51
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
52
|
Bragantini B, Tiotiu D, Rothé B, Saliou JM, Marty H, Cianférani S, Charpentier B, Quinternet M, Manival X. Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis. J Mol Biol 2016; 428:2488-2506. [DOI: 10.1016/j.jmb.2016.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 11/29/2022]
|
53
|
Zaarur N, Xu X, Lestienne P, Meriin AB, McComb M, Costello CE, Newnam GP, Ganti R, Romanova NV, Shanmugasundaram M, Silva STN, Bandeiras TM, Matias PM, Lobachev KS, Lednev IK, Chernoff YO, Sherman MY. RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO J 2015; 34:2363-82. [PMID: 26303906 DOI: 10.15252/embj.201591245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 02/02/2023] Open
Abstract
The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates. Similarly, downregulation of RuvbL orthologs in yeast suppressed the formation of an aggresome-like body and enhanced the aggregate toxicity. In contrast, their overproduction enhanced the resistance to proteotoxic stress independently of chaperone Hsp104. Mammalian RuvbL associated with the aggresome, and the aggresome substrate synphilin-1 interacted directly with the RuvbL1 barrel-like structure near the opening of the central channel. Importantly, polypeptides with unfolded structures and amyloid fibrils stimulated the ATPase activity of RuvbL. Finally, disassembly of protein aggregates was promoted by RuvbL. These data indicate that RuvbL complexes serve as chaperones in protein disaggregation.
Collapse
Affiliation(s)
- Nava Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xiaobin Xu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | | | - Anatoli B Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Gary P Newnam
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rakhee Ganti
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nina V Romanova
- Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maruda Shanmugasundaram
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Kirill S Lobachev
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Yury O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
54
|
Quinternet M, Rothé B, Barbier M, Bobo C, Saliou JM, Jacquemin C, Back R, Chagot ME, Cianférani S, Meyer P, Branlant C, Charpentier B, Manival X. Structure/Function Analysis of Protein-Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly. J Mol Biol 2015. [PMID: 26210662 DOI: 10.1016/j.jmb.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular β-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.
Collapse
Affiliation(s)
- Marc Quinternet
- FR 3209 CNRS-Université de Lorraine, Bioingénierie Moléculaire, Cellulaire et Thérapeutique, Biopôle, Campus Biologie-Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Muriel Barbier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Claude Bobo
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Michel Saliou
- BioOrganic Mass Spectrometry Laboratory, IPHC-DSA, UMR 7178 Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Marie-Eve Chagot
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory, IPHC-DSA, UMR 7178 Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France
| | - Philippe Meyer
- Sorbonne Universités, UPMC University Paris 6, CNRS, UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France.
| |
Collapse
|
55
|
Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol 2015; 22:11-9. [PMID: 25565028 DOI: 10.1038/nsmb.2939] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
The ribosome, central to protein synthesis in all cells, is a complex multicomponent assembly with rRNA at its functional core. During the process of ribosome biogenesis, diverse noncoding RNAs participate in controlling the quantity and quality of this rRNA. In this Review, I discuss the multiple roles assumed by noncoding RNAs during the different steps of ribosome biogenesis and how they contribute to the generation of ribosome heterogeneity, which affects normal and pathophysiological processes.
Collapse
Affiliation(s)
- Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
56
|
Singh M, Wang Z, Cascio D, Feigon J. Structure and interactions of the CS domain of human H/ACA RNP assembly protein Shq1. J Mol Biol 2015; 427:807-823. [PMID: 25553844 PMCID: PMC4323627 DOI: 10.1016/j.jmb.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022]
Abstract
Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here, we present the crystal structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- University of California Los Angeles-Department of Energy (UCLA-DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; University of California Los Angeles-Department of Energy (UCLA-DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
57
|
von Morgen P, Hořejší Z, Macurek L. Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet 2015; 6:69. [PMID: 25767478 PMCID: PMC4341119 DOI: 10.3389/fgene.2015.00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
The R2TP complex is a HSP90 co-chaperone, which consists of four subunits: PIH1D1, RPAP3, RUVBL1, and RUVBL2. It is involved in the assembly of large protein or protein–RNA complexes such as RNA polymerase, small nucleolar ribonucleoproteins (snoRNPs), phosphatidylinositol 3 kinase-related kinases (PIKKs), and their complexes. While RPAP3 has a HSP90 binding domain and the RUVBLs comprise ATPase activities important for R2TP functions, PIH1D1 contains a PIH-N domain that specifically recognizes phosphorylated substrates of the R2TP complex. In this review we provide an overview of the current knowledge of the R2TP complex with the focus on the recently identified structural and mechanistic features of the R2TP complex functions. We also discuss the way R2TP regulates cellular response to stress caused by low levels of nutrients or by DNA damage and its possible exploitation as a target for anti-cancer therapy.
