51
|
Molecular Cytogenetic Approach to Characterize Novel and Cryptic Chromosome Abnormalities in Childhood Myeloid Malignances of Fanconi Anemia. J Pediatr Hematol Oncol 2017; 39:e85-e91. [PMID: 28212262 DOI: 10.1097/mph.0000000000000720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Myeloid malignancies can be either primary or secondary, whether or not a specific cause can be determined. Fanconi anemia (FA), a rare constitutional bone marrow failure, usually presents an increased possibility of clonal evolution, due to the increase in chromosomal instability, TP53 activation, and cell death. The evolution of FA may include aplastic anemia by the progressive failure of the bone marrow and myelod neoplasias, such as acute myeloid leukemia and myelodysplastic syndrome. Chromosome abnormalities, particularly of chromosomes, 1, 3, and 7, during the aplastic phase of the disease are predictive of evolution to acute myeloid leukemia/myelodysplastic syndrome. Cytogenetic studies are indispensable to characterize chromosome abnormalities, and thus an important part of the clinical management, and for planning of therapeutic interventions. Here, clinical data and outcomes of 4 FA, 3 of them with myeloid malignances and 1 asymptomatic, and detailed characterization of their chromosome abnormalities using cytogenetics techniques are described.
Collapse
|
52
|
Ebens CL, MacMillan ML, Wagner JE. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol 2017; 10:81-97. [PMID: 27929686 PMCID: PMC6089510 DOI: 10.1080/17474086.2016.1268048] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to <10% and acute graft-versus-host disease (GVHD) from >40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.
Collapse
Affiliation(s)
- Christen L Ebens
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Margaret L MacMillan
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| | - John E Wagner
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| |
Collapse
|
53
|
Shimamura A. Aplastic anemia and clonal evolution: germ line and somatic genetics. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:74-82. [PMID: 27913465 PMCID: PMC5578420 DOI: 10.1182/asheducation-2016.1.74] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Clonal progression to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) remains a dreaded complication for a subset of patients with bone marrow failure (BMF). Recognizing risk factors for the development of MDS or AML would inform individualized treatment decisions and identify patients who may benefit from early or upfront hematopoietic stem cell transplantation. Now that next-generation DNA sequencing is available in the clinical laboratory, research has focused on the implications of germ line and somatic mutations for diagnosing and monitoring patients with BMF. Most germ line genetic BMF disorders are characterized by a high propensity to develop MDS or AML. Many affected patients lack the physical stigmata traditionally associated with the inherited marrow failure syndromes. Although any single inherited marrow failure disorder is rare, multiplexed genetic sequencing that allows simultaneous evaluation of marrow failure genes en masse demonstrated that, as a group, these inherited disorders compose a significant subset (5% to 10%) of patients with BMF. Early diagnosis of a germ line genetic marrow failure disorder allows individualized monitoring and tailored therapy. Recent studies of somatic variants in marrow failure revealed a high frequency of clonal hematopoiesis with the acquisition of mutations in genes associated with MDS or AML. Investigation of somatic mutations in marrow failure revealed important insights into the mechanisms promoting clonal disease but also raised additional questions. This review will focus on the evaluation and implications of germ line and somatic mutations for the development of clonal disorders in patients with BMF. Challenges and limitations of clinical genetic testing will be explored.
Collapse
Affiliation(s)
- Akiko Shimamura
- Dana-Farber and Boston Children's Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
54
|
Peffault de Latour R. Transplantation for bone marrow failure: current issues. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:90-98. [PMID: 27913467 PMCID: PMC6142500 DOI: 10.1182/asheducation-2016.1.90] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The preferred treatment of idiopathic aplastic anemia (AA) is allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen (HLA)-identical sibling donor. Transplantation from a well-matched unrelated donor (MUD) may be considered for patients without a sibling donor after failure of immunosuppressive therapy, as may alternative transplantation (mismatched, cord blood or haplo-identical HSCT) for patients without a MUD. HSCT may also be contemplated for congenital disorders in cases of pancytopenia or severe isolated cytopenia. Currently, HSCT aims are not only to cure patients but also to avoid long-term complications, notably chronic graft-versus-host disease (GVHD), essential for a good quality of life long term. This paper summarizes recent advances in HSCT for idiopathic and inherited AA disorders. The effect of age on current transplantation outcomes, the role of transplantation in paroxysmal nocturnal hemoglobinuria, and the prevention of GVHD are also discussed. Emerging strategies regarding the role of up-front unrelated donor and alternative donor HSCT in idiopathic AA, along with advances in the treatment of clonal evolution in Fanconi anemia, are also examined.
