51
|
Raz R, Levine H, Pinto O, Broday DM, Yuval, Weisskopf MG. Traffic-Related Air Pollution and Autism Spectrum Disorder: A Population-Based Nested Case-Control Study in Israel. Am J Epidemiol 2018; 187:717-725. [PMID: 29020136 DOI: 10.1093/aje/kwx294] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence suggests that perinatal air pollutant exposures are associated with increased risk of autism spectrum disorder (ASD), but evidence for traffic pollutants outside the United States is inconclusive. We assessed the association between nitrogen dioxide, a traffic pollution tracer, and risk of ASD. We conducted a nested case-control study among the entire population of children born during 2005-2009 in the central coastal area of Israel. Cases were identified through the National Insurance Institute of Israel (n = 2,098). Controls were a 20% random sample of the remaining children (n = 54,191). Exposure was based on an optimized dispersion model. We estimated adjusted odds ratios and 95% confidence intervals using logistic regression and a distributed-lag model. In models mutually adjusted for the 2 periods, the odds ratio per 5.85-parts per billion (ppb) increment of nitrogen dioxide exposure during pregnancy (median, 16.8 ppb; range, 7.5-31.2 ppb) was 0.77 (95% confidence interval: 0.59, 1.00), and the odds ratio for exposure during the 9 months after birth was 1.40 (95% confidence interval: 1.09, 1.80). A distributed-lag model revealed reduced risk around week 13 of pregnancy and elevated risk around week 26 after birth. These findings suggest that postnatal exposure to nitrogen dioxide in Israel is associated with increased odds of ASD, and prenatal exposure with lower odds. The latter may relate to selection effects.
Collapse
Affiliation(s)
- Raanan Raz
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem and Hadassah Ein Kerem, Jerusalem, Israel
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem and Hadassah Ein Kerem, Jerusalem, Israel
| | - Ofir Pinto
- Research and Planning Administration, National Insurance Institute of Israel, Jerusalem, Israel
| | - David M Broday
- Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Yuval
- Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Marc G Weisskopf
- Departments of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
52
|
Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res 2018; 11:554-586. [PMID: 29573218 DOI: 10.1002/aur.1938] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY This Keynote Lecture, delivered at the 2016 meeting of the International Society for Autism Research, discusses evidence from human epidemiologic studies of prenatal factors contributing to autism, such as pesticides, maternal nutrition and her health. There is no single cause for autism. Examples highlight the features of a high-quality epidemiology study, and what comprises a compelling case for causation. Emergent research directions hold promise for identifying potential interventions to reduce disabilities, enhance giftedness, and improve lives of those with ASD.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Rebecca J Schmidt
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| | - Paula Krakowiak
- Department of Public Health Sciences, MIND Institute (Medical Investigations of Neurodevelopmental Disorders), University of California, Davis, Davis, California
| |
Collapse
|
53
|
Fordyce TA, Leonhard MJ, Chang ET. A critical review of developmental exposure to particulate matter, autism spectrum disorder, and attention deficit hyperactivity disorder. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:174-204. [PMID: 29157090 DOI: 10.1080/10934529.2017.1383121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Autism spectrum disorder (ASD) and attention deficit (hyperactivity) disorder (ADD/ADHD) are key focuses of current health research due to their increasing prevalence. The objective of this systematic literature search and critical review was to evaluate whether the human epidemiologic data indicate a pattern of association between ASD or ADD/ADHD and developmental exposure to particulate matter (PM), with a focus on exposures encountered before the age of three. A MEDLINE and EMBASE search was conducted; following preliminary and full-text screening, 14 relevant articles were identified for review. Three of the 14 studies were prospective cohort studies evaluating exposure to PM10; 11 studies had a case-control design. There was no consistent association between developmental PM exposure and ASD across the three of the cohort studies. Seven of the case-control studies examined the relationship between PM2.5 and/or PM10 and ASD; four examined the relationship between developmental diesel PM exposure and ASD. Overall, there was low external consistency in results among studies of PM2.5/PM10 and ASD, with some reporting high internal consistency without significant associations, others showing associations with high internal consistency for specific exposure windows only (e.g., third trimester), and still others showing high consistency for moderate to strong associations between PM and ASD. The majority of studies reporting significant results had low effect sizes in conjunction with small sample sizes. The four studies of diesel PM and ASD also had low external consistency of results. Only one study evaluated associations with ADD/ADHD, and it found no significant associations with PM10. The inconsistent findings across studies of developmental exposure to PM and ASD may be attributed to differences in the study populations, exposure assessments, outcome assessments, or chance. Further research is needed to understand the underlying biological mechanisms that lead to ASD and ADD/ADHD and how PM might be involved in those mechanisms, if at all. High-quality epidemiologic studies are also needed to conclusively determine whether developmental PM exposure is a causal factor for ASD or ADD/ADHD, with focus on a well-developed exposure assessment.
