therapy utilization and outcomes for older women with breast cancer: Impact of molecular subtype and tumor grade. Breast 2017. [DOI: 10.1016/j.breast.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
68
|
Speers C, Zhao SG, Chandler B, Liu M, Wilder-Romans K, Olsen E, Nyati S, Ritter C, Alluri PG, Kothari V, Hayes DF, Lawrence TS, Spratt DE, Wahl DR, Pierce LJ, Feng FY. Androgen receptor as a mediator and biomarker of radioresistance in triple-negative breast cancer. NPJ Breast Cancer 2017; 3:29. [PMID: 28840192 PMCID: PMC5562815 DOI: 10.1038/s41523-017-0038-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
Increased rates of locoregional recurrence have been observed in triple-negative breast cancer despite chemotherapy and radiation therapy. Thus, approaches that combine therapies for radiosensitization in triple-negative breast cancer are critically needed. We characterized the radiation therapy response of 21 breast cancer cell lines and paired this radiation response data with high-throughput drug screen data to identify androgen receptor as a top target for radiosensitization. Our radiosensitizer screen nominated bicalutamide as the drug most effective in treating radiation therapy-resistant breast cancer cell lines. We subsequently evaluated the expression of androgen receptor in >2100 human breast tumor samples and 51 breast cancer cell lines and found significant heterogeneity in androgen receptor expression with enrichment at the protein and RNA level in triple-negative breast cancer. There was a strong correlation between androgen receptor RNA and protein expression across all breast cancer subtypes (R2 = 0.72, p < 0.01). In patients with triple-negative breast cancer, expression of androgen receptor above the median was associated with increased risk of locoregional recurrence after radiation therapy (hazard ratio for locoregional recurrence 2.9-3.2)) in two independent data sets, but there was no difference in locoregional recurrence in triple-negative breast cancer patients not treated with radiation therapy when stratified by androgen receptor expression. In multivariable analysis, androgen receptor expression was most significantly associated with worse local recurrence-free survival after radiation therapy (hazard ratio of 3.58) suggesting that androgen receptor expression may be a biomarker of radiation response in triple-negative breast cancer. Inhibition of androgen receptor with MDV3100 (enzalutamide) induced radiation sensitivity (enhancement ratios of 1.22-1.60) in androgen receptor-positive triple-negative breast cancer lines, but did not affect androgen receptor-negative triple-negative breast cancer or estrogen-receptor-positive, androgen receptor-negative breast cancer cell lines. androgen receptor inhibition with MDV3100 significantly radiosensitized triple-negative breast cancer xenografts in mouse models and markedly delayed tumor doubling/tripling time and tumor weight. Radiosensitization was at least partially dependent on impaired dsDNA break repair mediated by DNA protein kinase catalytic subunit. Our results implicate androgen receptor as a mediator of radioresistance in breast cancer and identify androgen receptor inhibition as a potentially effective strategy for the treatment of androgen receptor-positive radioresistant tumors.
Collapse
Affiliation(s)
- Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA.,Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Ben Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Eric Olsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Cassandra Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Prasanna G Alluri
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Vishal Kothari
- University of California San Francisco, San Francisco, CA USA
| | - Daniel F Hayes
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA.,Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| | - Felix Y Feng
- University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
69
|
Park JE, Piao MJ, Kang KA, Shilnikova K, Hyun YJ, Oh SK, Jeong YJ, Chae S, Hyun JW. A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress. Biomol Ther (Seoul) 2017; 25:404-410. [PMID: 28554201 PMCID: PMC5499619 DOI: 10.4062/biomolther.2017.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an IC50 value of 6 μM JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.