Collapse
Affiliation(s)
- Régis Peffault de Latour
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Diderot, Institut Universitaire d'Hématologie, Sorbonne Paris Cité, Paris, France; Centre de Référence Aplasie Médullaire, APHP, Paris, France; and Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, The Netherlands
| |
Collapse
|
55
|
Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:598-604. [PMID: 27913534 PMCID: PMC6142519 DOI: 10.1182/asheducation-2016.1.598] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Myelodysplastic syndrome (MDS) and myeloproliferative disorders are rare in children; they are divided into low-grade MDS (refractory cytopenia of childhood [RCC]), advanced MDS (refractory anemia with excess blasts in transformation), and juvenile myelomonocytic leukemia (JMML), each with different characteristics and management strategies. Underlying genetic predisposition is recognized in an increasing number of patients. Germ line GATA2 mutation is found in 70% of adolescents with MDS and monosomy 7. It is challenging to distinguish RCC from aplastic anemia, inherited bone marrow failure, and reactive conditions. RCC is often hypoplastic and may respond to immunosuppressive therapy. In case of immunosuppressive therapy failure, hypercellular RCC, or RCC with monosomy 7, hematopoietic stem cell transplantation (HSCT) using reduced-intensity conditioning regimens is indicated. Almost all patients with refractory anemia with excess blasts are candidates for HSCT; children age 12 years or older have a higher risk of treatment-related death, and the conditioning regimens should be adjusted accordingly. Unraveling the genetics of JMML has demonstrated that JMML in patients with germ line PTPN11 and CBL mutations often regresses spontaneously, and therapy is seldom indicated. Conversely, patients with JMML and neurofibromatosis type 1, somatic PTPN11, KRAS, and most of those with NRAS mutations have a rapidly progressive disease, and early HSCT is indicated. The risk of relapse after HSCT is high, and prophylaxis for graft-versus-host disease and monitoring should be adapted to this risk.
Collapse
MESH Headings
- Adolescent
- Anemia, Aplastic/diagnosis
- Anemia, Aplastic/genetics
- Anemia, Aplastic/immunology
- Anemia, Aplastic/therapy
- Anemia, Refractory, with Excess of Blasts/diagnosis
- Anemia, Refractory, with Excess of Blasts/genetics
- Anemia, Refractory, with Excess of Blasts/immunology
- Anemia, Refractory, with Excess of Blasts/therapy
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/immunology
- Female
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/immunology
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/immunology
- Humans
- Immunosuppression Therapy/methods
- Infant
- Leukemia, Myelomonocytic, Juvenile/diagnosis
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/immunology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Male
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/immunology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
Collapse
Affiliation(s)
- Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
56
|
Abstract
Fanconi anemia (FA) is the most frequent inherited cause of bone marrow failure (BMF). Most FA patients experience hematopoietic stem cell attrition and cytopenia during childhood, which along with intrinsic chromosomal instability, favor clonal evolution and the frequent emergence in their teens or young adulthood of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). To early identify and further predict bone marrow (BM) clonal progression and enable timely treatment, the follow-up of FA patients includes regular BM morphological and cytogenetic examinations. Allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative treatment of FA patients with MDS or AML. Although questions remain concerning HSCT itself (including the need for pretransplant chemotherapy, the best conditioning regimen, and the optimal long-term follow-up of such patients especially regarding secondary malignancies), clonal evolution in the absence of significant BM dysplasia and blast cells can be difficult to address in FA patients, for whom the concept of preemptive HSCT is discussed. Illustrated by 3 representative clinical vignettes showing specific features of MDS and AML in FA patients, this paper summarizes our practical approach from diagnosis through treatment in this particular situation.