Collapse
Affiliation(s)
- Tiffani A Fordyce
- a Exponent, Inc., Center for Health Sciences , Menlo Park , California , USA
| | - Megan J Leonhard
- b Exponent, Inc., Center for Health Sciences , Bellevue , Washington , USA
| | - Ellen T Chang
- a Exponent, Inc., Center for Health Sciences , Menlo Park , California , USA
| |
Collapse
|
54
|
Wang Y, Xiong L, Tang M. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 2017; 37:644-667. [PMID: 28299803 DOI: 10.1002/jat.3451] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
55
|
Chirumbolo S, Bjørklund G, Urbina MA. May traffic air pollution be involved in autism spectrum disorder? ENVIRONMENTAL RESEARCH 2017; 154:57-59. [PMID: 28038434 DOI: 10.1016/j.envres.2016.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 9, 37134 Verona, Italy; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - Geir Bjørklund
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 9, 37134 Verona, Italy; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Mauricio A Urbina
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 9, 37134 Verona, Italy; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
56
|
Singer AB, Burstyn I, Thygesen M, Mortensen PB, Fallin MD, Schendel DE. Parental exposures to occupational asthmagens and risk of autism spectrum disorder in a Danish population-based case-control study. Environ Health 2017; 16:31. [PMID: 28359263 PMCID: PMC5374665 DOI: 10.1186/s12940-017-0230-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Environmental exposures and immune conditions during pregnancy could influence development of autism spectrum disorder (ASD) in offspring. However, few studies have examined immune-triggering exposures in relation to ASD. We evaluated the association between parental workplace exposures to risk factors for asthma ("asthmagens") and ASD. METHODS We conducted a population-based case-control study in the Danish population using register linkage. Our study population consisted of 11,869 ASD cases and 48,046 controls born from 1993 through 2007. Cases were identified by ICD-10 codes in the Danish Psychiatric Central Register. ASD cases and controls were linked to parental Danish International Standard Classification of Occupations (DISCO-88) job codes. Parental occupational asthmagen exposure was estimated by linking DISCO-88 codes to an asthma-specific job-exposure matrix. RESULTS Our maternal analyses included 6706 case mothers and 29,359 control mothers employed during the pregnancy period. We found a weak inverse association between ASD and any maternal occupational asthmagen exposure, adjusting for sociodemographic covariates (adjusted OR: 0.92, 95% CI: 0.86-0.99). In adjusted analyses, including 7647 cases and 31,947 controls with employed fathers, paternal occupational asthmagen exposure was not associated with ASD (adjusted OR: 0.98, 95% CI: 0.92-1.05). CONCLUSIONS We found a weak inverse association between maternal occupational asthmagen exposure and ASD, and a null association between paternal occupational exposure and ASD. We suggest that unmeasured confounding negatively biased the estimate, but that this unmeasured confounding is likely not strong enough to bring the effect above the null. Overall, our results were consistent with no positive association between parental asthmagen exposure and ASD in the children.
Collapse
Affiliation(s)
- Alison B Singer
- Department of Epidemiology and Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA.
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark.
- Department of Epidemiology, University of North Carolina at Chapel Hill, CB #7435, Chapel Hill, NC, 27599, USA.
| | - Igor Burstyn
- Department of Environmental and Occupational Health, Department of Epidemiology and Biostatistics, the A.J. Drexel Autism Institute, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Malene Thygesen
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Fuglesangs Allé 4, Building 2631, DK-8210, Aarhus V, Denmark
| | - Preben Bo Mortensen
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Fuglesangs Allé 4, Building 2631, DK-8210, Aarhus V, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - M Daniele Fallin
- Department of Epidemiology and Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Diana E Schendel
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Fuglesangs Allé 4, Building 2631, DK-8210, Aarhus V, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Public Health, Section for Epidemiology, Aarhus University, Bartholins Allé 2, Building 1260, DK-8000, Aarhus C, Denmark
| |
Collapse
|
57
|
Tyler CR, Zychowski KE, Sanchez BN, Rivero V, Lucas S, Herbert G, Liu J, Irshad H, McDonald JD, Bleske BE, Campen MJ. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part Fibre Toxicol 2016; 13:64. [PMID: 27906023 PMCID: PMC5131556 DOI: 10.1186/s12989-016-0177-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE−/−) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. Results The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE−/− animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE−/− mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE−/− hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Conclusions Inflammatory responses the lung and brain were most substantial in ApoE−/− animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0177-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Katherine E Zychowski
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany N Sanchez
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Valeria Rivero
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - June Liu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | - Barry E Bleske
- Department of Pharmacy Practice & Administrative Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
58
|
Carter CJ, Blizard RA. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016; 101:S0197-0186(16)30197-8. [PMID: 27984170 DOI: 10.1016/j.neuint.2016.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
The increasing incidence of autism suggests a major environmental influence. Epidemiology has implicated many candidates and genetics many susceptibility genes. Gene/environment interactions in autism were analysed using 206 autism susceptibility genes (ASG's) from the Autworks database to interrogate ∼1 million chemical/gene interactions in the comparative toxicogenomics database. Any bias towards ASG's was statistically determined for each chemical. Many suspect compounds identified in epidemiology, including tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene, heavy metals, valproate, acetaminophen, SSRI's, cocaine, bisphenol A, phthalates, polyhalogenated biphenyls, flame retardants, diesel constituents, terbutaline and oxytocin, inter alia showed a significant degree of bias towards ASG's, as did relevant endogenous agents (retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other suspected endocrine disruptors (over 100) selectively targeted ASG's including paraquat, atrazine and other pesticides not yet studied in autism and many compounds used in food, cosmetics or household products, including tretinoin, soy phytoestrogens, aspartame, titanium dioxide and sodium fluoride. Autism polymorphisms influence the sensitivity to some of these chemicals and these same genes play an important role in barrier function and control of respiratory cilia sweeping particulate matter from the airways. Pesticides, heavy metals and pollutants also disrupt barrier and/or ciliary function, which is regulated by sex steroids and by bitter/sweet taste receptors. Further epidemiological studies and neurodevelopmental and behavioural research is warranted to determine the relevance of large number of suspect candidates whose addition to the environment, household, food and cosmetics might be fuelling the autism epidemic in a gene-dependent manner.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex, TN34 2EY, UK.
| | - R A Blizard
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, University College, London, UK
| |
Collapse
|