51
|
Buo AM, Stains JP. Gap junctional regulation of signal transduction in bone cells. FEBS Lett 2014; 588:1315-21. [PMID: 24486014 DOI: 10.1016/j.febslet.2014.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/30/2022]
Abstract
The role of gap junctions, particularly that of connexin43 (Cx43), has become an area of increasing interest in bone physiology. An abundance of studies have shown that Cx43 influences the function of osteoblasts and osteocytes, which ultimately impacts bone mass acquisition and skeletal homeostasis. However, the molecular details underlying how Cx43 regulates bone are only coming into focus and have proven to be more complex than originally thought. In this review, we focus on the diverse molecular mechanisms by which Cx43 gap junctions and hemichannels regulate cell signaling pathways, gene expression, mechanotransduction and cell survival in bone cells. This review will highlight key signaling factors that have been identified as downstream effectors of Cx43 and the impact of these pathways on distinct osteoblast and osteocyte functions.
Collapse
Affiliation(s)
- Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
52
|
Abstract
Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet-to-be-identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone-resorbing osteoclasts. Osteocytes are also the source of molecules that regulate the generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function or to altered expression of either molecule in osteocytes markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling.
Collapse
Affiliation(s)
- Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5035, Indianapolis, IN, 46202, USA,
| |
Collapse
|
53
|
Stains JP, Watkins MP, Grimston SK, Hebert C, Civitelli R. Molecular mechanisms of osteoblast/osteocyte regulation by connexin43. Calcif Tissue Int 2014; 94:55-67. [PMID: 23754488 PMCID: PMC3815501 DOI: 10.1007/s00223-013-9742-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/23/2013] [Indexed: 01/23/2023]
Abstract
Osteoblasts, osteocytes, and osteoprogenitor cells are interconnected into a functional network by gap junctions formed primarily by connexin43 (Cx43). Over the past two decades, it has become clear that Cx43 is important for the function of osteoblasts and osteocytes. This connexin contributes to the acquisition of peak bone mass and is a major modulator of cortical modeling. We review key data from human and mouse genetics on the skeletal consequences of ablation or mutation of the Cx43 gene (Gja1) and the molecular mechanisms by which Cx43 regulates the differentiation, function, and survival of osteogenic lineage cells. We also discuss putative second messengers that are communicated by Cx43 gap junctions, the role of hemichannels, and the function of Cx43 as a scaffold for signaling molecules. Current knowledge demonstrates that Cx43 is more than a passive channel; rather, it actively participates in the generation and modulation of cellular signals that drive skeletal development and homeostasis.
Collapse
Affiliation(s)
- Joseph P Stains
- Department of Orthopaedics, University of Maryland, School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA,
| | | | | | | | | |
Collapse
|
54
|
Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int 2014; 94:5-24. [PMID: 24042263 PMCID: PMC3947191 DOI: 10.1007/s00223-013-9790-y] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022]
Abstract
Osteocytes comprise the overwhelming majority of cells in bone and are its only true "permanent" resident cell population. In recent years, conceptual and technological advances on many fronts have helped to clarify the role osteocytes play in skeletal metabolism and the mechanisms they use to perform them. The osteocyte is now recognized as a major orchestrator of skeletal activity, capable of sensing and integrating mechanical and chemical signals from their environment to regulate both bone formation and resorption. Recent studies have established that the mechanisms osteocytes use to sense stimuli and regulate effector cells (e.g., osteoblasts and osteoclasts) are directly coupled to the environment they inhabit-entombed within the mineralized matrix of bone and connected to each other in multicellular networks. Communication within these networks is both direct (via cell-cell contacts at gap junctions) and indirect (via paracrine signaling by secreted signals). Moreover, the movement of paracrine signals is dependent on the movement of both solutes and fluid through the space immediately surrounding the osteocytes (i.e., the lacunar-canalicular system). Finally, recent studies have also shown that the regulatory capabilities of osteocytes extend beyond bone to include a role in the endocrine control of systemic phosphate metabolism. This review will discuss how a highly productive combination of experimental and theoretical approaches has managed to unearth these unique features of osteocytes and bring to light novel insights into the regulatory mechanisms operating in bone.
