51
|
Mühlberger M, Unterweger H, Band J, Lehmann C, Heger L, Dudziak D, Alexiou C, Lee G, Janko C. Loading of Primary Human T Lymphocytes with Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Does Not Impair Their Activation after Polyclonal Stimulation. Cells 2020; 9:cells9020342. [PMID: 32024193 PMCID: PMC7072432 DOI: 10.3390/cells9020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
For the conversion of immunologically cold tumors, characterized by a low T cell infiltration, into hot tumors, it is necessary to enrich T cells in the tumor area. One possibility is the use of magnetic fields to direct T cells into the tumor. For this purpose, primary T cells that were freshly isolated from human whole blood were loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate). Cell toxicity and particle uptake were investigated by flow cytometry and atomic emission spectroscopy. The optimum loading of the T cells without any major effect on their viability was achieved with a particle concentration of 75 µg Fe/mL and a loading period of 24 h. The cellular content of SPIONCitrate was sufficient to attract these T cells with a magnet which was monitored by live-cell imaging. The functionality of the T cells was only slightly influenced by SPIONCitrate, as demonstrated by in vitro stimulation assays. The proliferation rate as well as the expression of co-stimulatory and inhibitory surface molecules (programmed cell death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain containing 3 (Tim-3), C-C motif chemokine receptor 7 (CCR7), CD25, CD45RO, CD69) was investigated and found to be unchanged. Our results presented here demonstrate the feasibility of loading primary human T lymphocytes with superparamagnetic iron oxide nanoparticles without influencing their viability and functionality while achieving sufficient magnetizability for magnetically controlled targeting. Thus, the results provide a strong fundament for the transfer to tumor models and ultimately for new immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Christian Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
| | - Geoffrey Lee
- Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.M.)
- Correspondence: ; Tel.: +49-9131-85-33142
| |
Collapse
|
52
|
Miljanic M, Capasso A, Triplett TA, Eckhardt SG, Aung KL. Immune Checkpoint Blockade in Gastrointestinal Cancers: The Current Status and Emerging Paradigms. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:3-15. [PMID: 35756177 PMCID: PMC9208391 DOI: 10.4103/jipo.jipo_1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022]
Abstract
Immunotherapy is a rapidly evolving treatment paradigm that holds promise to provide long-lasting survival benefits for patients with cancer. This promise, however, remains unfulfilled for the majority of patients with gastrointestinal (GI) cancers, as significant limitations in efficacy exist with immune checkpoint inhibitors (ICIs) in this disease group. A plethora of novel combination treatment strategies are currently being investigated in various clinical trials to make them more efficacious as our understanding of molecular mechanisms mediating resistance to immunotherapy advances. In this article, we summarize the current status of immune checkpoint blockade in GI cancers and discuss the biological rationales that underlie the emerging treatment strategies being tested in ongoing clinical trials in combination with ICIs. We also highlight the promising early results from these strategies and provide future perspectives on enhancing response to immunotherapy for patients with GI cancers.