Collapse
Affiliation(s)
- Jeong Eon Park
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Kristina Shilnikova
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| | - Sei Kwan Oh
- Department of Neuroscience, College of Medicine, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yong Joo Jeong
- Department of Bio and Nanochemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sungwook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
70
|
Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3. Croat Med J 2017; 57:457-464. [PMID: 27815936 PMCID: PMC5141458 DOI: 10.3325/cmj.2016.57.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim To determine whether microRNA (miR)-124 enhances the response to radiotherapy in human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by targeting signal transducer and activator of transcription 3 (Stat3). Methods miR-29b expression was measured in 80 pairs of breast tumor samples and adjacent normal tissues collected between January 2013 and July 2014. Activity changes of 50 canonical signaling pathways upon miR-124 overexpression were determined using Cignal Signal Transduction Reporter Array. Target gene of miR-124 was determined using Targetscan and validated by Western blotting and dual-luciferase assay. Cell death rate was assessed by propidium iodide (PI)/ Annexin V staining followed by flow cytometry analysis. Stat3 and miR-124 expression was further measured in 10 relapsed (non-responder) and 10 recurrence-free HER2-positive breast cancer patients. Results MiR-124 expression was down-regulated in HER2 positive breast cancers compared with normal tissues, and was negatively associated with tumor size. MiR-124 overexpression in HER2 positive breast cancer cell line SKBR3 significantly reduced the activity of Stat3 signaling pathway compared with control transfection (P < 0.001). Bioinformatic prediction and function assay suggested that miR-124 directly targeted Stat3, which is a key regulator of HER2 expression. MiR-124 overexpression down-regulated Stat3 and potently enhanced cell death upon irradiation. Consistently, chemical inhibitor of Stat3 also sensitized HER2-positive breast cancer cells to irradiation. Moreover, increased Stat3 expression and reduced miR-124 expression were associated with a poor response to radiotherapy in HER2-positive breast cancers. Conclusions Weak miR-124 expression might enhance Stat3 expression and radiotherapy resistance in HER2-positive breast cancer cells.
Collapse
Affiliation(s)
| | - Jianping Xiong
- Jianping Xiong, 17 Yongwaizheng rd, Nanchang, Jiangxi, China 330006,
| |
Collapse
|
71
|
Bouchard G, Therriault H, Geha S, Bujold R, Saucier C, Paquette B. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. Br J Cancer 2017; 116:479-488. [PMID: 28103615 PMCID: PMC5318978 DOI: 10.1038/bjc.2016.448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022] Open
Abstract
Background: The prognosis of triple-negative breast cancer (TNBC) is still difficult to establish. Some TNBC benefit from radiotherapy (RT) and are cured, while in other patients metastases appear during the first 3 years after treatment. In this study, an animal model of TNBC was used to determine whether the expression of the cell membrane protease MT1-MMP in cancer cells was associated with radiation-stimulated development of lung metastases. Methods: Using invasion chambers, irradiated fibroblasts were used as chemoattractants to assess the invasiveness of TNBC D2A1 cell lines showing downregulated expression of MT1-MMP, which were compared with D2A1-wt (wild-type) and D2A1 shMT1-mock (empty vector) cell lines. In a mouse model, a mammary gland was irradiated followed by the implantation of the downregulated MT1-MMP D2A1, D2A1-wt or D2A1 shMT1-mock cell lines. Migration of D2A1 cells in the mammary gland, number of circulating tumour cells and development of lung metastases were assessed. Results: The reduction of MT1-MMP expression decreased the invasiveness of D2A1 cells and blocked the radiation enhancement of cancer cell invasion. In BALB/c mice, irradiation of the mammary gland has stimulated the invasion of cancer cells, which was associated with a higher number of circulating tumour cells and of lung metastases. These adverse effects of radiation were prevented by downregulating the MT1-MMP. Conclusions: This study shows that the MT1-MMP is necessary for the radiation enhancement of lung metastasis development, and that its expression level and/or localisation could be evaluated as a biomarker for predicting the early recurrence observed in some TNBC patients.