Collapse
Affiliation(s)
- Patrick von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague Czech Republic
| | - Zuzana Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague Czech Republic ; DNA Damage Response Laboratory, London Research Institute, London UK
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague Czech Republic
| |
Collapse
|
58
|
Bizarro J, Charron C, Boulon S, Westman B, Pradet-Balade B, Vandermoere F, Chagot ME, Hallais M, Ahmad Y, Leonhardt H, Lamond A, Manival X, Branlant C, Charpentier B, Verheggen C, Bertrand E. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. ACTA ACUST UNITED AC 2014; 207:463-80. [PMID: 25404746 PMCID: PMC4242836 DOI: 10.1083/jcb.201404160] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During small nucleolar ribonucleoprotein complex assembly, a pre-snoRNP complex consisting only of protein components forms first, followed by displacement of the ZNHIT3 subunit when C/D snoRNAs bind and dynamic loading and unloading of RuvBL AAA+ ATPases. In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90–R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA+ adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Séverine Boulon
- Centre de Recherches de Biochimie Macromoléculaire, Unité Mixte de Recherche 5237, 34293 Montpellier, Cedex 5, France
| | - Belinda Westman
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bérengère Pradet-Balade
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Franck Vandermoere
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France Institut National de la Santé et de la Recherche Médicale, U661, F-34000 Montpellier, France Unité Mixte de Recherche 5203, Université de Montpellier 1 and Université de Montpellier 2, F-34000 Montpellier, France
| | - Marie-Eve Chagot
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Marie Hallais
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Yasmeen Ahmad
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Heinrich Leonhardt
- Munich Center for Integrated Protein Science (CiPS) and Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany Munich Center for Integrated Protein Science (CiPS) and Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Angus Lamond
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Céline Verheggen
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Edouard Bertrand
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| |
Collapse
|
59
|
Rothé B, Saliou JM, Quinternet M, Back R, Tiotiu D, Jacquemin C, Loegler C, Schlotter F, Peña V, Eckert K, Moréra S, Dorsselaer AV, Branlant C, Massenet S, Sanglier-Cianférani S, Manival X, Charpentier B. Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 2014; 42:10731-47. [PMID: 25170085 PMCID: PMC4176330 DOI: 10.1093/nar/gku612] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marc Quinternet
- FR CNRS-3209 Bioingénierie Moléculaire, Cellulaire et Thérapeutique (BMCT), CNRS, Université de Lorraine, Biopôle, Campus Biologie Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Decebal Tiotiu
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Vlad Peña
- Max-Planck-Institut für biophysikalische Chemie, Abtl. Röntgenkristallographie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kelvin Eckert
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Solange Moréra
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
60
|
Hořejší Z, Stach L, Flower TG, Joshi D, Flynn H, Skehel JM, O'Reilly NJ, Ogrodowicz RW, Smerdon SJ, Boulton SJ. Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 2014; 7:19-26. [PMID: 24656813 PMCID: PMC3989777 DOI: 10.1016/j.celrep.2014.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
The R2TP cochaperone complex plays a critical role in the assembly of multisubunit machines, including small nucleolar ribonucleoproteins (snoRNPs), RNA polymerase II, and the mTORC1 and SMG1 kinase complexes, but the molecular basis of substrate recognition remains unclear. Here, we describe a phosphopeptide binding domain (PIH-N) in the PIH1D1 subunit of the R2TP complex that preferentially binds to highly acidic phosphorylated proteins. A cocrystal structure of a PIH-N domain/TEL2 phosphopeptide complex reveals a highly specific phosphopeptide recognition mechanism in which Lys57 and 64 in PIH1D1, along with a conserved DpSDD phosphopeptide motif within TEL2, are essential and sufficient for binding. Proteomic analysis of PIH1D1 interactors identified R2TP complex substrates that are recruited by the PIH-N domain in a sequence-specific and phosphorylation-dependent manner suggestive of a common mechanism of substrate recognition. We propose that protein complexes assembled by the R2TP complex are defined by phosphorylation of a specific motif and recognition by the PIH1D1 subunit.
