51
|
Xu Y, Krukoff TL. Adrenomedullin stimulates nitric oxide release from SK-N-SH human neuroblastoma cells by modulating intracellular calcium mobilization. Endocrinology 2005; 146:2295-305. [PMID: 15677761 DOI: 10.1210/en.2004-1354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pM to 100 nM) stimulated NO release from the cells, with a maximal response observed with 1 nM at 30 min. This response was blocked by 1 nM ADM(22-52), an ADM receptor antagonist or 2 microM vinyl-L-NIO, a neuronal NO synthase inhibitor. In addition, 5 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when L-type calcium channels were inhibited with 5 microM nifedipine or 10 microM nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 microM cyclopiazonic acid or 150 nM thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 microM ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mM dibutyryl cAMP, a cAMP analog, and were abrogated by 5 microM H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nM) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 microM) or H-89 (5 microM) and was reduced by ryanodine (10 microM). These results suggest that ADM stimulates calcium influx through L-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+)]i cause activation of neuronal NO synthase and NO release.
Collapse
Affiliation(s)
- Yong Xu
- Department of Cell Biology and Center for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
52
|
Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJV. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther 2005; 103:179-201. [PMID: 15464589 DOI: 10.1016/j.pharmthera.2004.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adrenomedullin (AM) is a peptide that possesses potentially beneficial properties. Since the initial discovery of the peptide by Kitamura et al. in 1993, the literature has been awash with reports describing its novel mechanisms of action and huge potential as a therapeutic target. Strong evidence now exists that AM is able to act as an autocrine, paracrine, or endocrine mediator in a number of biologically significant functions, including the endothelial regulation of blood pressure, protection against organ damage in sepsis or hypoxia, and the control of blood volume through the regulation of thirst. Its early promise as a potential mediator/modulator of disease was not, however, entirely as a result of the discovery of physiological functions but due more to the observation of increasing levels measured in plasma in direct correlation with disease progression. In health, AM circulates at low picomolar concentrations in plasma in 2 forms, a mature 52-amino acid peptide and an immature 53-amino acid peptide. Plasma levels of AM have now been shown to be increased in a number of pathological states, including congestive heart failure, sepsis, essential hypertension, acute myocardial infarction, and renal impairment. These earliest associations have been further supplemented with evidence of a role for AM in other pathologies including, most intriguingly, cancer. In this review, we offer a timely review of our current knowledge on AM and give a detailed account of the putative role of AM in those clinical areas in which the best therapeutic opportunities might exist.
Collapse
Affiliation(s)
- David C Bunton
- Vascular Assessment Unit, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK.
| | | | | | | | | |
Collapse
|
53
|
Nomura I, Abe J, Noma S, Saito H, Gao B, Wheeler G, Leung DYM. Adrenomedullin is highly expressed in blood monocytes associated with acute Kawasaki disease: a microarray gene expression study. Pediatr Res 2005; 57:49-55. [PMID: 15531734 DOI: 10.1203/01.pdr.0000147745.52711.dd] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kawasaki disease (KD) is an acute inflammatory disorder of children frequently associated with the development of coronary artery abnormalities. Although a great deal is known about inflammatory and immune responses in acute KD, the mechanisms linking the immune response to vascular changes are not known. To gain further insight into this process, we performed a microarray gene expression analysis on RNA isolated from the peripheral blood mononuclear cells of four patients with KD during both their acute and convalescent phases. Forty-seven genes of 7129 genes examined showed an increased expression in three or all four patients in the acute compared with the convalescent phase of KD. Fourteen of these genes were significantly (p < 0.05) up-regulated, including several inflammatory response genes (e.g. S-100 A9 protein) and also anti-inflammatory genes (e.g. TSG-6). Of greatest interest, the adrenomedullin (ADM) gene, known to be associated with coronary artery vasodilation, was up-regulated in the acute phase of KD (p = 0.024). Up-regulation of ADM in the acute phase of KD was confirmed in peripheral blood mononuclear cells of 11 additional KD patients by reverse transcriptase-PCR (p < 0.01). Isolated blood monocytes but not lymphocytes were demonstrated by real-time PCR to have increased ADM mRNA (p = 0.01). Plasma ADM protein level in 32 additional KD patients was also confirmed to be higher in acute KD compared with convalescent KD (p < 0.032). It is interesting that from microarray results, other molecules known to be associated with coronary dilation, including nitric oxide, prostacyclin, acetylcholine, bradykinin, substance P, and serotonin, were not elevated in acute KD. Our current study suggests that ADM-expressing monocytes that infiltrate the coronary vascular wall may be the cause of coronary dilation in the acute phase of KD.