Collapse
Affiliation(s)
- Gina Bouchard
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada
| | - Hélène Therriault
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Rachel Bujold
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada.,Service of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Caroline Saucier
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada
| |
Collapse
|
72
|
Kim JS, Kim HA, Seong MK, Seol H, Oh JS, Kim EK, Chang JW, Hwang SG, Noh WC. STAT3-survivin signaling mediates a poor response to radiotherapy in HER2-positive breast cancers. Oncotarget 2016; 7:7055-65. [PMID: 26755645 PMCID: PMC4872768 DOI: 10.18632/oncotarget.6855] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/01/2016] [Indexed: 12/17/2022] Open
Abstract
Although radiotherapy resistance is associated with locoregional recurrence and distant metastasis in breast cancers, clinically relevant molecular markers and critical signaling pathways of radioresistant breast cancer are yet to be defined. Herein, we show that HER2-STAT3-survivin regulation is associated with radiotherapy resistance in HER2-positive breast cancers. Depletion of HER2 by siRNA sensitized HER2-positive breast cancer cells to irradiation by decreasing STAT3 activity and survivin, a STAT3 target gene, expression in HER2-positive breast cancer cells. Furthermore, inhibition of STAT3 activation or depletion of survivin also sensitized HER2-positive breast cancer cells to irradiation, suggesting that the HER2-STAT3-survivin axis is a key pathway in radiotherapy resistance of HER2-positive breast cancer cells. In addition, our clinical analysis demonstrated the association between HER2-positive breast cancers and radiotherapy resistance. Notably, we found that increased expression of phosphorylated STAT3, STAT3, and survivin correlated with a poor response to radiotherapy in HER2-positive breast cancer tissues. These findings suggest that the HER2-STAT3-survivin axis might serve as a predictive marker and therapeutic target to overcome radiotherapy resistance in HER2-positive breast cancers.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyesil Seol
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Eun-Kyu Kim
- Department of Surgery, Breast Cancer Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Korea
| | - Jong Wook Chang
- Stem Cell Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Woo Chul Noh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
73
|
Leonardi MC, Ricotti R, Dicuonzo S, Cattani F, Morra A, Dell'Acqua V, Orecchia R, Jereczek-Fossa BA. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer. Breast 2016; 29:213-22. [DOI: 10.1016/j.breast.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
|
74
|
Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1. Sci Rep 2016; 6:28403. [PMID: 27329817 PMCID: PMC4916600 DOI: 10.1038/srep28403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant.
Collapse
|
75
|
Bernier J, Poortmans PMP. Surgery and radiation therapy of triple-negative breast cancers: From biology to clinics. Breast 2016; 28:148-55. [PMID: 27318170 DOI: 10.1016/j.breast.2016.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 01/02/2023] Open
Abstract
Triple negative breast cancer refers to tumours lacking the expression of the three most used tumour markers, namely oestrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). These cancers are known to carry a more dismal prognosis than the other molecular subtypes. Whether a more aggressive local-regional treatment is warranted or not in patients with triple-negative breast cancer is still a matter of debate. Indeed there remain a number of grey zones with respect to the optimization of the extent and the timing of surgery and radiation therapy (RT) in this patient population, also in consideration of the significant heterogeneity in biological behaviour and response to treatment identified for these tumours. The objective of this review is to provide an insight into the biological and clinical behaviour of triple-negative breast cancers and revisit the most recent advances in their management, focussing on local-regional treatments.
Collapse
Affiliation(s)
- Jacques Bernier
- Department of Radiation Oncology, Swiss Medical Network, Genolier, Geneva, Switzerland.
| | - Philip M P Poortmans
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
76
|
Bouchard G, Therriault H, Geha S, Bérubé-Lauzière Y, Bujold R, Saucier C, Paquette B. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer 2016; 16:361. [PMID: 27282478 PMCID: PMC4901430 DOI: 10.1186/s12885-016-2393-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/01/2016] [Indexed: 12/04/2022] Open
Abstract
Background Some triple negative breast cancer (TNBC) patients are at higher risk of recurrence in the first three years after treatment. This rapid relapse has been suggested to be associated with inflammatory mediators induced by radiation in healthy tissues that stimulate cancer cell migration and metastasis formation. In this study, the ability of chloroquine (CQ) to inhibit radiation-stimulated development of metastasis was assessed. Methods The capacity of CQ to prevent radiation-enhancement of cancer cell invasion was assessed in vitro with the TNBC cell lines D2A1, 4T1 and MDA-MB-231 and the non-TNBC cell lines MC7-L1, and MCF-7. In Balb/c mice, a single mammary gland was irradiated with four daily doses of 6 Gy. After the last irradiation, irradiated and control mammary glands were implanted with D2A1 cells. Mice were treated with CQ (vehicle, 40 or 60 mg/kg) 3 h before each irradiation and then every 72 h for 3 weeks. Migration of D2A1 cells in the mammary gland, the number of circulating tumor cells and lung metastasis were quantified, and also the expression of some inflammatory mediators. Results Irradiated fibroblasts have increased the invasiveness of the TNBC cell lines only, a stimulation that was prevented by CQ. On the other hand, invasiveness of the non-TNBC cell lines, which was not enhanced by irradiated fibroblasts, was also not significantly modified by CQ. In Balb/c mice, treatment with CQ prevented the stimulation of D2A1 TNBC cell migration in the pre-irradiated mammary gland, and reduced the number of circulating tumor cells and lung metastases. This protective effect of CQ was associated with a reduced expression of the inflammatory mediators interleukin-1β, interleukin-6, and cyclooxygenase-2, while the levels of matrix metalloproteinases-2 and −9 were not modified. CQ also promoted a blocking of autophagy. Conclusion CQ prevented radiation-enhancement of TNBC cell invasion and reduced the number of lung metastases in a mouse model. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2393-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gina Bouchard
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5 N4, Canada
| | - Hélène Therriault
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5 N4, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Yves Bérubé-Lauzière
- Department of Electrical and Computer Engineering, Centre d'imagerie moléculaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Rachel Bujold
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5 N4, Canada.,Service of Radiation Oncology, Université de Sherbrooke, Sherbrooke, Canada
| | - Caroline Saucier
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Benoit Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5 N4, Canada.
