51
|
Li Q, Furusawa Y, Kanazawa M, Kanai T, Kitagawa A, Aoki M, Urakabe E, Tomitani T, Sato S, Yoshimoto M, Wei Z. Enhanced efficiency in cell killing at the penetration depths around the Bragg peak of a radioactive 9C-ion beam. Int J Radiat Oncol Biol Phys 2005; 63:1237-44. [PMID: 16253778 DOI: 10.1016/j.ijrobp.2005.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/27/2005] [Accepted: 08/03/2005] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the potential importance of radioactive 9C-ion beam in cancer radiotherapy. METHODS AND MATERIALS Human salivary gland (HSG) cells were exposed to a double-radiation-source 9C beam at different depths around the Bragg peak. Cell survival fraction was determined by standard clonogenic assay. For comparison, the same experiment was conducted for a therapeutic 12C beam. To determine relative biologic effectiveness (RBE) values, HSG cells were also irradiated with 60Co gamma-rays of fractionation scheme as the reference. RESULTS The 9C beam was more efficient in cell killing at the depths around its Bragg peak than was the 12C beam, which corresponded to the 9C-ion stopping region and where delayed low-energy particles were emitted. The RBE value at 50% survival level for the 9C beam varied from 1.38 to 4.23. Compared with the 12C beam, the RBE values for the 9C beam were always higher; an increase in RBE by a factor of up to 1.87 has been observed at the depths distal to the Bragg peak. CONCLUSION The potential advantage of radioactive 9C-ion beam in cancer therapy has been revealed at low dose rate in comparison with a therapeutic 12C beam. This observation, however, remains to be investigated at therapeutic dose rates in the future.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wilkens JJ, Oelfke U. Optimization of radiobiological effects in intensity modulated proton therapy. Med Phys 2005; 32:455-65. [PMID: 15789592 DOI: 10.1118/1.1851925] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Today, inverse treatment planning for intensity modulated proton therapy (IMPT) usually employs a constant relative biological effectiveness (RBE). In this paper, the potential clinical relevance of RBE variations for scanning techniques in IMPT is investigated, and a new strategy to include the RBE into the inverse planning process is presented. Three-dimensional RBE distributions are calculated based on a phenomenological model that describes the RBE as a function of dose, linear energy transfer (LET) and tissue type in the framework of the linear-quadratic model. This RBE model is integrated into the optimization loop of inverse planning by using a modified version of the standard quadratic objective function, where the physical dose is replaced by the biological effect. This system for "biological optimization" was implemented into a research version of the inverse planning software KonRad and allows the direct optimization of the product of RBE and physical dose. Several treatment plans for a prostate case are presented, which compare the biological with the conventional physical dose optimization for IMPT scanning techniques, in particular distal edge tracking (DET) and the full three-dimensional (3D) modulation of beam spots. Mainly due to their different LET distributions, the RBE effects for these two techniques are quite different: while the RBE distribution was more or less homogeneous in the planning target volume (PTV) for 3D modulation, considerable RBE variations within the PTV were observed for DET. These unfavorable effects could be compensated for by employing the new biological objective function, which led to a more homogeneous distribution of the product of RBE and physical dose in the PTV. The computation time increased by a factor of 2 compared to the optimization of the physical dose. In conclusion, the proposed method allows the simultaneous multifield optimization of the biological effect in a reasonable time, and is therefore well suited for studying the influence of a variable RBE in IMPT as well as for minimizing potentially adverse effects.