Collapse
Affiliation(s)
- Mitchell B. Schaffler
- University: City College of New York, Department: Biomedical Engineering, Phone: 212-650-5070, Fax: 212-650-6727
| | - Wing-Yee Cheung
- University: City College of New York, Department: Biomedical Engineering
| | - Robert Majeska
- University: City College of New York, Department: Biomedical Engineering
| | - Oran Kennedy
- University: New York University, Department: Orthopaedic Surgery
| |
Collapse
|
55
|
Connexin43 modulates post-natal cortical bone modeling and mechano-responsiveness. BONEKEY REPORTS 2013; 2:446. [PMID: 24422141 DOI: 10.1038/bonekey.2013.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 11/08/2022]
Abstract
Recent advances have established connexin43 (Cx43) as a key regulator of osteoblast function and of bone response to mechanical stimuli. Work by independent laboratories has consistently demonstrated postnatal development of larger than normal cross-section of long bones after conditional ablation of the Cx43 gene, Gja1, selectively in osteoblasts and/or osteocytes. This phenotype is caused by excessive endocortical bone resorption associated with periosteal expansion and cortical thinning. Review of published data suggests that the earlier in the osteogenic lineage is Gja1 deleted, the more severe is the cortical phenotype, implying functional roles of Cx43 at different stages of the osteoblast differentiation program. Such cortical modeling abnormalities resemble the changes occurring in the cortex upon disuse or aging. Indeed, Cx43 deficiency desensitizes endocortical osteoclasts from activation induced by removal of mechanical load, thus preventing medullary area expansion. The action of Cx43 on cancellous bone is controversial. Furthermore, the absence of Cx43 in osteoblasts and osteocytes results in activation of periosteal bone formation at lower strains than in wild-type bones, suggesting that Cx43 deficiency increased cortical sensitivity to mechanical load. Thus, Cx43 modulates cortical bone modeling in homeostatic conditions and in response to mechanical load by restraining both endocortical bone resorption and periosteal bone formation. Cx43 may represent a novel pharmacologic target for improving cortical bone strength through modulation of mechano-responsiveness.
Collapse
|
56
|
Inhibition of GSK-3β rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PLoS One 2013; 8:e81399. [PMID: 24260576 PMCID: PMC3832658 DOI: 10.1371/journal.pone.0081399] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022] Open
Abstract
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair.
Collapse
|
57
|
Zappitelli T, Chen F, Moreno L, Zirngibl RA, Grynpas M, Henderson JE, Aubin JE. The G60S connexin 43 mutation activates the osteoblast lineage and results in a resorption-stimulating bone matrix and abrogation of old-age-related bone loss. J Bone Miner Res 2013; 28:2400-13. [PMID: 23606335 DOI: 10.1002/jbmr.1965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 12/26/2022]
Abstract
We previously isolated a low bone mass mouse, Gja1(Jrt) / + , with a mutation in the gap junction protein, alpha 1 gene (Gja1), encoding for a dominant negative G60S Connexin 43 (Cx43) mutant protein. Similar to other Cx43 mutant mouse models described, including a global Cx43 deletion, four skeletal cell conditional-deletion mutants, and a Cx43 missense mutant (G138R/ +), a reduction in Cx43 gap junction formation and/or function resulted in mice with early onset osteopenia. In contrast to other Cx43 mutants, however, we found that Gja1(Jrt) /+ mice have both higher bone marrow stromal osteoprogenitor numbers and increased appendicular skeleton osteoblast activity, leading to cell autonomous upregulation of both matrix bone sialoprotein (BSP) and membrane-bound receptor activator of nuclear factor-κB ligand (mbRANKL). In younger Gja1(Jrt) /+ mice, these contributed to increased osteoclast number and activity resulting in early onset osteopenia. In older animals, however, this effect was abrogated by increased osteoprotegerin (OPG) levels and serum alkaline phosphatase (ALP) so that differences in mutant and wild-type (WT) bone parameters and mechanical properties lessened or disappeared with age. Our study is the first to describe a Cx43 mutation in which osteopenia is caused by increased rather than decreased osteoblast function and where activation of osteoclasts occurs not only through increased mbRANKL but an increase in a matrix protein that affects bone resorption, which together abrogate age-related bone loss in older animals.