Collapse
|
57
|
Byrne M, Bennett RL, Cheng X, May WS. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product. Neoplasia 2015; 16:627-33. [PMID: 25220590 PMCID: PMC4234872 DOI: 10.1016/j.neo.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022] Open
Abstract
The Nup98-HoxD13 (NHD13) fusion gene was identified in a patient with therapy-related myelodysplastic syndrome (MDS). When transgenically expressed in hematopoietic cells, mice faithfully recapitulate human disease with serial progression from peripheral blood (PB) cytopenias and increased bone marrow (BM) blasts to acute leukemia. It is well accepted that genomic instability in dysplastic hematopoietic stem/progenitor cells (HSPC) drives the evolution of MDS to acute leukemia. Findings here demonstrate that reticulocytes, myeloid and lymphoid PB cells of NHD13 mice, display an increase in the age-associated loss of glycosylphosphatidylinositol-linked surface proteins versus wild type controls. These data correlate with a progressive increase in the DNA damage response as measured by γ-H2AX activity, accumulating BM blasts as the disease progresses and finally development of acute leukemia. These findings clearly demonstrate a state of progressive genomic instability that increases the likelihood of a “second hit” or complimentary mutation later in the disease to trigger development of acute leukemia and underscores the mechanistic nature of how the NUP98-HoxD13 transgene induces progression of MDS to acute leukemia. Additionally, these data support the use of the PIG-A assay as an efficient, real-time surrogate marker of the genomic instability that occurs in the MDS HSPCs. Key Point The PIG-A assay is a sensitive, nonlethal method for the serial assessment of genomic instability in mouse models of MDS.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610
| | - Richard L Bennett
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610
| | - Xiaodong Cheng
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610
| | - W Stratford May
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610.
| |
Collapse
|
58
|
Zhang T, Wilson AF, Mahmood Ali A, Namekawa SH, Andreassen PR, Ruhikanta Meetei A, Pang Q. Loss of Faap20 Causes Hematopoietic Stem and Progenitor Cell Depletion in Mice Under Genotoxic Stress. Stem Cells 2015; 33:2320-30. [PMID: 25917546 DOI: 10.1002/stem.2048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/11/2015] [Indexed: 11/09/2022]
Abstract
20-kDa FANCA-associated protein (FAAP20) is a recently identified protein that associates with the Fanconi anemia (FA) core complex component, FANCA. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain and plays critical roles in the FA-BRCA pathway of DNA repair and genome maintenance. The function of FAAP20 in animals has not been explored. Here, we report that deletion of Faap20 in mice led to a mild FA-like phenotype with defects in the reproductive and hematopoietic systems. Specifically, hematopoietic stem and progenitor cells (HSPCs) from Faap20(-) (/) (-) mice showed defects in long-term multilineage reconstitution in lethally irradiated recipient mice, with milder phenotype as compared to HSPCs from Fanca(-) (/) (-) or Fancc(-) (/) (-) mice. Faap20(-) (/) (-) mice are susceptible to mitomycin C (MMC)-induced pancytopenia. That is, acute MMC stress induced a significant progenitor loss especially the erythroid progenitors and megakaryocyte-erythrocyte progenitors in Faap20(-) (/) (-) mice. Furthermore, Faap20(-) (/) (-) HSPCs displayed aberrant cell cycle pattern during chronic MMC treatment. Finally, using Faap20(-) (/) (-) Fanca(-) (/) (-) double-knockout mice, we demonstrated a possible dominant effect of FANCA in the interaction between FAAP20 and FANCA. This novel Faap20 mouse model may be valuable in studying the regulation of the FA pathway during bone marrow failure progress in FA patients.