Collapse
Affiliation(s)
- Jan J Wilkens
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
53
|
Paganetti H. Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat 2004; 2:413-26. [PMID: 14529306 DOI: 10.1177/153303460300200506] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Key to radiation therapy is to apply a high tumor-destroying dose while protecting healthy tissue, especially near organs at risk. To optimize treatment for ion therapy not the dose but the dose multiplied by the relative biological effectiveness (RBE) is decisive. Proton therapy has been based on the use of a generic RBE, which is applied to all treatments independent of dose/fraction, position in the spread-out Bragg peak (SOBP), initial beam energy or the particular tissue. Dependencies of the RBE on various physical and biological properties are disregarded. The variability of RBE in clinical situations is believed to be within 10-20%. This is in the same range of effects that receive high attention these days, i.e., patient set-up uncertainties, organ motion effects, and dose calculation accuracy all affecting proton as well as conventional radiation therapy. Elevated RBE values can be expected near the edges of the target, thus probably near critical structures. This is because the edges show lower doses and, depending on the treatment plan, may be identical with the beam's distal edge, where dose is deposited in part by high-LET protons. We assess the rationale for the continued use of a generic RBE and whether the magnitude of RBE variation with treatment parameters is small relative to our abilities to determine RBE's. Two aspects have to be considered. Firstly, the available information from experimental studies and secondly, our ability to calculate RBE values for a given treatment plan based on parameters extracted from such experiments. We analyzed published RBE values for in vitro and in vivo endpoints. The values for cell survival in vitro indicate a substantial spread between the diverse cell lines. The average value at mid SOBP over all dose levels is approximately 1.2 in vitro and approximately 1.1 in vivo. Both in vitro and in vivo data indicate a statistically significant increase in RBE for lower doses per fraction, which is much smaller for in vivo systems. The experimental in vivo data indicate that continued employment of a generic RBE value of 1.1 is reasonable. At present, there seems to be too much uncertainty in the RBE value for any human tissue to propose RBE values specific for tissue, dose/fraction, etc. There is a clear need for prospective assessments of normal tissue reactions in proton irradiated patients and determinations of RBE values for several late responding tissues in animal systems, especially as a function of dose in the range of 1-4 Gy. However, there is a measurable increase in RBE over the terminal few mm of the SOBP, which results in an extension of the bio-effective range of the beam of a few mm. This needs to be considered in treatment planning, particularly for single field plans or for an end of range in or close to a critical structure. To assess our ability to calculate RBE values we studied two approaches, which are both based on the track structure theory of radiation action. RBE calculations are difficult since both the physical input parameters, i.e., LET distributions, and, even more so, the biological input parameters, i.e., local cellular response, have to be known with high accuracy. Track structure theory provides a basis for predicting dose-response curves for particle irradiation. However, designed for heavy ion applications the models show weaknesses in the prediction of proton radiation effects. We conclude that, at present, RBE modeling in treatment planning involves significant uncertainties. To incorporate RBE variations in treatment planning there has to be a reliable biological model to calculate RBE values based on the physical characteristics of the radiation field and based on well-known biological input parameters. In order to do detailed model calculations more experimental data, in particular for in vivo endpoints, are needed
Collapse
Affiliation(s)
- H Paganetti
- Massachusetts General Hospital, Department of Radiation Oncology & Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
54
|
Wilkens JJ, Oelfke U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Phys Med Biol 2004; 49:2811-25. [PMID: 15285249 DOI: 10.1088/0031-9155/49/13/004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To study the effects of a variable relative biological effectiveness (RBE) in inverse treatment planning for proton therapy, fast methods for three-dimensional RBE calculations are required. We therefore propose a simple phenomenological model for the RBE in therapeutic proton beams. It describes the RBE as a function of the dose, the linear energy transfer (LET) and tissue specific parameters. Published experimental results for the dependence of the parameters alpha and beta from the linear-quadratic model on the dose averaged LET were evaluated. Using a linear function for alpha(LET) in the relevant LET region below 30 keV per micrometre and a constant beta, a simple formula for the RBE could be derived. The new model was able to reproduce the basic dependences of RBE on dose and LET, and the RBE values agreed well with experimental results. The model was also applied to spread-out Bragg peaks (SOBP), where the main effects of a variable RBE are an increase of the RBE along the SOBP plateau, and a shift in depth of the distal falloff. The new method allows fast RBE estimations and has therefore potential applications in iterative treatment planning for proton therapy.
Collapse
Affiliation(s)
- J J Wilkens
- German Cancer Research Center (DKFZ), Department of Medical Physics, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
55
|
Shukitt-Hale B, Szprengiel A, Pluhar J, Rabin BM, Joseph JA. The effects of proton exposure on neurochemistry and behavior. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 33:1334-1339. [PMID: 15803624 DOI: 10.1016/j.asr.2003.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.
