51
|
Zhang JN, Liu XG, Zhu M, Chiu FC, Li RC. Assessment of presystemic factors on the oral bioavailability of rifampicin following multiple dosing. J Chemother 1998; 10:354-9. [PMID: 9822352 DOI: 10.1179/joc.1998.10.5.354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study was carried out to elucidate the possible mechanism(s) responsible for reduced oral rifampicin bioavailability after multiple dosing. In addition to autoinduction, the relative contribution of the two possible controlling factors, e.g., intestinal metabolism and microbial degradation, was investigated using a rat model. Pharmacokinetic studies were carried out to assess the absolute rifampicin bioavailability by both oral and intravenous drug administration before and after 8 daily doses of 25 mg/kg. To estimate the possible involvement of microbial degradation, rifampicin kinetics were also assessed in rats on day 8 after receiving multiple oral dosing and concurrent administration of nonabsorbable triple antibiotics for gut sterilization 3 days prior to the study day. Pharmacokinetic parameters were generated by noncompartmental analysis. The results revealed a significant decrease in rifampicin levels for rats after multiple exposure, compared to single dosing; the mean clearance determined by intravenous dosing increased by 43% from 3.7 ml/min/kg and the half-life decreased by 24% from 238 min. However, the extent of decrease in rifampicin exposure following multiple dosing was substantially greater for rats dosed orally than intravenously; estimated absolute oral bioavailability decreased by 15% from 0.89 on day 1 to 0.76 on day 8. No apparent alterations in any of the pharmacokinetic parameters were observed after gut sterilization, suggesting minimal contribution of microbial degradation to the reduction in oral rifampicin absorption after multiple dosing. In addition to hepatic enzyme autoinduction, these results strongly suggest the involvement of enhanced intestinal metabolism as a contributing factor to the decrease in oral rifampicin bioavailability following prolonged exposure.
Collapse
Affiliation(s)
- J N Zhang
- Department of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories
| | | | | | | | | |
Collapse
|
52
|
Mae T, Hosoe K, Yamamoto T, Hidaka T, Ohashi T, Kleeman JM, Adams PE. Effect of a new rifamycin derivative, rifalazil, on liver microsomal enzyme induction in rat and dog. Xenobiotica 1998; 28:759-66. [PMID: 9741954 DOI: 10.1080/004982598239173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1. The effect of a new rifamycin derivative, rifalazil (KRM-1648), on liver microsomal enzyme induction was studied in rat and dog with repeated oral administration of the compound. Relative liver weight, cytochrome b5 and P450 contents, enzyme activities of NADPH-cytochrome c reductase, aniline hydroxylase, p-nitroanisole O-demethylase, aminopyrine N-demethylase, and erythromycin N-demethylase were measured. 2. In rat, rifalazil treatment at 300 mg/kg/day for 10 days increased cytochrome b5 content but it did not affect liver weight, P450 content or enzyme activities. In contrast, rifampicin and rifabutin increased relative liver weights, cytochrome contents and enzyme activities under similar conditions. 3. In dog, rifalazil did not affect any parameters at 30 or 300 mg/kg/day for 13 weeks. 4. These findings indicate that rifalazil is not an enzyme inducer in rat and dog. This property differs from other rifamycin derivatives such as rifampicin and rifabutin.