Collapse
Affiliation(s)
| | | | | | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology
| |
Collapse
|
59
|
Alternative donor hematopoietic cell transplantation for Fanconi anemia. Blood 2015; 125:3798-804. [PMID: 25824692 DOI: 10.1182/blood-2015-02-626002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022] Open
Abstract
Historically, alternative donor hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) patients resulted in excessive morbidity and mortality. To improve outcomes, we made sequential changes to the HCT conditioning regimen. A total of 130 FA patients (median age, 9.0 years; range, 1-48) underwent alternative donor HCT at the University of Minnesota between 1995 and 2012. All patients received cyclophosphamide (CY), single fraction total body irradiation (TBI), and antithymocyte globulin (ATG) with or without fludarabine (FLU), followed by T-cell-depleted bone marrow or unmanipulated umbilical cord blood transplantation. The addition of FLU enhanced engraftment 3-fold. The incidence of grades 2-4 acute and chronic graft-versus-host disease was 20% and 10%, respectively. Severe toxicity was highest in patients >10 years of age or those with a history of opportunistic infections or transfusions before HCT. Mortality was lowest in patients without a history of opportunistic infection or transfusions and who received conditioning with TBI 300 cGy, CY, FLU, and ATG. These patients had a probability of survival of 94% at 5 years. Alternative donor HCT is now associated with excellent survival for patients without prior opportunistic infections or transfusions and should be considered for all FA patients after the onset of marrow failure. These studies were registered at http://www.clinicaltrials.gov as NCT00005898, NCT00167206, and NCT00352976.
Collapse
|
60
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
61
|
Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer - implications for clinical management in children and adults. Clin Genet 2014; 88:13-24. [DOI: 10.1111/cge.12517] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Affiliation(s)
- M. Schneider
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
| | - K. Chandler
- Manchester Academic Health Science Centre; Manchester UK
- Department of Genetic Medicine; University of Manchester, St Mary's Hospital; Manchester UK
| | - M. Tischkowitz
- Department of Medical Genetics; University of Cambridge, Addenbrooke's Hospital; Cambridge UK
| | - S. Meyer
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
- Department of Paediatric Haematology and Oncology; Royal Manchester Children's Hospital; Manchester UK
- Department of Paediatric and Adolescent Oncology; Young Oncology Unit, The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|
62
|
Yoon BG, Kim HN, Han UJ, Jang HI, Han DK, Baek HJ, Hwang TJ, Kook H. Long-term follow-up of Fanconi anemia: clinical manifestation and treatment outcome. KOREAN JOURNAL OF PEDIATRICS 2014; 57:125-34. [PMID: 24778694 PMCID: PMC4000758 DOI: 10.3345/kjp.2014.57.3.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022]
Abstract
Purpose The aim of this study was to characterize Korean patients with Fanconi anemia (FA), which is a rare but very challenging genetic disease. Methods The medical records of 12 FA patients diagnosed at Chonnam National University Hospital from 1991 to 2012 were retrospectively reviewed. Results The median age at diagnosis was 6.2 years. All patients showed evidence of marrow failure and one or more physical stigmata. Chromosome breakage tests were positive in 9 out of 11 available patients. The median follow-up duration was 69.5 months. The Kaplan-Meier (KM) survival of all patients was 83.3% at 10 years and 34.7% at 20 years, respectively. Seven patients underwent 9 stem cell transplantations (SCTs). Among them, 5 were alive by the end of the study. Ten-year KM survival after SCT was 71.4% with a median follow-up of 3.4 years. All 5 patients treated with supportive treatment alone died of infection or progression at the median age of 13.5 years, except for one with short follow-up duration. Acute leukemia developed in 2 patients at 15.4 and 18.1 years of age. Among 6 patients who are still alive, 3 had short stature and 1 developed insulin-dependent diabetes mellitus. Conclusion We provide information on the long-term outcomes of FA patients in Korea. A nation-wide FA registry that includes information of the genotypes of Korean patients is required to further characterize ethnic differences and provide the best standard of care for FA patients.