Collapse
Affiliation(s)
- B Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center of Aging at Tufts Universty, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
56
|
Weber DC, Chan AW, Bussiere MR, Harsh GR, Ancukiewicz M, Barker FG, Thornton AT, Martuza RL, Nadol JB, Chapman PH, Loeffler JS. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery 2003; 53:577-86; discussion 586-8. [PMID: 12943574 DOI: 10.1227/01.neu.0000079369.59219.c0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 04/22/2003] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE We sought to determine the tumor control rate and cranial nerve function outcomes in patients with vestibular schwannomas who were treated with proton beam stereotactic radiosurgery. METHODS Between November 1992 and August 2000, 88 patients with vestibular schwannomas were treated at the Harvard Cyclotron Laboratory with proton beam stereotactic radiosurgery in which two to four convergent fixed beams of 160-MeV protons were applied. The median transverse diameter was 16 mm (range, 2.5-35 mm), and the median tumor volume was 1.4 cm(3) (range, 0.1-15.9 cm(3)). Surgical resection had been performed previously in 15 patients (17%). Facial nerve function (House-Brackmann Grade 1) and trigeminal nerve function were normal in 79 patients (89.8%). Eight patients (9%) had good or excellent hearing (Gardner-Robertson [GR] Grade 1), and 13 patients (15%) had serviceable hearing (GR Grade 2). A median dose of 12 cobalt Gray equivalents (range, 10-18 cobalt Gray equivalents) was prescribed to the 70 to 108% isodose lines (median, 70%). The median follow-up period was 38.7 months (range, 12-102.6 mo). RESULTS The actuarial 2- and 5-year tumor control rates were 95.3% (95% confidence interval [CI], 90.9-99.9%) and 93.6% (95% CI, 88.3-99.3%). Salvage radiosurgery was performed in one patient 32.5 months after treatment, and a craniotomy was required 19.1 months after treatment in another patient with hemorrhage in the vicinity of a stable tumor. Three patients (3.4%) underwent shunting for hydrocephalus, and a subsequent partial resection was performed in one of these patients. The actuarial 5-year cumulative radiological reduction rate was 94.7% (95% CI, 81.2-98.3%). Of the 21 patients (24%) with functional hearing (GR Grade 1 or 2), 7 (33.3%) retained serviceable hearing ability (GR Grade 2). Actuarial 5-year normal facial and trigeminal nerve function preservation rates were 91.1% (95% CI, 85-97.6%) and 89.4% (95% CI, 82-96.7%). Univariate analysis revealed that prescribed dose (P = 0.005), maximum dose (P = 0.006), and the inhomogeneity coefficient (P = 0.03) were associated with a significant risk of long-term facial neuropathy. No other cranial nerve deficits or cancer relapses were observed. CONCLUSION Proton beam stereotactic radiosurgery has been shown to be an effective means of tumor control. A high radiological response rate was observed. Excellent facial and trigeminal nerve function preservation rates were achieved. A reduced prescribed dose is associated with a significant decrease in facial neuropathy.
Collapse
Affiliation(s)
- Damien C Weber
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Yin H, Bhattacharjee D, Roy G, Fujimoto N, Nakatani T, Ito A. Tumorigenesis in infant C3H/HeN mice exposed to tritiated water (HTO). JOURNAL OF RADIATION RESEARCH 2002; 43:345-351. [PMID: 12674198 DOI: 10.1269/jrr.43.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to determine the carcinogenicity and retention of tritiated water (HTO) in mice. A two-part study was undertaken. In an HTO-incorporation study, both sexes of 12-day old C3H/HeN mice were i.p. injected with 3.70 MBq/pup of HTO and sacrificed 3 hr and 1, 3, 7, 14 days after HTO administration; in a carcinogenicity study, pups were given a single i.p. injection of HTO at doses of 0, 0.23, 0.92 and 3.70 MBq/mouse, and then observed for 14 months. The survival rates of both sexes slightly decreased upon increasing the HTO administered doses. The results indicated that the administration of HTO to infants led to a significant increase of liver tumors in male mice, but not in females. In female mice, ovarian tumors were observed for the high-dose group of injected HTO.