Collapse
Affiliation(s)
- Mihailo Miljanic
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Anna Capasso
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Todd A. Triplett
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S. Gail Eckhardt
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Kyaw L. Aung
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
53
|
Tan S, Xu Y, Wang Z, Wang T, Du X, Song X, Guo X, Peng J, Zhang J, Liang Y, Lu J, Peng J, Gao C, Wu Z, Li C, Li N, Gao L, Liang X, Ma C. Tim-3 Hampers Tumor Surveillance of Liver-Resident and Conventional NK Cells by Disrupting PI3K Signaling. Cancer Res 2019; 80:1130-1142. [PMID: 31848194 DOI: 10.1158/0008-5472.can-19-2332] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/15/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are enriched within the liver. Apart from conventional NK (cNK) cells, recent studies identified a liver-resident NK (LrNK) subset, which constitutes about half of hepatic NK cells and exhibits distinct developmental, phenotypic, and functional features. However, it remains unclear whether and how LrNK cells, as well as cNK cells, participate in the development of hepatocellular carcinoma (HCC) individually. Here, we report that both LrNK and cNK cells are significantly decreased in HCC. The T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) was significantly upregulated in both tumor-infiltrating LrNK and cNK cells and suppressed their cytokine secretion and cytotoxic activity. Mechanistically, phosphatidylserine (PtdSer) engagement promoted phosphorylation of Tim-3, which then competed with PI3K p110 to bind p85, inhibiting downstream Akt/mTORC1 signaling and resulting in malfunctioning of both NK-cell subsets. Tim-3 blockade retarded HCC growth in a NK-cell-dependent manner. These studies for the first time report the presence and dysfunction of LrNK cells in HCC and show that Tim-3-mediated PI3K/mTORC1 interference is responsible for the dysfunction of both tumor-infiltrating cNK and LrNK cells, providing a new strategy for immune checkpoint-based targeting. SIGNIFICANCE: Tim-3 enhances hepatocellular carcinoma growth by blocking natural killer cell function.
Collapse
Affiliation(s)
- Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Department of Laboratory, Yueyang Hospital, Hunan Normal University, Yueyang, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xianhong Du
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jiali Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jinghui Lu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Nailin Li
- Karolinska Institutet, Department of Medicine-Solna, Clinical Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Department of Laboratory, Yueyang Hospital, Hunan Normal University, Yueyang, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China. .,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China. .,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
54
|
Zhang Y, Jiang N, Zhang T, Chen R, Feng Y, Sang X, Yang N, Chen Q. Tim-3 signaling blockade with α-lactose induces compensatory TIGIT expression in Plasmodium berghei ANKA-infected mice. Parasit Vectors 2019; 12:534. [PMID: 31711531 PMCID: PMC6849286 DOI: 10.1186/s13071-019-3788-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Malaria, one of the largest health burdens worldwide, is caused by Plasmodium spp. infection. Upon infection, the host's immune system begins to clear the parasites. However, Plasmodium species have evolved to escape the host's immune clearance. T-cell immunoglobulin and mucin domain 3 (Tim-3), a surface molecule on most immune cells, is often referred to as an exhaustion marker. Galectin (Gal)-9 is a Tim-3 ligand and the T helper (Th) 1 cell response is inhibited when Gal-9 binds to Tim-3. In the present study, dynamic expression of Tim-3 on key populations of lymphocytes during infection periods of Plasmodium berghei and its significance in disease resistance and pathogenesis were explored. METHODS Tim-3 expression on critical lymphocyte populations and the proportion of these cells, as well as the levels of cytokines in the sera of infected mice, were detected by flow cytometry. Further, in vitro anti-Tim-3 assay using an anti-Tim-3 antibody and in vivo Tim-3-Gal-9 signaling blockade assays using α-lactose (an antagonist of Gal-9) were conducted. An Annexin V Apoptosis Detection Kit with propidium iodide was used to detect apoptosis. In addition, proteins associated with apoptosis in lung and spleen tissues were confirmed by Western blotting assays. RESULTS Increased Tim-3 expression on splenic CD8+ and splenic CD4+, and circulatory CD4+ T cells was associated with a reduction in the proportion of these cells. Furthermore, the levels of interleukin (IL)-2, IL-4, IL-6, IL-22, and interferon (IFN)-γ, but not that of tumor necrosis factor alpha (TNF-α), IL-10, and IL-9, increased to their highest levels at day 4 post-infection and decreased thereafter. Blocking Tim-3 signaling in vitro inhibited lymphocyte apoptosis. Tim-3-Gal-9 signaling blockade in vivo did not protect the mice, but induced the expression of the immunosuppressive molecule, T cell immunoreceptor with Ig and ITIM domains (TIGIT), in Plasmodium berghei ANKA-infected mice. CONCLUSIONS Tim-3 on lymphocytes negatively regulates cell-mediated immunity against Plasmodium infection, and blocking Tim-3-galectin 9 signaling using α-lactose did not significantly protect the mice; however, it induced the compensatory expression of TIGIT. Further investigations are required to identify whether combined blockade of Tim-3 and TIGIT signaling could achieve a better protective effect.