Collapse
Affiliation(s)
- Ichiro Nomura
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Francis H, Glaser S, Ueno Y, Lesage G, Marucci L, Benedetti A, Taffetani S, Marzioni M, Alvaro D, Venter J, Reichenbach R, Fava G, Phinizy JL, Alpini G. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J Hepatol 2004; 41:528-37. [PMID: 15464232 DOI: 10.1016/j.jhep.2004.06.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 05/06/2004] [Accepted: 06/09/2004] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIMS To evaluate if increased cholangiocyte cAMP levels alone are sufficient to enhance cholangiocyte proliferation and secretion. METHODS Normal rats were treated in vivo with forskolin for two weeks. Cholangiocyte apoptosis, proliferation and secretion were evaluated. Purified cholangiocytes from normal rats were treated in vitro with forskolin in the absence or presence of Rp-cAMPs (a PKA inhibitor), PP2 (an Src inhibitor) or PD98059 (a MEK inhibitor). Subsequently, we evaluated cholangiocyte proliferation by determination of proliferating cellular nuclear antigen (PCNA) protein expression by immunoblots. We evaluated if the effects of forskolin on cholangiocyte functions are associated with changes in the cAMP/PKA/Src/MEK/ERK1/2 pathway. RESULTS Chronic administration of forskolin to normal rats increased the number of ducts, cAMP levels, and secretin-induced choleresis compared to controls. Forskolin-induced increases in cholangiocyte proliferation and secretion were devoid of cholangiocyte necrosis, inflammation and apoptosis. In vitro, in pure isolated cholangiocytes, forskolin increased cholangiocyte proliferation, which was ablated by Rp-cAMPs, PP2 and PD98059. The effects of forskolin on cholangiocyte proliferation were associated with increased activity of PKA, Src Tyrosine 139 (Tyr 139) and ERK1/2. CONCLUSIONS Modulation of the PKA/Src/MEK/ERK1/2 pathway may be important in the regulation of cholangiocyte growth and secretion observed in cholestatic liver diseases.
Collapse
Affiliation(s)
- Heather Francis
- Division of Research and Education, Scott and White Hospital, The Texas A&M University System Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Benes L, Kappus C, McGregor GP, Bertalanffy H, Mennel HD, Hagner S. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas. J Clin Pathol 2004; 57:172-6. [PMID: 14747444 PMCID: PMC1770218 DOI: 10.1136/jcp.2003.12997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. AIM To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. METHODS Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. RESULTS All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. CONCLUSIONS This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.
Collapse
Affiliation(s)
- L Benes
- Department of Neurosurgery, Philipps-University Marburg, D-35043 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
56
|
Tokunaga N, Nagaya N, Shirai M, Tanaka E, Ishibashi-Ueda H, Harada-Shiba M, Kanda M, Ito T, Shimizu W, Tabata Y, Uematsu M, Nishigami K, Sano S, Kangawa K, Mori H. Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin. Circulation 2004; 109:526-31. [PMID: 14732745 DOI: 10.1161/01.cir.0000109700.81266.32] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Earlier studies have shown that adrenomedullin (AM), a potent vasodilator peptide, has a variety of cardiovascular effects. However, whether AM has angiogenic potential remains unknown. This study investigated whether AM gene transfer induces therapeutic angiogenesis in chronic hind limb ischemia. METHODS AND RESULTS Ischemia was induced in the hind limb of 21 Japanese White rabbits. Positively charged biodegradable gelatin was used to produce ionically linked DNA-gelatin complexes that could delay DNA degradation. Human AM DNA (naked AM group), AM DNA-gelatin complex (AM-gelatin group), or gelatin alone (control group) was injected into the ischemic thigh muscles. Four weeks after gene transfer, significant improvements in collateral formation and hind limb perfusion were observed in the naked AM group and AM-gelatin group compared with the control group (calf blood pressure ratio: 0.60+/-0.02, 0.72+/-0.03, 0.42+/-0.06, respectively). Interestingly, hind limb perfusion and capillary density of ischemic muscles were highest in the AM-gelatin group, which revealed the highest content of AM in the muscles among the three groups. As a result, necrosis of lower hind limb and thigh muscles was minimal in the AM-gelatin group. CONCLUSIONS AM gene transfer induced therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia. Furthermore, the use of biodegradable gelatin as a nonviral vector augmented AM expression and thereby enhanced the therapeutic effects of AM gene transfer. Thus, gelatin-mediated AM gene transfer may be a new therapeutic strategy for the treatment of peripheral vascular diseases.