Collapse
Affiliation(s)
- Tanya Zappitelli
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
58
|
Lloyd SA, Loiselle AE, Zhang Y, Donahue HJ. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone 2013; 57:76-83. [PMID: 23891909 PMCID: PMC4480865 DOI: 10.1016/j.bone.2013.07.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
Abstract
Connexin 43 (Cx43) is a gap junction protein that plays an integral role in the skeletal response to mechanical loading and unloading. In a previous study, we demonstrated preservation of trabecular bone mass and cortical bone formation rate in mice with an osteoblast/osteocyte-selective deficiency of Cx43 (cKO) following mechanical unloading via hindlimb suspension (HLS). In the present study, we sought to define the potential mechanisms underlying this response. Following three weeks of HLS, mRNA levels of Sost were significantly greater in wild-type (WT)-Suspended mice vs. WT-Control, while there was no difference between cKO control and cKO-Suspended. Unloading-induced decreases in P1NP, a serum marker of bone formation, were also attenuated in cKO-Suspended. The proportion of sclerostin-positive osteocytes was significantly lower in cKO-Control vs. WT-Control (-72%, p<0.05), a difference accounted for by the presence of numerous empty lacunae in the cortical bone of cKO vs. WT. Abundant TUNEL staining was present throughout the cortical bone of the tibia and femur, suggesting an apoptotic process. There was no difference in empty lacunae in the trabecular bone of the tibia or femur. Trabecular and cortical osteoclast indices were lower in cKO-Suspended vs. WT-Suspended; however, mRNA levels of the gene encoding RANKL increased similarly in both genotypes. Connexin 43 deficient mice experience attenuated sclerostin-mediated suppression of cortical bone formation and lower cortical osteoclast activity during unloading. Preservation of trabecular bone mass and attenuated osteoclast activity during unloading, despite an apparent lack of effect on osteocyte viability at this site, suggests that an additional mechanism independent of osteocyte apoptosis may also be important. These findings indicate that Cx43 is able to modulate both arms of bone remodeling during unloading.
Collapse
|
59
|
Abstract
Few investigators think of bone as an endocrine gland, even after the discovery that osteocytes produce circulating fibroblast growth factor 23 that targets the kidney and potentially other organs. In fact, until the last few years, osteocytes were perceived by many as passive, metabolically inactive cells. However, exciting recent discoveries have shown that osteocytes encased within mineralized bone matrix are actually multifunctional cells with many key regulatory roles in bone and mineral homeostasis. In addition to serving as endocrine cells and regulators of phosphate homeostasis, these cells control bone remodeling through regulation of both osteoclasts and osteoblasts, are mechanosensory cells that coordinate adaptive responses of the skeleton to mechanical loading, and also serve as a manager of the bone's reservoir of calcium. Osteocytes must survive for decades within the bone matrix, making them one of the longest lived cells in the body. Viability and survival are therefore extremely important to ensure optimal function of the osteocyte network. As we continue to search for new therapeutics, in addition to the osteoclast and the osteoblast, the osteocyte should be considered in new strategies to prevent and treat bone disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- PhD, Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th Street, Kansas City, Missouri 64108.