Collapse
Affiliation(s)
- Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ting Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China. .,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
55
|
Mycoplasma pneumoniae-related hepatitis in children. Microb Pathog 2019; 139:103863. [PMID: 31712120 DOI: 10.1016/j.micpath.2019.103863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is a small bacterium characterized by the absence of cell wall. It is a human pathogen causing upper and lower respiratory infections, both in adults and children. However, it is also considered to be implicated in the pathogenesis of several types of extra-respiratory diseases, including some gastrointestinal disorders. The liver involvement in children during or after M. pneumoniae infections is analyzed and discussed in this review. Through a systematic literature search, it is evidenced that M. pneumoniae is not infrequently associated with alteration of liver function, but rarely causes acute and severe hepatitis in children. M. pneumoniae should be considered as an unusual cause of acute hepatitis in children, whenever the most common hepatotropic viruses have been excluded. The pathogenesis of M. pneumoniae-related hepatitis is likely to be immune-mediated: both the innate and adaptive immune responses may play a fundamental role. However, the exact pathological mechanisms have to be elucidated yet. Further clinical studies are needed in order to understand the actual relevance of this microorganism in liver disease and its pathogenesis.
Collapse
|
56
|
Fernandez‐Santamaría R, Palomares F, Salas M, Doña I, Bogas G, Ariza A, Rodriguez‐Nogales A, Plaza‐Seron MC, Mayorga C, Torres MJ, Fernández TD. Expression of the Tim3-galectin-9 axis is altered in drug-induced maculopapular exanthema. Allergy 2019; 74:1769-1779. [PMID: 31034608 DOI: 10.1111/all.13847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Drug-induced maculopapular exanthemas (MPEs) are mediated by Th1 CD4+ T cells. One of the mechanisms of control of Th1 cells in homeostasis is the interaction between the checkpoint inhibitor Tim3 and its physiological ligand galectin-9 (Gal9). Disorders affecting this axis may be responsible for various autoimmune and immunological diseases. The aim of this study was to determinate the influence of the Tim3-Gal9 axis on the development of MPE induced by drugs. METHODS Frequencies of different cell subsets and the expression of Tim3 and Gal9 were measured in peripheral blood by flow cytometry and in skin biopsies by immunohistochemistry. Gal9 expression was assessed by RT-qPCR; its release was measured by multiplex assay. The effects of blocking or enhancing the Tim3-Gal9 axis on monocyte-derived dendritic cell (moDC) maturation and T-cell proliferation were determined by flow cytometry. RESULTS The expression of Tim3 was significantly reduced in peripheral blood Th1 cells and in the skin of MPE patients vs controls. Gal9 expression and release were significantly reduced in patient peripheral blood and moDCs, respectively. The addition of exogenous Gal9 significantly reduced Tim3+ Th1 proliferation, although Treg proliferation increased. CONCLUSION This study showed the involvement of the Tim3-Gal9 axis in MPE. The reduced expression of Tim3 in Th1 cells together with the impaired expression of Gal9 in PBMCs and DCs appears to have a role in the development of the disease. The potential of Gal9 to suppress Th1 and enhance Treg proliferation makes it a promising tool for treating these reactions.