| |
Collapse
|
77
|
Botesteanu DA, Lipkowitz S, Lee JM, Levy D. Mathematical models of breast and ovarian cancers. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:337-62. [PMID: 27259061 DOI: 10.1002/wsbm.1343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/06/2023]
Abstract
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dana-Adriana Botesteanu
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, USA.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Doron Levy
- Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, USA
| |
Collapse
|
78
|
Yan Y, Li Z, Xu X, Chen C, Wei W, Fan M, Chen X, Li JJ, Wang Y, Huang J. All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:113. [PMID: 27036550 PMCID: PMC4815257 DOI: 10.1186/s12906-016-1088-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
Abstract
Background Radiotherapy is of critical importance in the treatment of breast cancer. However, not all patients derive therapeutic benefit and some breast cancers are resistant to the treatment, and are thus evidenced with prospective distant metastatic spread and local recurrence. In this study, we investigated the potential therapeutic effects of all-trans retinoic acid (ATRA) on radiation-resistant breast cancer cells and the associated invasiveness. Methods The MCF7/C6 cells with gained radiation resistance after a long term treatment with fractionated ionizing radiation were derived from human breast cancer MCF7 cell line, and are enriched with cells expressing putative breast cancer stem cell biomarker CD44+/CD24-/low/ALDH+. The enhanced invasiveness and the acquired resistances to chemotherapeutic treatments of MCF7/C6 cells were measured, and potential effects of all-trans retinoic acid (ATRA) on the induction of differentiation, invasion and migration, and on the sensitivities to chemotherapies in MCF7/C6 cells were investigated. Results MCF7/C6 cells are with enrichment of cancer stem-cell like cells with positive staining of CD44+/CD24-/low, OCT3/4 and NANOG. MCF7/C6 cells showed an increased tumoregensis potential and enhanced aggressiveness of invasion and migration. Treatment with ATRA induces the differentiation in MCF7/C6 cells, resulting in reduced invasiveness and migration, and increased sensitivity to Epirubincin treatment. Conclusion Our study suggests a potential clinic impact for ATRA as a chemotherapeutic agent for treatment of therapy-resistant breast cancer especially for the metastatic lesions. The study also provides a rationale for ATRA as a sensitizer of Epirubincin, a first-line treatment option for breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1088-y) contains supplementary material, which is available to authorized users.
Collapse
|
79
|
Mezencev R, Matyunina LV, Jabbari N, McDonald JF. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity. BMC Cancer 2016; 16:236. [PMID: 26988558 PMCID: PMC4797178 DOI: 10.1186/s12885-016-2274-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/13/2016] [Indexed: 12/20/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) has been associated with the acquisition of metastatic potential and the resistance of cancer cells to therapeutic treatments. MCF-7 breast cancer cells engineered to constitutively express the zinc-finger transcriptional repressor gene Snail (MCF-7-Snail cells) have been previously shown to display morphological and molecular changes characteristic of EMT. We report here the results of a comprehensive systems level molecular analysis of changes in global patterns of gene expression and levels of glutathione and reactive oxygen species (ROS) in MCF-7-Snail cells and the consequence of these changes on the sensitivity of cells to radiation treatment and therapeutic drugs. Methods Snail-induced changes in global patterns of gene expression were identified by microarray profiling using the Affymetrix platform (U133 Plus 2.0). The resulting data were processed and analyzed by a variety of system level analytical methods. Levels of ROS and glutathione (GSH) were determined by fluorescent and luminescence assays, and nuclear levels of NF-κB protein were determined by an ELISA based method. The sensitivity of cells to ionizing radiation and anticancer drugs was determined using a resazurin-based cell cytotoxicity assay. Results Constitutive ectopic expression of Snail in epithelial-like, luminal A-type MCF-7 cells induced significant changes in the expression of >7600 genes including gene and miRNA regulators of EMT. Mesenchymal-like MCF-7-Snail cells acquired molecular profiles characteristic of triple-negative, claudin-low breast cancer cells, and displayed increased sensitivity to radiation treatment, and increased, decreased or no change in sensitivity to a variety of anticancer drugs. Elevated ROS levels in MCF-7-Snail cells were unexpectedly not positively correlated with NF-κB activity. Conclusions Ectopic expression of Snail in MCF-7 cells resulted in morphological and molecular changes previously associated with EMT. The results underscore the complexity and cell-type dependent nature of the EMT process and indicate that EMT is not necessarily predictive of decreased resistance to radiation and drug-based therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2274-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roman Mezencev
- Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Lilya V Matyunina
- Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Neda Jabbari
- Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - John F McDonald
- Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA.