| | | | | |
Collapse
|
60
|
Wan Q, Cho E, Yokota H, Na S. RhoA GTPase interacts with beta-catenin signaling in clinorotated osteoblasts. J Bone Miner Metab 2013; 31:520-32. [PMID: 23529802 PMCID: PMC4030391 DOI: 10.1007/s00774-013-0449-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/22/2013] [Indexed: 01/16/2023]
Abstract
Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. The β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss. In this study, we addressed a question: Does unloading suppress an activation level of RhoA GTPase and β-catenin signaling in osteoblasts? If yes, what is the role of RhoA GTPase and actin filaments in osteoblasts in regulating β-catenin signaling? Using a fluorescence resonance energy transfer (FRET) technique with a biosensor for RhoA together with a fluorescent T cell factor/lymphoid enhancer factor (TCF/LEF) reporter, we examined the effects of clinostat-driven simulated unloading. The results revealed that both RhoA activity and TCF/LEF activity were downregulated by unloading. Reduction in RhoA activity was correlated to a decrease in cytoskeletal organization of actin filaments. Inhibition of β-catenin signaling blocked unloading-induced RhoA suppression, and dominant negative RhoA inhibited TCF/LEF suppression. On the other hand, a constitutively active RhoA enhanced unloading-induced reduction of TCF/LEF activity. The TCF/LEF suppression by unloading was enhanced by co-culture with osteocytes, but it was independent on the organization of actin filaments, myosin II activity, or a myosin light chain kinase. Collectively, the results suggest that β-catenin signaling is required for unloading-driven regulation of RhoA, and RhoA, but not actin cytoskeleton or intracellular tension, mediates the responsiveness of β-catenin signaling to unloading.
Collapse
Affiliation(s)
| | | | | | - Sungsoo Na
- Corresponding author. Sungsoo Na, PhD, Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220G, Indianapolis, IN 46202, USA, Phone: 1-317-278-2384, Fax: 1-317-278-2455,
| |
Collapse
|
61
|
Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process. Proc Natl Acad Sci U S A 2013; 110:12096-101. [PMID: 23818616 DOI: 10.1073/pnas.1310003110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osteocytes are bone cells that form cellular networks that sense mechanical loads distributed throughout the bone tissue. Interstitial fluid flow in the lacunar canalicular system produces focal strains at localized attachment sites around the osteocyte cell process. These regions of periodic attachment between the osteocyte cell membrane and its canalicular wall are sites where pN-level fluid-flow induced forces are generated in vivo. In this study, we show that focally applied forces of this magnitude using a newly developed Stokesian fluid stimulus probe initiate rapid and transient intercellular electrical signals in vitro. Our experiments demonstrate both direct gap junction coupling and extracellular purinergic P2 receptor signaling between MLO-Y4 cells in a connected bone cell network. Intercellular signaling was initiated by pN-level forces applied at integrin attachment sites along both appositional and distal unapposed cell processes, but not initiated at their cell bodies with equivalent forces. Electrical coupling was evident in 58% of all cell pairs tested with appositional connections; coupling strength increased with the increasing number of junctional connections. Apyrase, a nucleotide-degrading enzyme, suppressed and abolished force-induced effector responses, indicating a contribution from ATP released by the stimulated cell. This work extends the understanding of how osteocytes modulate their microenvironment in response to mechanical signals and highlights mechanisms of intercellular relay of mechanoresponsive signals in the bone network.
Collapse
|
62
|
Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, Bellido T, Plotkin LI. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res 2013; 31:1075-81. [PMID: 23483620 PMCID: PMC3663897 DOI: 10.1002/jor.22341] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/08/2013] [Indexed: 02/04/2023]
Abstract
The osteocyte network is crucial for the response of bone to mechanical force. Within this network, connexin43 (Cx43) is thought to mediate the communication of osteocytes and osteoblasts among themselves and the exchange of small molecules with the extracellular milieu. Despite recent advances in understanding Cx43 role for the response of bone cells to mechanical stimulation, the contribution of Cx43 specifically in osteocytes to mechanotransduction in vivo is not well-known. We examined the anabolic response to ulnar axial loading of mice lacking Cx43 in osteocytes (Cx43(ΔOt)). Loading induced a greater increase in periosteal bone formation rate in Cx43(ΔOt) mice compared to control littermates, resulting from higher mineralizing surface and enhanced mineral apposition rate. Expression of β-catenin protein, a molecule implicated in mechanotransduction, was higher in bones from Cx43(ΔOt) mice, compared to littermate controls. In addition, MLO-Y4 osteocytic cells knocked-down for Cx43 exhibited higher β-catenin protein expression and enhanced response to mechanical stimulation. These findings suggest that osteocytes lacking Cx43 are "primed" to respond to mechanical stimulation and that absence of Cx43 in osteocytes unleashes bone formation, by a mechanism that might involve accumulation of β-catenin.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Rafael Pacheco-Costa