Collapse
Affiliation(s)
| | - Francisca Palomares
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
| | - Maria Salas
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Inmaculada Doña
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Gador Bogas
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Adriana Ariza
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
| | - Alba Rodriguez‐Nogales
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
| | - Maria C. Plaza‐Seron
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
| | - Maria J. Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory Andalusian Center for Nanomedicine and Biotechnology-BIONAND Málaga Spain
| | - Tahia D. Fernández
- Allergy Research Group Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga Spain
| |
Collapse
|
57
|
Mejías C, Guirola O. Pharmacophore model of immunocheckpoint protein PD-L1 by cosolvent molecular dynamics simulations. J Mol Graph Model 2019; 91:105-111. [DOI: 10.1016/j.jmgm.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
|
58
|
Ao D, Xia P, Jiang S, Chen N, Meurens F, Zhu J. Comparative transcriptome analysis of TLR8 signaling cells revealed the porcine TLR8 specific differentially expressed genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:129-136. [PMID: 31077691 DOI: 10.1016/j.dci.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
TLRs are the first discovered family of pattern recognition receptors (PRRs). They recognize pathogen associated molecular patterns (PAMPs) and initiate protective immune response. TLR8 as the main endolysosomal TLR, has recently regained attention especially for its structure and function. We previously found TLR8 exhibits species-specific activation by TLR7 specific agonist, Imiquimod (R837). Thus, we next initiated the identification of porcine TLR8 (pTLR8) specific downstream differentially expressed genes (DEGs) by parallel transcriptome analysis of porcine TLR8 and human TLR8 (hTLR8) signaling stable NF-κB reporter cells activated by TLR8 agonist Resiquimod (R848). It turned out that the two TLR8 NF-κB reporter cells can recapitulate the species-specific activity of pTLR8 and hTLR8, transcriptome analysis revealed a number of pTLR8 specific DEGs activated by R848, and some of these gene expressions were confirmed in porcine alveolar macrophages (PAMs) but not occurred in human cell types.
Collapse
Affiliation(s)
- Da Ao
- Comparative Medicine Research Institute, Yangzhou University, China; College Veterinary Medicine, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China
| | - Pengpeng Xia
- Comparative Medicine Research Institute, Yangzhou University, China; College Veterinary Medicine, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China
| | - Sen Jiang
- Comparative Medicine Research Institute, Yangzhou University, China; College Veterinary Medicine, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, China; College Veterinary Medicine, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China
| | - François Meurens
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, China; College Veterinary Medicine, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
| |
Collapse
|
59
|
Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Antibody Therapies for Acute Myeloid Leukemia: Unconjugated, Toxin-Conjugated, Radio-Conjugated and Multivalent Formats. J Clin Med 2019; 8:E1261. [PMID: 31434267 PMCID: PMC6723634 DOI: 10.3390/jcm8081261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
In recent decades, therapy for acute myeloid leukemia (AML) has remained relatively unchanged, with chemotherapy regimens primarily consisting of an induction regimen based on a daunorubicin and cytarabine backbone, followed by consolidation chemotherapy. Patients who are relapsed or refractory can be treated with allogeneic hematopoietic stem-cell transplantation with modest benefits to event-free and overall survival. Other modalities of immunotherapy include antibody therapies, which hold considerable promise and can be categorized into unconjugated classical antibodies, multivalent recombinant antibodies (bi-, tri- and quad-specific), toxin-conjugated antibodies and radio-conjugated antibodies. While unconjugated antibodies can facilitate Natural Killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), bi- and tri-specific antibodies can engage either NK cells or T-cells to redirect cytotoxicity against AML targets in a highly efficient manner, similarly to classic ADCC. Finally, toxin-conjugated and radio-conjugated antibodies can increase the potency of antibody therapies. Several AML tumour-associated antigens are at the forefront of targeted therapy development, which include CD33, CD123, CD13, CLL-1 and CD38 and which may be present on both AML blasts and leukemic stem cells. This review focused on antibody therapies for AML, including pre-clinical studies of these agents and those that are either entering or have been tested in early phase clinical trials. Antibodies for checkpoint inhibition and microenvironment targeting in AML were excluded from this review.