Collapse
Affiliation(s)
- T Mae
- Takasago Research Laboratories, Research Institute, Kaneka Corp., Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
53
|
Li AP, Maurel P, Gomez-Lechon MJ, Cheng LC, Jurima-Romet M. Preclinical evaluation of drug-drug interaction potential: present status of the application of primary human hepatocytes in the evaluation of cytochrome P450 induction. Chem Biol Interact 1997; 107:5-16. [PMID: 9402946 DOI: 10.1016/s0009-2797(97)00070-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (CYP) inhibition and induction are the key mechanisms in drug-drug interactions. Aside from clinical studies, primary human hepatocytes may represent the most appropriate experimental system for the evaluation of CYP induction in humans. A consensus of an international panel on the present status and future research directions in the application of primary human hepatocytes in the evaluation of CYP-induction is presented here. The following observations are concluded to be generally true: (1) Human hepatocytes isolated from both biopsy samples and transplantable livers are suitable for induction studies. (2) Hormonally-defined media can be used for the evaluation of CYP induction. (3) Isozyme-selective induction of CYP1A and 3A by known inducers are observed. (4) Reproducibility of induction could be improved by using hepatocytes plated as confluent cultures. (5) Induction could be observed for hepatocytes treated at 1-3 days after culturing. (6) Treatment duration of 2 days in general leads to near maximal induction. (7) In general, there is a good qualitative correlation between human hepatocyte results in vitro and clinical observations in vivo. (8) When the same inducers were evaluated in independent laboratories, similar data were generally observed. We conclude that primary human hepatocytes represent an appropriate model for mechanistic evaluation of CYP induction and as a screening tool for CYP induction potential of xenobiotics. A set of data acceptance criteria are proposed: (1) Positive response should be observed with concurrent positive control chemicals; (2) reproducible observation should be observed with multiple human donors; (3) for negative response, the doses used should not be cytotoxic; and (4) replicate treatment and/or multiple dose treatment should be performed to allow statistical analysis. Future studies should include the further development of on: (1) The inducibility of CYP isozymes other than CYP1A and 3A, and phase II enzymes; (2) further development of culturing condition to allow optimal gene expression; (3) evaluation of the involvement of nonparenchymal cells on CYP induction of parenchymal cells; (4) the and validation of quantitative approaches to extrapolate in vitro data to in vivo data; (5) evaluation of possible individual variations and potential genetic polymorphism in inducibility; (6) further definition of species differences in CYP induction; (7) development of a 'normal' human hepatocyte cell line for CYP induction studies; (8) improvement of cryopreservation procedure of human hepatocytes; (9) definition of the molecular mechanisms of CYP induction; and (10) evaluation of the induction of phase II metabolic pathways.
Collapse
Affiliation(s)
- A P Li
- In Vitro Technologies, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
54
|
Li AP. Primary hepatocyte cultures as an in vitro experimental model for the evaluation of pharmacokinetic drug-drug interactions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 43:103-30. [PMID: 9342174 DOI: 10.1016/s1054-3589(08)60203-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A P Li
- In Vitro Technologies, Inc., University of Maryland Technology Center, Baltimore 21227, USA
| |
Collapse
|
55
|
Thompson TN. Experimental models for evaluating enzyme induction potential of new drug candidates in animals and humans and a strategy for their use. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 43:205-29. [PMID: 9342178 DOI: 10.1016/s1054-3589(08)60207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Experimental models that have application for evaluating enzyme induction potential have been described in order of increasing complexity. The main focus was on models that have had wide application thus far. However, many new models are currently being developed that may have future applications in evaluating enzyme induction potential. A strategy to evaluate the enzyme induction potential of drug candidates was outlined. This scheme uses a combination of new and established techniques to evaluate data in a stepwise manner that is appropriate to the drug's current stage of development.
Collapse
Affiliation(s)
- T N Thompson
- Department of Drug Metabolism, North American Pharmacokinetics, Hoechst Marion Roussel, Inc., Kansas City, Missouri 64137, USA
| |
Collapse
|
56
|
Jamis-Dow CA, Katki AG, Collins JM, Klecker RW. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica 1997; 27:1015-24. [PMID: 9364739 DOI: 10.1080/004982597239994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The main metabolites of rifampin and rifabutin in man are their respective 25 deacetylated derivatives, but the enzyme(s) responsible for these biotransformations are not known. 2. In experiments with human liver slices and human liver microsomes, the 25 deacetylated derivatives of these drugs were the main metabolites observed. Slices and microsomes metabolized rifabutin 3-6-fold faster than rifampin, in agreement with their relative clearance in patients. Rifabutin partitioned into slices more avidly than rifampin. 3. In microsomal incubations, deacetylation did not require NADPH, but the amount of metabolite at the end of incubation was affected by NADPH. With NADPH the amount of 25 deacetyl rifabutin decreased, whereas the amount of 25 deacetyl rifampin increased slightly. A panel of liver microsomes from seven donors showed a 3-4-fold difference in the formation of 25 deacetyl rifabutin or 25 deacetyl rifampin, with strong correlation between the production of the two metabolites (r2 = 0.94). 4. The production of 25 deacetyl rifabutin and 25 deacetyl rifampin by human liver microsomes was not significantly affected by 1 microM 4 chloromercuricbenzoic acid or bis-(4-nitrophenyl) phosphate, but was completely inhibited by 1 microM paraoxon or 1 microM diisopropylfluorophosphate. These results indicate that in man rifampin and rifabutin are deacetylated to their main metabolites by B-esterases.