Collapse
Affiliation(s)
- Byung Gyu Yoon
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hee Na Kim
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ui Joung Han
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hae In Jang
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Dong Kyun Han
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hee Jo Baek
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea. ; Environmemtal Health Center for Childhood Leukemia and Cancer, Hwasun, Korea
| | - Tai Ju Hwang
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hoon Kook
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Korea. ; Environmemtal Health Center for Childhood Leukemia and Cancer, Hwasun, Korea
| |
Collapse
|
63
|
|
64
|
Mitchell R, Wagner JE, Hirsch B, DeFor TE, Zierhut H, MacMillan ML. Haematopoietic cell transplantation for acute leukaemia and advanced myelodysplastic syndrome in Fanconi anaemia. Br J Haematol 2013; 164:384-95. [PMID: 24172081 DOI: 10.1111/bjh.12634] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 01/28/2023]
Abstract
Acute leukaemia or advanced myelodysplastic syndrome (MDS ≥ 5% blasts) in Fanconi anaemia (FA) patients is associated with a poor prognosis. We report 21 FA patients with acute leukaemia or advanced MDS who underwent haematopoietic cell transplantation (HCT) at the University of Minnesota between 1988 and 2011. Six patients had biallelic BRCA2 mutations. Eight patients received pre-transplant cytoreduction, with 3 achieving complete remission. HCT donor source included human leucocyte antigen-matched sibling (n = 2) or alternative donors (n = 19). Neutrophil engraftment was 95% for the entire cohort, and the incidence of acute graft-versus-host disease was 19%. 5-year overall survival (OS) was 33%, with a relapse rate of 24%, with similar OS in patients with biallelic BRCA2 mutations. Our study supports the use of HCT in the treatment of FA patients with acute leukaemia or advanced MDS, however, the role of chemotherapy prior to HCT remains unclear for this population. FA patients with biallelic BRCA2 are unique and may benefit from higher dose chemotherapy relative to other complementation groups.
Collapse
Affiliation(s)
- Richard Mitchell
- Blood and Marrow Transplant Program, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
65
|
Hu L, Huang W, Hjort E, Eklund EA. Increased Fanconi C expression contributes to the emergency granulopoiesis response. J Clin Invest 2013; 123:3952-66. [PMID: 23925293 DOI: 10.1172/jci69032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023] Open
Abstract
Emergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells. Moreover, IRF8-induced Fancc transcription was augmented by treatment with IL-1β, an essential cytokine for emergency granulopoiesis. The Fanconi pathway participates in repair of stalled or collapsed replication forks during DNA replication, leading us to hypothesize that the Fanconi pathway contributes to genomic stability during emergency granulopoiesis. In support of this hypothesis, Fancc(-/-) mice developed anemia and neutropenia during repeated, failed episodes of emergency granulopoiesis. Failed emergency granulopoiesis in Fancc(-/-) mice was associated with excess apoptosis of HSCs and progenitor cells in the bone marrow and impaired HSC function. These studies have implications for understanding the pathogenesis of bone marrow failure in Fanconi anemia and suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
66
|
Ayas M, Saber W, Davies SM, Harris RE, Hale GA, Socie G, LeRademacher J, Thakar M, Deeg HJJ, Al-Seraihy A, Battiwalla M, Camitta BM, Olsson R, Bajwa RS, Bonfim CM, Pasquini R, Macmillan ML, George B, Copelan EA, Wirk B, Al Jefri A, Fasth AL, Guinan EC, Horn BN, Lewis VA, Slavin S, Stepensky P, Bierings M, Gale RP. Allogeneic hematopoietic cell transplantation for fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J Clin Oncol 2013; 31:1669-76. [PMID: 23547077 PMCID: PMC3635221 DOI: 10.1200/jco.2012.45.9719] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Allogeneic hematopoietic cell transplantation (HCT) can cure bone marrow failure in patients with Fanconi anemia (FA). Data on outcomes in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome (MDS), or acute leukemia have not been separately analyzed. PATIENTS AND METHODS We analyzed data on 113 patients with FA with cytogenetic abnormalities (n = 54), MDS (n = 45), or acute leukemia (n = 14) who were reported to the Center for International Blood and Marrow Transplant Research from 1985 to 2007. RESULTS Neutrophil recovery occurred in 78% and 85% of patients at days 28 and 100, respectively. Day 100 cumulative incidences of acute graft-versus-host disease grades B to D and C to D were 26% (95% CI, 19% to 35%) and 12% (95% CI, 7% to 19%), respectively. Survival probabilities at 1, 3, and 5 years were 64% (95% CI, 55% to 73%), 58% (95% CI, 48% to 67%), and 55% (95% CI, 45% to 64%), respectively. In univariate analysis, younger age was associated with superior 5-year survival (≤ v > 14 years: 69% [95% CI, 57% to 80%] v 39% [95% CI, 26% to 53%], respectively; P = .001). In transplantations from HLA-matched related donors (n = 82), younger patients (≤ v > 14 years: 78% [95% CI, 64% to 90%] v 34% [95% CI, 20% to 50%], respectively; P < .001) and patients with cytogenetic abnormalities only versus MDS/acute leukemia (67% [95% CI, 52% to 81%] v 43% [95% CI, 27% to 59%], respectively; P = .03) had superior 5-year survival. CONCLUSION Our analysis indicates that long-term survival for patients with FA with cytogenetic abnormalities, MDS, or acute leukemia is achievable. Younger patients and recipients of HLA-matched related donor transplantations who have cytogenetic abnormalities only have the best survival.