Collapse
Affiliation(s)
- Brent A Williams
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada.
| | - Arjun Law
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Judit Hunyadkurti
- Département de medécine nucléaire et radiobiology, Faculté de medécine et des sciences de la santé, Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | - Jeffrey V Leyton
- Département de medécine nucléaire et radiobiology, Faculté de medécine et des sciences de la santé, Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
- Institute de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
60
|
Tundo GR, Sbardella D, Lacal PM, Graziani G, Marini S. On the Horizon: Targeting Next-Generation Immune Checkpoints for Cancer Treatment. Chemotherapy 2019; 64:62-80. [PMID: 31387102 DOI: 10.1159/000500902] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy,
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
61
|
Piancone F, Saresella M, Marventano I, La Rosa F, Caputo D, Mendozzi L, Rovaris M, Clerici M. A Deficit of CEACAM-1–Expressing T Lymphocytes Supports Inflammation in Primary Progressive Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:76-83. [DOI: 10.4049/jimmunol.1801625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
|
62
|
Immunosuppressive Tumor Microenvironment Status and Histological Grading of Endometrial Carcinoma. CANCER MICROENVIRONMENT 2019; 12:169-179. [PMID: 31134527 DOI: 10.1007/s12307-019-00225-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
The recent successes of new cancer immunotherapy approaches have led to investigate their relevance in the context of the Endometrial Carcinoma (EC). These therapies, that take the tumor-induced immunosuppressive microenvironment into account, target the tumor immune escape, in particular the inhibitory receptors involved in the regulation of the effector T cells' activity (immune checkpoints). The aim of this study was to identify, in ECs, differences in intergrades immune status that could contribute to the differences in tumor aggressiveness, and could also be used as theranostic tools. The immune status of tumors was assessed by quantitative real-time PCR. We analyzed the expression of specific genes associated to specific leukocytes subpopulations and the expression of reporting genes associated with the tumor escape/resistance. This study highlights significant differences in the EC intergrades immune status especially the tumor-infiltrating cell types and their activation status as well as in the molecular factors produced by the environment. The immune microenvironment of grade 1 ECs hints at a robust tumoricidal milieu while that of higher grades is more evocative of a tolerogenic milieu. This genes-based immunological monitoring of tumors that easily highlights significant intergrade differences relating to the density, composition and functional state of the leukocyte infiltrate, could give solid arguments for choosing the best therapeutic options, especially those targeting immune checkpoints. Moreover it could enable an easy adaptation of individual treatment approaches for each patient.
Collapse
|
63
|
Qin A, Zhong T, Zou H, Wan X, Yao B, Zheng X, Yin D. Critical role of Tim-3 mediated autophagy in chronic stress induced immunosuppression. Cell Biosci 2019; 9:13. [PMID: 30680089 PMCID: PMC6341633 DOI: 10.1186/s13578-019-0275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
Background Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. Results We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. Conclusion Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
Collapse
Affiliation(s)
- Anna Qin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Huajiao Zou
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Bifeng Yao
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China.,2Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|
64
|
High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Sci Rep 2018; 8:17512. [PMID: 30504845 PMCID: PMC6269442 DOI: 10.1038/s41598-018-35754-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
T-cell immunoglobulin and mucin domain containing protein-3 (TIM-3) is an important immune regulator. Here, we describe a novel high resolution (1.7 Å) crystal structure of the human (h)TIM-3 N-terminal variable immunoglobulin (IgV) domain with bound calcium (Ca++) that was confirmed by nuclear magnetic resonance (NMR) spectroscopy. Significant conformational differences were observed in the B-C, C'-C″ and C'-D loops of hTIM-3 compared to mouse (m)TIM-3, hTIM-1 and hTIM-4. Further, the conformation of the C-C' loop of hTIM-3 was notably different from hTIM-4. Consistent with the known metal ion-dependent binding of phosphatidylserine (PtdSer) to mTIM-3 and mTIM-4, the NMR spectral analysis and crystal structure of Ca++-bound hTIM-3 revealed that residues in the hTIM-3 F-G loop coordinate binding to Ca++. In addition, we established a novel biochemical assay to define hTIM-3 functionality as determined by binding to human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). These studies provide new insights useful for understanding and targeting hTIM-3.
Collapse
|