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US,Department of Functional & Structural Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Lucas R. Brun
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Thomas R. Murphy
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Nathan R. Farlow
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Alexander G. Robling
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Teresita Bellido
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US,Div. Endocrinology, Dept. Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, US
| | - Lilian I. Plotkin
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, US,Corresponding author: Lilian I. Plotkin, Ph.D. Department of Anatomy and Cell Biology Indiana University School of Medicine 635 Barnhill Drive, MS-5035 Indianapolis, IN 46202-5120 Phone: 1-317-274-5317 Fax: 1-317-278-2040
| |
Collapse
|
63
|
Loiselle AE, Jiang JX, Donahue HJ. Gap junction and hemichannel functions in osteocytes. Bone 2013; 54:205-12. [PMID: 23069374 DOI: 10.1016/j.bone.2012.08.132] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/30/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Cell-to-cell and cell-to-matrix communication in bone cells mediated by gap junctions and hemichannels, respectively, maintains bone homeostasis. Gap junctional communication between cells permits the passage of small molecules including calcium and cyclic AMP. This cell-to-cell communication occurs between bone cells including osteoblasts, osteoclasts and osteocytes, and is important in both bone formation and bone resorption. Connexin (Cx) 43 is the predominant gap junction protein in bone cells, and facilitates the communication of cellular signals either through docking of gap junctions between two cells, or through the formation of un-paired hemichannels. Systemic deletion of Cx43 results in perinatal lethality, so conditional deletion models are necessary to study the postnatal role of gap junctions in bone. These models provide the opportunity to determine the role of gap junctions in specific bone cells, notably the osteocyte. In this review, we summarize the key roles that gap junctions and hemichannels in osteocytes play in bone cell response to many stimuli including mechanical loading, intracellular and extracellular stimuli, such as parathyroid hormone, PGE2, plasma calcium levels and pH, as well as in maintaining osteocyte survival.
Collapse
Affiliation(s)
- Alayna E Loiselle
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
64
|
Niger C, Luciotti MA, Buo AM, Hebert C, Ma V, Stains JP. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cδ cascade. J Bone Miner Res 2013; 28:1468-77. [PMID: 23322705 PMCID: PMC3657330 DOI: 10.1002/jbmr.1867] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/07/2012] [Accepted: 12/31/2012] [Indexed: 11/11/2022]
Abstract
Connexin43 (Cx43) plays a critical role in osteoblast function and bone mass accrual, yet the identity of the second messengers communicated by Cx43 gap junctions, the targets of these second messengers and how they regulate osteoblast function remain largely unknown. We have shown that alterations of Cx43 expression in osteoblasts can impact the responsiveness to fibroblast growth factor-2 (FGF2), by modulating the transcriptional activity of runt-related transcription factor 2 (Runx2). In this study, we examined the contribution of the phospholipase Cγ1/inositol polyphosphate/protein kinase C delta (PKCδ) cascade to the Cx43-dependent transcriptional response of MC3T3 osteoblasts to FGF2. Knockdown of expression and/or inhibition of function of phospholipase Cγ1, inositol polyphosphate multikinase, which generates inositol 1,3,4,5-tetrakisphosphate (InsP₄) and InsP₅, and inositol hexakisphosphate kinase 1/2, which generates inositol pyrophosphates, prevented the ability of Cx43 to potentiate FGF2-induced signaling through Runx2. Conversely, overexpression of phospholipase Cγ1 and inositol hexakisphosphate kinase 1/2 enhanced FGF2 activation of Runx2 and the effect of Cx43 overexpression on this response. Disruption of these pathways blocked the nuclear accumulation of PKCδ and the FGF2-dependent interaction of PKCδ and Runx2, reducing Runx2 transcriptional activity. These data reveal that FGF2-signaling involves the inositol polyphosphate cascade, including inositol hexakisphosphate kinase (IP6K), and demonstrate that IP6K regulates Runx2 and osteoblast gene expression. Additionally, these data implicate the water-soluble inositol polyphosphates as mediators of the Cx43-dependent amplification of the osteoblast response to FGF2, and suggest that these low molecular weight second messengers may be biologically relevant mediators of osteoblast function that are communicated by Cx43-gap junctions.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