Collapse
Affiliation(s)
- Hong Yin
- Department of Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
58
|
Rabin BM, Buhler LL, Joseph JA, Shukitt-Hale B, Jenkins DG. Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats. JOURNAL OF RADIATION RESEARCH 2002; 43 Suppl:S225-S228. [PMID: 12793763 DOI: 10.1269/jrr.43.s225] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
On long-duration trips outside of the magnetosphere, astronauts will be exposed to protons and to heavy particles which can affect their performance of required tasks. It is essential to determine the range of behaviors that might be affected by exposure to these types of radiation in order to understand the nature of behavioral deficits and to develop effective countermeasures. The present experiment examined the ability of rats to make an operant response following exposure to protons (250 MeV, 4 Gy) or 56Fe particles (1 GeV/n, 1 or 2 Gy). Following irradiation, rats were trained to press a lever in order to obtain food reinforcement. They were then placed on an ascending fixed-ratio schedule from FR-1 (each lever press rewarded with a food pellet) through FR-35 (35 lever presses required for 1 food pellet). Rats exposed to 4 Gy of protons or 1 Gy of 56Fe particles responded similarly to controls, increasing their rate of responding as the ratio increased. However, rats exposed to 2 Gy of 56Fe particles failed to increase their rate of responding at ratios greater than FR-20, indicating that rats exposed to 2 Gy of 56Fe particles cannot respond appropriately to increasing work requirements.
Collapse
|
59
|
Kagawa K, Murakami M, Hishikawa Y, Abe M, Akagi T, Yanou T, Kagiya G, Furusawa Y, Ando K, Nojima K, Aoki M, Kanai T. Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. Int J Radiat Oncol Biol Phys 2002; 54:928-38. [PMID: 12377347 DOI: 10.1016/s0360-3016(02)02949-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the biologic effects of proton and carbon ion beams before clinical use. METHODS AND MATERIALS Cultured cells from human salivary gland cancer (HSG cells) were irradiated at 5 points along a 190 MeV per nucleon proton and a 320 MeV per nucleon carbon ion beam, with Bragg peaks modulated to 6 cm widths. A linac 4 MV X-ray was used as a reference. Relative biologic effectiveness (RBE) values at each point were calculated from survival curves. Cells were also irradiated in a cell-stack phantom to identify that localized cell deaths were observed at predefined depth. Total body irradiation of C3H/He mice was performed, and the number of regenerating crypts per jejunal section was compared to calculate intestinal RBE values. For carbon ion and referential 4 MV X-ray beams, mouse right legs were irradiated by four-fractional treatment and followed up for skin reaction scoring. RESULTS RBE values calculated from cell survival curves at the dose that would reduce cell survival to 10% (D10) ranged from 1.01 to 1.05 for protons and from 1.23 to 2.56 for carbon ions. The cell-stack phantom irradiation revealed localized cell deaths at predefined depth. The intestinal RBE values ranged from 1.01 to 1.08 for protons and from 1.15 to 1.88 for carbon ions. The skin RBE value was 2.16 at C320/6 cm spread-out Bragg peak (SOBP) center. CONCLUSION The radiobiologic measurements of proton and carbon ion beams at Hyogo Ion Beam Medical Center are consistent with previous reports using proton beams in clinical settings and carbon ion beams with similar linear energy transfer (LET) values.