Collapse
Affiliation(s)
- Noriyuki Tokunaga
- Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM, Grisoli F, Ouafik L, Boudouresque F. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: Involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer 2004; 108:797-804. [PMID: 14712479 DOI: 10.1002/ijc.11663] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, we demonstrated that U87 glioblastoma xenograft tumors treated with anti-adrenomedullin (AM) antibody were less vascularized than control tumors, suggesting that AM might be involved in neovascularization and/or vessel stabilization. Angiogenesis, the sprouting of new capillaries from preexisting blood vessels, is a multistep process that involves migration and proliferation of endothelial cells, remodeling of the extracellular matrix and functional maturation of the newly assembled vessels. In our study, we analyzed the role of AM on human umbilical vein endothelial cell (HUVEC) phenotype related to different stages of angiogenesis. Here we report evidence that AM promoted HUVEC migration and invasion in a dose-dependent manner. The action of AM is specific and is mediated by the calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CRLR/RAMP2; CRLR/RAMP3) receptors. Furthermore, AM was able to induce HUVEC differentiation into cord-like structures on Matrigel. Suboptimal concentrations of vascular endothelial growth factor (VEGF) and AM acted synergistically to induce angiogenic-related effects on endothelial cells in vitro. Blocking antibodies to VEGF did not significantly inhibit AM-induced capillary tube formation by human endothelial cells, indicating that AM does not function indirectly through upregulation of VEGF. These findings suggest that the proangiogenic action of AM on cultured endothelial cells via CRLR/RAMP2 and CRLR/RAMP3 receptors may translate in vivo into enhanced neovascularization and therefore identify AM and its receptors acting as potential new targets for antiangiogenic therapies.
Collapse
Affiliation(s)
- Samantha Fernandez-Sauze
- Laboratoire de Cancérologie Expérimentale, Inserm EMI 0359, Faculté de Médecine Secteur Nord, IFR Jean Roche, Boulevard Pierre Dramard, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Miyashita K, Itoh H, Sawada N, Fukunaga Y, Sone M, Yamahara K, Yurugi-Kobayashi T, Park K, Nakao K. Adrenomedullin provokes endothelial Akt activation and promotes vascular regeneration both in vitro and in vivo. FEBS Lett 2003; 544:86-92. [PMID: 12782295 DOI: 10.1016/s0014-5793(03)00484-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported that adrenomedullin (AM), a vasodilating hormone secreted from blood vessels, promotes proliferation and migration of human umbilical vein endothelial cells (HUVECs). In this study, we examined the ability of AM to promote vascular regeneration. AM increased the phosphorylation of Akt in HUVECs and the effect was inhibited by the AM antagonists and the inhibitors for protein kinase A (PKA) or phosphatidylinositol 3-kinase (PI3K). AM promoted re-endothelialization in vitro of wounded monolayer of HUVECs and neo-vascularization in vivo in murine gel plugs. These effects were also inhibited by the AM antagonists and the inhibitors for PKA or PI3K. The findings suggest that AM plays significant roles in vascular regeneration, associated with PKA- and PI3K-dependent activation of Akt in endothelial cells, and possesses therapeutic potential for vascular injury and tissue ischemia.
Collapse
Affiliation(s)
- Kazutoshi Miyashita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho Sakyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|