Collapse
Affiliation(s)
- Mouhab Ayas
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhou T, Hasty P, Walter CA, Bishop AJR, Scott LM, Rebel VI. Myelodysplastic syndrome: an inability to appropriately respond to damaged DNA? Exp Hematol 2013; 41:665-74. [PMID: 23643835 DOI: 10.1016/j.exphem.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndrome (MDS) is considered a hematopoietic stem cell disease that is characterized by abnormal hematopoietic differentiation and a high propensity to develop acute myeloid leukemia. It is mostly associated with advanced age, but also with prior cancer therapy and inherited syndromes related to abnormalities in DNA repair. Recent technologic advances have led to the identification of a myriad of frequently occurring genomic perturbations associated with MDS. These observations suggest that MDS and its progression to acute myeloid leukemia is a genomic instability disorder, resulting from a stepwise accumulation of genetic abnormalities. The notion is now emerging that the underlying mechanism of this disease could be a defect in one or more pathways that are involved in responding to or repairing damaged DNA. In this review, we discuss these pathways in relationship to a large number of studies performed with MDS patient samples and MDS mouse models. Moreover, in view of our current understanding of how DNA damage response and repair pathways are affected by age in hematopoietic stem cells, we also explore how this might relate to MDS development.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
68
|
Chromosomal aberrations associated with clonal evolution and leukemic transformation in fanconi anemia: clinical and biological implications. Anemia 2012; 2012:349837. [PMID: 22675616 PMCID: PMC3366199 DOI: 10.1155/2012/349837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/13/2012] [Indexed: 12/30/2022] Open
Abstract
Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities, bone marrow failure, and extreme risk of leukemic transformation. Bone marrow surveillance is an important part of the clinical management of FA and often reveals cytogenetic aberrations. Here, we review bone marrow findings in FA and discuss the clinical and biological implications of chromosomal aberrations associated with leukemic transformation.
Collapse
|
69
|
Fell Pony syndrome: characterization of developmental hematopoiesis failure and associated gene expression profiles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1054-64. [PMID: 22593239 DOI: 10.1128/cvi.00237-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fell Pony syndrome (FPS) is a fatal immunodeficiency that occurs in foals of the Fell Pony breed. Affected foals present with severe anemia, B cell lymphopenia, and opportunistic infections. Our objective was to conduct a prospective study of potential FPS-affected Fell Pony foals to establish clinical, immunological, and molecular parameters at birth and in the first few weeks of life. Complete blood counts, peripheral blood lymphocyte phenotyping, and serum immunoglobulin concentrations were determined for 3 FPS-affected foals, 49 unaffected foals, and 6 adult horses. In addition, cytology of bone marrow aspirates was performed sequentially in a subset of foals. At birth, the FPS-affected foals were not noticeably ill and had hematocrit and circulating B cell counts comparable to those of unaffected foals; however, over 6 weeks, values for both parameters steadily declined. A bone marrow aspirate from a 3-week-old FPS-affected foal revealed erythroid hyperplasia and concurrent erythroid and myeloid dysplasia, which progressed to a severe erythroid hypoplasia at 5 weeks of life. Immunohistochemical staining confirmed the paucity of B cells in primary and secondary lymphoid tissues. The mRNA expression of genes involved in B cell development, signaling, and maturation was investigated using qualitative and quantitative reverse transcriptase PCR (RT-PCR). Several genes, including CREB1, EP300, MYB, PAX5, and SPI1/PU.1, were sequenced from FPS-affected and unaffected foals. Our study presents evidence of fetal erythrocyte and B cell hematopoiesis with rapid postnatal development of anemia and B lymphopenia in FPS-affected foals. The transition between fetal/neonatal and adult-like hematopoiesis may be an important aspect of the pathogenesis of FPS.