Collapse
Affiliation(s)
- Kazufumi Kagawa
- Department of Radiology, Hyogo Ion Beam Medical Center, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, Suit HD. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 2002; 53:407-21. [PMID: 12023146 DOI: 10.1016/s0360-3016(02)02754-2] [Citation(s) in RCA: 639] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of 1.0 or 1.1, since the available evidence has been interpreted as indicating that the magnitude of RBE variation with treatment parameters is small relative to our abilities to determine RBEs. As substantial clinical experience and additional experimental determinations of RBE have accumulated and the number of proton radiation therapy centers is projected to increase, it is appropriate to reassess the rationale for the continued use of a generic RBE and for that RBE to be 1.0-1.1. METHODS AND MATERIALS Results of experimental determinations of RBE of in vitro and in vivo systems are examined, and then several of the considerations critical to a decision to move from a generic to tissue-, dose/fraction-, and LET-specific RBE values are assessed. The impact of an error in the value assigned to RBE on normal tissue complication probability (NTCP) is discussed. The incidence of major morbidity in proton-treated patients at Massachusetts General Hospital (MGH) for malignant tumors of the skull base and of the prostate is reviewed. This is followed by an analysis of the magnitude of the experimental effort to exclude an error in RBE of >or=10% using in vivo systems. RESULTS The published RBE values, using colony formation as the measure of cell survival, from in vitro studies indicate a substantial spread between the diverse cell lines. The average value at mid SOBP (Spread Out Bragg Peak) over all dose levels is approximately 1.2, ranging from 0.9 to 2.1. The average RBE value at mid SOBP in vivo is approximately 1.1, ranging from 0.7 to 1.6. Overall, both in vitro and in vivo data indicate a statistically significant increase in RBE for lower doses per fraction, which is much smaller for in vivo systems. There is agreement that there is a measurable increase in RBE over the terminal few millimeters of the SOBP, which results in an extension of the bioeffective range of the beam in the range of 1-2 mm. There is no published report to indicate that the RBE of 1.1 is low. However, a substantial proportion of patients treated at approximately 2 cobalt Gray equivalent (CGE)/fraction 5 or more years ago were treated by a combination of both proton and photon beams. Were the RBE to be erroneously underestimated by approximately 10%, the increase in complication frequency would be quite serious were the complication incidence for the reference treatment >or=3% and the slope of the dose response curves steep, e.g., a gamma(50) approximately 4. To exclude >or=1.2 as the correct RBE for a specific condition or tissue at the 95% confidence limit would require relatively large and multiple assays. CONCLUSIONS At present, there is too much uncertainty in the RBE value for any human tissue to propose RBE values specific for tissue, dose/fraction, proton energy, etc. The experimental in vivo and clinical data indicate that continued employment of a generic RBE value and for that value to be 1.1 is reasonable. However, there is a local "hot region" over the terminal few millimeters of the SOBP and an extension of the biologically effective range. This needs to be considered in treatment planning, particularly for single field plans or for an end of range in or close to a critical structure. There is a clear need for prospective assessments of normal tissue reactions in proton irradiated patients and determinations of RBE values for several late responding tissues in laboratory animal systems, especially as a function of dose/fraction in the range of 1-4 Gy.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Antonelli F, Bettega D, Calzolari P, Cherubini R, Dalla Vecchia M, Durante M, Favaretto S, Grossi G, Marchesini R, Pugliese M, Scampoli P, Simone G, Sorrentino E, Tabocchini MA, Tallone L, Tiveron P. Inactivation of human cells exposed to fractionated doses of low energy protons: relationship between cell sensitivity and recovery efficiency. JOURNAL OF RADIATION RESEARCH 2001; 42:347-359. [PMID: 11951659 DOI: 10.1269/jrr.42.347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Within the framework of radiation biophysics research in the hadrontherapy field, split-dose studies have been performed on four human cell lines with different radiation sensitivity (SCC25, HF19, H184B5 F5-1 M10, and SQ20B). Low energy protons of about 8 and 20 keV/micron LET and gamma-rays were used to study the relationship between the recovery ratio and the radiation quality. Each cell line was irradiated with two dose values corresponding to survival levels of about 5% and 1%. The same total dose was also delivered in two equal fractions separated by 1.5, 3, and 4.5 hours. A higher maximum recovery ratio was observed for radiosensitive cell lines as compared to radioresistant cells. The recovery potential after split doses was small for slow protons, compared to low-LET radiation. These data show that radiosensitivity may not be related to a deficient recovery, and suggest a possible involvement of inducible repair mechanisms.
Collapse
Affiliation(s)
- F Antonelli
- Istituto Superiore di Sanità e Gruppo collegato Sanità INFN, Viale Regina Elena 299, I-00161 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|