| |
Collapse
|
80
|
Wei W, Lewis MT. Identifying and targeting tumor-initiating cells in the treatment of breast cancer. Endocr Relat Cancer 2015; 22:R135-55. [PMID: 25876646 PMCID: PMC4447610 DOI: 10.1530/erc-14-0447] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer in women (excluding skin cancer), and it is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - because of traits that tumor cells possess before treatment - or acquired - because of traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes the existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSCs). TICs have the capacity to self-renew and to generate new tumors that consist entirely of clonally derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies and that they can survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow, which results in disease relapse. It has also been hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative for achieving a cure. In the present review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear to be important for TIC function and may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Wei Wei
- Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA
| | - Michael T Lewis
- Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA
| |
Collapse
|
81
|
Tumor biology in older breast cancer patients--what is the impact on survival stratified for guideline adherence? A retrospective multi-centre cohort study of 5378 patients. Breast 2015; 24:256-62. [PMID: 25769974 DOI: 10.1016/j.breast.2015.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/30/2014] [Accepted: 02/19/2015] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The tumor biology of older breast cancer patients (oBCP) is usually less aggressive, however applied adjuvant treatment is often less potent resulting in an impaired disease free survival and overall survival in this group. This study tries to answer the following questions for the biological subtypes of oBCP (70+ y): METHODS Between 1992 and 2008 the BRENDA ('BRENDA' = quality of BREast caNcer care unDer evidence-bAsed guidelines) study group recorded medical data of 17 participating certified breast cancer centers in Germany. We performed a retrospective multi-center database analysis of 5632 patient records. Guideline-adherent-treatment (GL+) of oBCP(n = 1918) was compared to GL+ of yBCP(n = 3714). RESULTS OBCP were more likely to have hormone receptor positive (HR+) and HER2neu negative (HER2-) breast cancer (77.5% vs 74.5%). The rate of GL- was significantly different (p < 0.001) between the age groups and the biological subgroups (yBCP vs oBCP: 21.8%vs38.8% (HR+/HER2-); 30.6%vs49.7% (HR+/HER2+); 23.6%vs69.5% (HR-/HER2+); 31.4%vs67.8% (TNBC)). The survival parameters for HR+/HER2- and TNBC were significantly worse in case of GL- regarding chemotherapy, and if applicable endocrine therapy. A similar association only existed in HR-/HER2+ tumors for GL- for radiotherapy and in HR+/HER2+ tumors for chemotherapy. CONCLUSIONS Beside the significantly different distribution of biological subtypes in the age groups there is an association between biological subtype, and GL+ influencing survival parameters in oBCP.
Collapse
|
82
|
The importance of autophagy regulation in breast cancer development and treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:710345. [PMID: 25317422 PMCID: PMC4182068 DOI: 10.1155/2014/710345] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is a potentially life-threatening malignant tumor that still causes high mortality among women. One of the mechanisms through which cancer development could be controlled is autophagy. This process exerts different effects during the stages of cancer initiation and progression due to the occurring superimposition of signaling pathways of autophagy and carcinogenesis. Chronic inhibition of autophagy or autophagy deficiency promotes cancer, due to instability of the genome and defective cell growth and as a result of cell stress. However, increased induction of autophagy can become a mechanism which allows tumor cells to survive the conditions of hypoxia, acidosis, or chemotherapy. Therefore, in the development of cancer, autophagy is regarded as a double-edged sword. Determination of the molecular mechanisms underlying autophagy regulation and its role in tumorigenesis is an essential component of modern anticancer strategies. Results of scientific studies show that inhibition of autophagy may enhance the effectiveness of currently used anticancer drugs and other therapies (like radiotherapy). However, in some cases, the promotion of autophagy can induce death and, hence, elimination of the cancer cells and reduction of tumor size. This review summarizes the current knowledge on autophagy regulation in BC and up-to-date anticancer strategies correlated with autophagy.