Collapse
Affiliation(s)
- Zuzana Hořejší
- DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK
| | - Lasse Stach
- MRC National Institute for Medical Research, Division of Molecular Structure, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Thomas G Flower
- MRC National Institute for Medical Research, Division of Molecular Structure, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Dhira Joshi
- Peptide Chemistry, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Helen Flynn
- DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK
| | - J Mark Skehel
- DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK; Biological Mass Spectrometry and Proteomics Group, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Nicola J O'Reilly
- DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK
| | - Roksana W Ogrodowicz
- MRC National Institute for Medical Research, Division of Molecular Structure, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Stephen J Smerdon
- MRC National Institute for Medical Research, Division of Molecular Structure, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
61
|
Afanasyeva A, Hirtreiter A, Schreiber A, Grohmann D, Pobegalov G, McKay AR, Tsaneva I, Petukhov M, Käs E, Grigoriev M, Werner F. Lytic water dynamics reveal evolutionarily conserved mechanisms of ATP hydrolysis by TIP49 AAA+ ATPases. Structure 2014; 22:549-59. [PMID: 24613487 PMCID: PMC3991330 DOI: 10.1016/j.str.2014.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 11/24/2022]
Abstract
Eukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis. We have studied the single TIP49 ortholog (mkTIP49) from the archaeon M. kandleri We propose a model for assembly of the pre-transition state for ATP hydrolysis Trans-aspartates downregulate ATP hydrolysis by mkTIP49 hexamers Mutational analysis confirms a highly conserved mechanism for lytic water activation
Collapse
Affiliation(s)
- Arina Afanasyeva
- Department of Biophysics, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina 188300, Russia
| | - Angela Hirtreiter
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Anne Schreiber
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Georgii Pobegalov
- Department of Biophysics, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia
| | - Adam R McKay
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Irina Tsaneva
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Michael Petukhov
- Department of Biophysics, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Gatchina 188300, Russia
| | - Emmanuel Käs
- UMR 5099, CNRS, Toulouse F-31000, France; Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse F-31000, France.
| | - Mikhail Grigoriev
- UMR 5099, CNRS, Toulouse F-31000, France; Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse F-31000, France.
| | - Finn Werner
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
62
|
Progress in structural studies of telomerase. Curr Opin Struct Biol 2014; 24:115-24. [PMID: 24508601 DOI: 10.1016/j.sbi.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/01/2014] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
Telomerase is the ribonucleoprotein (RNP) reverse transcriptase responsible for synthesizing the 3' ends of linear chromosomes. It plays critical roles in tumorigenesis, cellular aging, and stem cell renewal. The past two years have seen exciting progress in determining telomerase holoenzyme architecture and the structural basis of telomerase activity. Notably, the first electron microscopy structures of telomerase were reported, of the Tetrahymena thermophila telomerase holoenzyme and a human telomerase dimer. In addition to new structures of TERT and TER domains, the first structures of telomerase protein domains beyond TERT, and their complexes with TER or telomeric single-stranded DNA, were reported. Together these studies provide the first glimpse into the organization of the proteins and RNA in the telomerase RNP.
Collapse
|
63
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
64
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2795-811. [DOI: 10.1016/j.bbapap.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/27/2022]
|
65
|
Ahmad M, Afrin F, Tuteja R. Identification of R2TP complex of Leishmania donovani and Plasmodium falciparum using genome wide in-silico analysis. Commun Integr Biol 2013; 6:e26005. [PMID: 24505500 PMCID: PMC3913666 DOI: 10.4161/cib.26005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/22/2022] Open
Abstract
Recently discovered R2TP complex is an important multiprotein complex involved in multiple cellular process like snoRNP biogenesis, PIKK signaling, RNA polymerase II assembly and apoptosis. Within R2TP complex, Pih1 tightly interacts with Rvb1/Rvb2 and with Tah1 to form R2TP macromolecular complex. R2TP complex further interacts with Hsp90 to form R2TP-Hsp90 complex, which has been found critical in many cellular process. The genome wide screening of Leishmania donovani and Plasmodium falciparum led to the identification of RuvB like1, RuvB like 2, Pih1, and Tah1. Therefore, we speculate that this complex is also important for these parasites as in the yeast. The detailed analysis of crucial components of R2TP complex, Ld-RuvB like 1, and Ld-RuvB like 2, revealed the presence of characteristic motifs like DNA binding motif and ATPase motifs. Hsp90 is also reported from Leishmania donovani and Plasmodium falciparum suggesting that the R2TP complex further interacts with Hsp90 to form R2TP-Hsp90 complex. Recently it has been discovered that RuvB like proteins are overexpressed in many cancers and their ATPase activity is crucial for cancer cell proliferation and the human RuvBs have been proposed as suitable drug target for cancer. Similarly one of the Plasmodium falciparum RuvB like protein (PfRuvB3) has been found to be specific to the stage where nuclear division led multiplication of parasite take place. Considering all these it seems that the R2TP complex may be playing some critical role both in the cancer cell proliferation in human and rapid multiplication of the parasites Leishmania donovani and Plasmodium falciparum.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India ; Department of Biotechnology; Jamia Hamdard; Hamdard Nagar; New Delhi, India