Collapse
|
70
|
Donadieu J, Fenneteau O, Beaupain B, Beaufils S, Bellanger F, Mahlaoui N, Lambilliotte A, Aladjidi N, Bertrand Y, Mialou V, Perot C, Michel G, Fouyssac F, Paillard C, Gandemer V, Boutard P, Schmitz J, Morali A, Leblanc T, Bellanné-Chantelot C. Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome. Haematologica 2012; 97:1312-9. [PMID: 22491737 DOI: 10.3324/haematol.2011.057489] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Patients with the Shwachman-Diamond syndrome often develop hematologic complications. No risk factors for these complications have so far been identified. The aim of this study was to classify the hematologic complications occurring in patients with Shwachman-Diamond syndrome and to investigate the risk factors for these complications. DESIGN AND METHODS One hundred and two patients with Shwachman-Diamond syndrome, with a median follow-up of 11.6 years, were studied. Major hematologic complications were considered in the case of definitive severe cytopenia (i.e. anemia <7 g/dL or thrombocytopenia <20 × 10(9)/L), classified as malignant (myelodysplasia/leukemia) according to the 2008 World Health Organization classification or as non-malignant. RESULTS Severe cytopenia was observed in 21 patients and classified as malignant severe cytopenia (n=9), non-malignant severe cytopenia (n=9) and malignant severe cytopenia preceded by non-malignant severe cytopenia (n=3). The 20-year cumulative risk of severe cytopenia was 24.3% (95% confidence interval: 15.3%-38.5%). Young age at first symptoms (<3 months) and low hematologic parameters both at diagnosis of the disease and during the follow-up were associated with severe hematologic complications (P<0.001). Fifteen novel SBDS mutations were identified. Genotype analysis showed no discernible prognostic value. CONCLUSIONS Patients with Shwachman-Diamond syndrome with very early symptoms or cytopenia at diagnosis (even mild anemia or thrombocytopenia) should be considered at a high risk of severe hematologic complications, malignant or non-malignant. Transient severe cytopenia or an indolent cytogenetic clone had no deleterious value.
Collapse
Affiliation(s)
- Jean Donadieu
- AP-HP Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Service d’Hémato-oncologie Pédiatrique, APHP, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Inherited bone marrow failure syndromes (IBMFS) are a diverse set of genetic disorders characterized by the inability of the bone marrow to produce sufficient circulating blood cells. The purpose of this review is to highlight novel findings in recent years and their impact on the understanding of IBMFS. RECENT FINDINGS Mutations in over 80 different genes have been associated with the development of bone marrow failure (BMF). The products of the genes mutated in IBMFS frequently participate in housekeeping pathways, which are important for cell growth and division rather than being specific for hematopoiesis. The common theme of these pathways, when disturbed, is the activation of p53, leading to cell cycle arrest, senescence, and cell death. With continued improvement in therapy for IBMFS, late complications, such as development of malignancies, are seen more frequently. This highlights the importance of understanding the affected pathways and their roles in cancer development. SUMMARY The recent advancement of our understanding of IBMFS has come largely through the identification of the genetic lesions responsible for disease and the investigations of their pathways. Applied in clinical practice, these findings make it possible to unambiguously identify mutation carriers even before the development of BMF and exclude or confirm a suspected clinical diagnosis for many of the more common IBMFS. The further characterization of the pathways leading to IBMFS is likely to reveal novel targets for screening tests, prognostic biomarkers, and improved and specific therapeutics.