Collapse
|
83
|
Gu YQ, Gong G, Xu ZL, Wang LY, Fang ML, Zhou H, Xing H, Wang KR, Sun L. miRNA profiling reveals a potential role of milk stasis in breast carcinogenesis. Int J Mol Med 2014; 33:1243-9. [PMID: 24584717 DOI: 10.3892/ijmm.2014.1677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/17/2014] [Indexed: 11/06/2022] Open
Abstract
The tumor microenvironment plays an important role in breast carcinogenesis. Milk acts as an important microenvironment of breast cancer, but its role in breast carcinogenesis is largely unknown. Milk stasis may exist in the breast for a number of years after breastfeeding. In the present study, we reported the first microRNA (miRNA) profiling of milk from patients with milk stasis. We identified 266 known miRNAs and 271 novel miRNAs in 10 milk stasis only samples, 271 known miRNAs and 140 novel miRNAs in 10 milk stasis plus breast neoplasm samples by deep sequencing. miRNA profiles were different between the two groups. Furthermore, nine tumor suppressor miRNAs such as miR-29a, miR-146 and miR-223 were significantly downregulated, while seven oncogenic miRNAs such as miR-451, miR-486, miR-107, miR-92 and miR-10 were significantly upregulated in the milk of milk stasis plus neoplasm patients. Three of the identified miRNAs (miR-140, miR-21 and let-7a) were selected using real-time PCR, confirming that these miRNAs were highly expressed. The results also showed that the three miRNAs detected were more abundant in the milk than in the blood. In summary, the data suggested that miRNAs in milk from milk stasis patients may contribute to breast carcinogenesis and that they are more sensitive biomarkers for breast cancer than miRNAs in the blood.
Collapse
Affiliation(s)
- Yi-Qi Gu
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gu Gong
- Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhe-Li Xu
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Li-Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming-Li Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Zhou
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hua Xing
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ke-Ren Wang
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang Sun
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
84
|
Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol Cell Biochem 2014; 390:235-42. [DOI: 10.1007/s11010-014-1974-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/21/2014] [Indexed: 12/01/2022]
|
85
|
Quan ML, Osman F, McCready D, Fernandes K, Sutradhar R, Paszat L. Postmastectomy radiation and recurrence patterns in breast cancer patients younger than age 35 years: a population-based cohort. Ann Surg Oncol 2013; 21:395-400. [PMID: 24145994 DOI: 10.1245/s10434-013-3319-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The utility of post mastectomy radiotherapy in very young women is understudied. The objective of this study was to evaluate the use of PMRT in very young women to determine the effect on recurrence and survival. METHODS All women aged ≤35 years diagnosed with invasive breast cancer from 1994 to 2003 were identified from the Ontario Cancer Registry. Patient, tumour, treatment and outcome data were abstracted from primary chart review. Local or regional recurrence was the primary endpoint with contralateral, distant recurrence/death treated as competing risks. Propensity score methods were incorporated into multivariable Cox proportional hazards models to evaluate the effect of radiation therapy on the time to local/regional, distant recurrence or death. RESULTS 588 patients were identified during the study period, of which 382 were eligible for analysis. Overall, 182 (48%) of patients sustained a recurrence after a median follow-up of 2.72 years. The use of PMRT significantly reduced locoregional recurrence (HR 0.54, 95% CI 0.29-0.996) compared with those who did not receive PMRT. There was no significant effect of PMRT on contralateral, distant recurrences, or death without recurrence (HR 0.98, 95% CI 0.66-1.47). Of the patients with known node status (N = 451), isolated local recurrence occurred in 5, 2.5, and 8.5% in patients with N0, N1-3, and N4 positive nodes respectively. CONCLUSIONS We have found a significant reduction in locoregional recurrence with PMRT but no survival benefit in very young women with breast cancer.
Collapse
Affiliation(s)
- May Lynn Quan
- Division of Surgery, Foothills Medical Centre, Calgary, AB, Canada,
| | | | | | | | | | | |
Collapse
|