| | - Farhat Afrin
- Department of Biotechnology; Jamia Hamdard; Hamdard Nagar; New Delhi, India
| | - Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
66
|
Brault ME, Lauzon C, Autexier C. Dyskeratosis congenita mutations in dyskerin SUMOylation consensus sites lead to impaired telomerase RNA accumulation and telomere defects. Hum Mol Genet 2013; 22:3498-507. [PMID: 23660516 DOI: 10.1093/hmg/ddt204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mutations in the dyskerin gene (DKC1) cause X-linked dyskeratosis congenita (DC), a rare and fatal premature aging syndrome characterized by defective telomere maintenance. Dyskerin is a highly conserved nucleolar protein, and a component of the human telomerase complex that is essential for human telomerase RNA (hTR) stability. However, its regulation remains poorly understood. Here, we report that dyskerin can be modified by small ubiquitin-like modifiers (SUMOs). We find that human DC-causing mutations in highly conserved dyskerin SUMOylation consensus sites lead to impaired hTR accumulation, telomerase activity and telomere maintenance. Finally, we show that modification of dyskerin by SUMOylation is required for its stability. Our findings provide the first evidence that dyskerin stability is regulated by SUMOylation and that mutations altering dyskerin SUMOylation can lead to defects in telomere maintenance that are characteristics of DC.
Collapse
Affiliation(s)
- Marie Eve Brault
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3775 Côte Ste Catherine Road, Montréal, QC H3T 1E2, Canada
| | | | | |
Collapse
|
67
|
Nano N, Houry WA. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110399. [PMID: 23530256 DOI: 10.1098/rstb.2011.0399] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved and essential eukaryotic AAA+ proteins linked to a wide range of cellular processes. AAA+ proteins are ATPases associated with diverse cellular activities and are characterized by the presence of one or more AAA+ domains. These domains have the canonical Walker A and Walker B nucleotide binding and hydrolysis motifs. Rvb1 and Rvb2 have been found to be part of critical cellular complexes: the histone acetyltransferase Tip60 complex, chromatin remodelling complexes Ino80 and SWR-C, and the telomerase complex. In addition, Rvb1 and Rvb2 are components of the R2TP complex that was identified by our group and was determined to be involved in the maturation of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes. Furthermore, the Rvbs have been associated with mitotic spindle assembly, as well as phosphatidylinositol 3-kinase-related protein kinase (PIKK) signalling. This review sheds light on the potential role of the Rvbs as chaperones in the assembly and remodelling of these critical complexes.
Collapse
Affiliation(s)
- Nardin Nano
- Department of Biochemistry, University of Toronto, , Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
68
|
Rosenbaum J, Baek SH, Dutta A, Houry WA, Huber O, Hupp TR, Matias PM. The emergence of the conserved AAA+ ATPases Pontin and Reptin on the signaling landscape. Sci Signal 2013; 6:mr1. [PMID: 23482663 DOI: 10.1126/scisignal.2003906] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pontin (also known as RUVBL1 and RVB1) and Reptin (also called RUVBL2 and RVB2) are related members of the large AAA+ (adenosine triphosphatase associated with diverse cellular activities) superfamily of conserved proteins. Various cellular functions depend on Pontin and Reptin, mostly because of their functions in the assembly of protein complexes that play a role in the regulation of cellular energetic metabolism, transcription, chromatin remodeling, and the DNA damage response. Little is known, though, about the interconnections between these multiple functions, how the relevant signaling pathways are regulated, whether the interconnections are affected in human disease, and whether components of these pathways are suitable targets for therapeutic intervention. The First International Workshop on Pontin (RUVBL1) and Reptin (RUVBL2), held between 16 and 19 October 2012, discussed the nature of the oligomeric organization of these proteins, their structures, their roles as partners in various protein complexes, and their involvement in cellular regulation, signaling, and pathophysiology, as well as their potential for therapeutic targeting. A major outcome of the meeting was a general consensus that most functions of Pontin and Reptin are related to their roles as chaperones or adaptor proteins that are important for the assembly and function of large signaling protein complexes.
Collapse
Affiliation(s)
- Jean Rosenbaum
- Université Bordeaux, Physiopathologie du Cancer du Foie, U1053, F-33000 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|