Collapse
|
72
|
Abstract
Abstract
Fanconi anemia (FA) is the most frequent inherited cause of BM failure (BMF). Fifteen FANC genes have been identified to date, the most prevalent being FANCA, FANCC, FANCG, and FANCD2. In addition to classical presentations with progressive BMF during childhood and a positive chromosome breakage test in the blood, atypical clinical and/or biological situations can be seen in which a FA diagnosis has to be confirmed or eliminated. For this, a range of biological tools have been developed, including analysis of skin fibroblasts. FA patients experience a strong selective pressure in the BM that predisposes to clonal evolution and to the emergence in their teens or young adulthood of myelodysplasia syndrome (MDS) and/or acute myeloid leukemia (AML) with a specific pattern of somatic chromosomal lesions. The cellular mechanisms underlying (1) the hematopoietic defect which leads to progressive BMF and (2) somatic clonal evolutions in this background, are still largely elusive. Elucidation of these mechanisms at the molecular and cellular levels should be useful to understand the physiopathology of the disease and to adapt the follow-up and treatment of FA patients. This may also ultimately benefit older, non-FA patients with aplastic anemia, MDS/AML for whom FA represents a model genetic condition.
Collapse
|
73
|
Affiliation(s)
- Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark.
| | | |
Collapse
|
74
|
Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 2011; 117:e161-70. [PMID: 21325596 DOI: 10.1182/blood-2010-09-308726] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetic condition associated with bone marrow (BM) failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). We studied 57 FA patients with hypoplastic or aplastic anemia (n = 20), MDS (n = 18), AML (n = 11), or no BM abnormality (n = 8). BM samples were analyzed by karyotype, high-density DNA arrays with respect to paired fibroblasts, and by selected oncogene sequencing. A specific pattern of chromosomal abnormalities was found in MDS/AML, which included 1q+ (44.8%), 3q+ (41.4%), -7/7q (17.2%), and 11q- (13.8%). Moreover, cryptic RUNX1/AML1 lesions (translocations, deletions, or mutations) were observed for the first time in FA (20.7%). Rare mutations of NRAS, FLT3-ITD, MLL-PTD, ERG amplification, and ZFP36L2-PRDM16 translocation, but no TP53, TET2, CBL, NPM1, and CEBPα mutations were found. Frequent homozygosity regions were related not to somatic copy-neutral loss of heterozygosity but to consanguinity, suggesting that homologous recombination is not a common progression mechanism in FA. Importantly, the RUNX1 and other chromosomal/genomic lesions were found at the MDS/AML stages, except for 1q+, which was found at all stages. These data have implications for staging and therapeutic managing in FA patients, and also to analyze the mechanisms of clonal evolution and oncogenesis in a background of genomic instability and BM failure.
Collapse
|
75
|
Ceccaldi R, Briot D, Larghero J, Vasquez N, Dubois d'Enghien C, Chamousset D, Noguera ME, Waisfisz Q, Hermine O, Pondarre C, Leblanc T, Gluckman E, Joenje H, Stoppa-Lyonnet D, Socié G, Soulier J. Spontaneous abrogation of the G₂DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients. J Clin Invest 2010; 121:184-94. [PMID: 21183791 DOI: 10.1172/jci43836] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/03/2010] [Indexed: 12/28/2022] Open
Abstract
DNA damage checkpoints in the cell cycle may be important barriers against cancer progression in human cells. Fanconi anemia (FA) is an inherited DNA instability disorder that is associated with bone marrow failure and a strong predisposition to cancer. Although FA cells experience constitutive chromosomal breaks, cell cycle arrest at the G2 DNA damage checkpoint, and an excess of cell death, some patients do become clinically stable, and the mechanisms underlying this, other than spontaneous reversion of the disease-causing mutation, are not well understood. Here we have defined a clonal phenotype, termed attenuation, in which FA patients acquire an abrogation of the G2 checkpoint arrest. Attenuated cells expressed lower levels of CHK1 (also known as CHEK1) and p53. The attenuation could be recapitulated by modulating the ATR/CHK1 pathway, and CHK1 inhibition protected FA cells from cell death. FA patients who expressed the attenuated phenotype had mild bone marrow deficiency and reached adulthood, but several of them eventually developed myelodysplasia or leukemia. Better understanding of attenuation might help predict a patient's clinical course and guide choice of treatment. Our results also highlight the importance of evaluating the cellular DNA damage checkpoint and repair pathways in cancer therapies in general.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- INSERM U944, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
|