Collapse
Affiliation(s)
- C A Jamis-Dow
- Laboratory of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
57
|
Trapnell CB, Jamis-Dow C, Klecker RW, Collins JM. Metabolism of rifabutin and its 25-desacetyl metabolite, LM565, by human liver microsomes and recombinant human cytochrome P-450 3A4: relevance to clinical interaction with fluconazole. Antimicrob Agents Chemother 1997; 41:924-6. [PMID: 9145845 PMCID: PMC163826 DOI: 10.1128/aac.41.5.924] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rifabutin and fluconazole are often given concomitantly as therapy to prevent opportunistic infections in individuals infected with the human immunodeficiency virus. Recent reports have shown increased levels of rifabutin and its 25-desacetyl metabolite, LM565, in plasma when rifabutin is administered with fluconazole. Since fluconazole is known to inhibit microsomal enzymes, this study was undertaken to determine if this rifabutin-fluconazole interaction was due to an inhibition of human hepatic enzymes. The metabolism of both rifabutin and LM565 was evaluated in human liver microsomes and recombinant human cytochrome P-450 (CYP) 3A4 in the presence of fluconazole and other probe drugs known to inhibit CYP groups 1A2, 2C9, 2D6, 2E1, and 3A. The concentrations of rifabutin (1 microg/ml), LM565 (1 microg/ml), and fluconazole (10 and 100 microg/ml) used were equal to those observed in plasma after the administration of rifabutin and fluconazole at clinically relevant doses. High-performance liquid chromatography was used to assess the metabolism of rifabutin and LM565. Rifabutin was readily metabolized to LM565 by human microsomes, but the reaction was independent of NADPH and was not affected by the P-450 inhibitors. No rifabutin metabolism by recombinant CYP 3A4 was found to occur. LM565 was also metabolized by human microsomes to two products, but metabolism was dependent on NADPH and was affected by certain P-450 inhibitors. In addition, LM565 was readily metabolized by the recombinant CYP 3A4 to the same two products found with its metabolism by human microsomes. Therefore, rifabutin is metabolized by human microsomes but not via cytochrome P-450 enzymes, whereas LM565 is metabolized by CYP 3A4.
Collapse
Affiliation(s)
- C B Trapnell
- Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA.
| | | | | | | |
Collapse
|
58
|
Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32:210-58. [PMID: 9084960 DOI: 10.2165/00003088-199732030-00004] [Citation(s) in RCA: 549] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article reviews the information available to assist pharmacokineticists in the prediction of metabolic drug interactions. Significant advances in this area have been made in the last decade, permitting the identification in early drug development of dominant cytochrome P450 (CYP) isoform(s) metabolising a particular drug as well as the ability of a drug to inhibit a specific CYP isoform. The major isoforms involved in human drug metabolism are CYP3A, CYP2D6, CYP2C, CYP1A2 and CYP2E1. Often patients are taking multiple concurrent medications, and thus an assessment of potential drug-drug interactions is imperative. A database containing information about the clearance routes for over 300 drugs from multiple therapeutic classes, including analgesics, anti-infectives, psychotropics, anticonvulsants, cancer chemotherapeutics, gastrointestinal agents, cardiovascular agents and others, was constructed to assist in the semiquantitative prediction of the magnitude of potential interactions with drugs under development. With knowledge of the in vitro inhibition constant of a drug (Ki) for a particular CYP isoform, it is theoretically possible to assess the likelihood of interactions for a drug cleared through CYP-mediated metabolism. For many agents, the CYP isoform involved in metabolism has not been identified and there is substantial uncertainty given the current knowledge base. The mathematical concepts for prediction based on competitive enzyme inhibition are reviewed in this article. These relationships become more complex if the inhibition is of a mixed competitive/noncompetitive nature. Sources of uncertainty and inaccuracy in predicting the magnitude of in vivo inhibition includes the nature and design of in vitro experiments to determine Ki, inhibitor concentration in the hepatic cytosol compared with that in plasma, prehepatic metabolism, presence of active metabolites and enzyme induction. The accurate prospective prediction of drug interactions requires rigorous attention to the details of the in vitro results, and detailed information about the pharmacokinetics and metabolism of the inhibitor and inhibited drug. With the discussion of principles and accompanying tabulation of literature data concerning the clearance of various drugs, a framework for reasonable semiquantitative predictions is offered in this article.
Collapse
Affiliation(s)
- R J Bertz
- Department of Pharmacokinetics and Biopharmaceutics, Abbott Laboratories, Abbott Park, Illinois, USA
| | | |
Collapse
|
59
|
Gillum JG, Sesler JM, Bruzzese VL, Israel DS, Polk RE. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40:1866-9. [PMID: 8843295 PMCID: PMC163431 DOI: 10.1128/aac.40.8.1866] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rifampin and rifabutin induce the metabolism of many drugs, which may result in subtherapeutic concentrations and failure of therapy. However, differences between rifabutin and rifampin in potency of induction, and the specific enzymes which are altered, are not clear. This study, involving 12 adult male volunteers, compared the effects of 14-day courses of rifampin and rifabutin on clearance of theophylline, a substrate for the hepatic microsomal enzyme CYP1A2. Subjects were given oral theophylline solution (5 mg/kg of body weight) on day 1 and then randomized to receive daily rifampin (300 mg) or rifabutin (300 mg) on days 3 to 16. Theophylline was readministered as described above on day 15. The first treatment sequence was followed by a 2-week washout period; subjects then received the alternative treatment. Theophylline concentrations were determined for 46 h after each dose, and pharmacokinetic parameters were determined. One subject developed flu-like symptoms while taking rifabutin and withdrew voluntarily. Results from the remaining 11 subjects are reported. Compared with the baseline, the mean area under the concentration-time curve (AUC) (+/- standard deviation) for theophylline declined significantly following rifampin treatment (from 140 +/- 37 to 100 +/- 24 micrograms . h/ml, P <0.001); there was no significant change following rifabutin treatment (136 +/- 48 to 128 +/- 45 micrograms.h/ml). Baseline theophylline AUCs before each treatment phase were not different. A comparison of equal doses of rifampin and rifabutin administered to healthy volunteers for 2 weeks indicates that induction of CYP1A2, as measured by theophylline clearance, is significantly less following rifabutin treatment than it is following rifampin treatment. However, the relative induction potency for other metabolic enzymes remains to be investigated.
Collapse
Affiliation(s)
- J G Gillum
- Department of Pharmacy and Pharmaceutics, School of Pharmacy, Virginia Commonwealth University/Medical College of Virginia, Richmond 23298-0533, USA
| | | | | | | | | |
Collapse
|
60
|
Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A 1996; 93:4001-5. [PMID: 8633005 PMCID: PMC39475 DOI: 10.1073/pnas.93.9.4001] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The P-glycoprotein (Pgp) efflux pump can influence the hepatocellular concentration of xenobiotics that are modulators and substrates of cytochrome P4503A (CYP3A). We tested the hypothesis that Pgp is a determinant of drug-inducible expression of CYP3A. The magnitude of CYP3A induction by rifampicin was compared in the human parental colon carcinoma cell line LS 180/WT (wild type) and in two derivative clones overexpressing the human multidrug resistance gene MDR1 (also designated PGY1) because of either drug selection (LS 180/ADR) or transfection with MDRI cDNA (LS 180/MDR). In both MDR1 cDNA-overexpressing clones, rifampicin induction of CYP3A mRNA and protein was decreased and required greater rifampicin concentrations compared with parental cells. The role of Pgp in regulation of CYP3A expression in vivo was analyzed in mice carrying a targeted disruption of the mdr1a mouse gene. Oral treatment with increasing doses of rifampicin resulted in elevated drug levels in the livers of mdr1a (-/-) mice compared with mdr1a (+/+) mice at all doses. Consistent with the enhanced accumulation of rifampicin in mdr1a (-/-) mice, lower doses of rifampicin were required for induction of CYP3A proteins, and the magnitude of CYP3A induction was greater at all doses of rifampicin in mdr1a (-/-) mice compared with mdr1a (+/+) mice. We conclude that Pgp-mediated transport is a critical element influencing the CYP3A inductive response.
Collapse
Affiliation(s)
- E G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | |
Collapse
|