65
|
Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Hayano S, Balam TA, Naruse K, Yamashiro T. Ex vivo real-time observation of Ca(2+) signaling in living bone in response to shear stress applied on the bone surface. Bone 2013; 53:204-15. [PMID: 23246671 DOI: 10.1016/j.bone.2012.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 10/31/2012] [Accepted: 12/03/2012] [Indexed: 12/29/2022]
Abstract
Bone cells respond to mechanical stimuli by producing a variety of biological signals, and one of the earliest events is intracellular calcium ([Ca(2+)](i)) mobilization. Our recently developed ex vivo live [Ca(2+)](i) imaging system revealed that bone cells in intact bone explants showed autonomous [Ca(2+)](i) oscillations, and osteocytes specifically modulated these oscillations through gap junctions. However, the behavior and connectivity of the [Ca(2+)](i) signaling networks in mechanotransduction have not been investigated in intact bone. We herein introduce a novel fluid-flow platform for probing cellular signaling networks in live intact bone, which allows the application of capillary-driven flow just on the bone explant surface while performing real-time fluorogenic monitoring of the [Ca(2+)](i) changes. In response to the flow, the percentage of responsive cells was increased in both osteoblasts and osteocytes, together with upregulation of c-fos expression in the explants. However, enhancement of the peak relative fluorescence intensity was not evident. Treatment with 18 α-GA, a reversible inhibitor of gap junction, significantly blocked the [Ca(2+)](i) responsiveness in osteocytes without exerting any major effect in osteoblasts. On the contrary, such treatment significantly decreased the flow-activated oscillatory response frequency in both osteoblasts and osteocytes. The stretch-activated membrane channel, when blocked by Gd(3+), is less affected in the flow-induced [Ca(2+)](i) response. These findings indicated that flow-induced mechanical stimuli accompanied the activation of the autonomous [Ca(2+)](i) oscillations in both osteoblasts and osteocytes via gap junction-mediated cell-cell communication and hemichannel. Although how the bone sense the mechanical stimuli in vivo still needs to be elucidated, the present study suggests that cell-cell signaling via augmented gap junction and hemichannel-mediated [Ca(2+)](i) mobilization could be involved as an early signaling event in mechanotransduction.
Collapse
Affiliation(s)
- Yoshihito Ishihara
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8525, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Loiselle AE, Paul EM, Lewis GS, Donahue HJ. Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res 2013; 31:147-54. [PMID: 22718243 PMCID: PMC3640531 DOI: 10.1002/jor.22178] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/01/2012] [Indexed: 02/04/2023]
Abstract
Connexin43 (Cx43) plays an important role in osteoblastic differentiation in vitro, and bone formation in vivo. Mice with osteoblast/osteocyte-specific loss of Cx43 display decreased gap junctional intercellular communication (GJIC), bone density, and cortical thickness. To determine the role of Cx43 in fracture healing, a closed femur fracture was induced in Osteocalcin-Cre+; Cx43(flox/flox) (Cx43cKO) and Cre-; Cx43(flox/flox) (WT) mice. We tested the hypothesis that loss of Cx43 results in decreased bone formation and impaired healing following fracture. Here, we show that osteoblast and osteocyte-specific deletion of Cx43 results in decreased bone formation, bone remodeling, and mechanical properties during fracture healing. Cx43cKO mice display decreased bone volume, total volume, and fewer TRAP+ osteoclasts. Furthermore, loss of Cx43 in mature osteoblasts and osteocytes results in a significant decrease in torsional rigidity between 21 and 35 days post-fracture, compared to WT mice. These studies identify a novel role for the gap junction protein Cx43 during fracture healing, suggesting that loss of Cx43 can result in both decreased bone formation and bone resorption. Therefore, enhancing Cx43 expression or GJIC may provide a novel means to enhance bone formation during fracture healing.
Collapse
Affiliation(s)
| | | | | | - Henry J. Donahue
- Corresponding Author: Penn State College of Medicine 500 University Dr. Mail Code H089 Hershey, PA 17033 717-531-4809
| |
Collapse
|
67
|
Plotkin LI, Bellido T. Beyond gap junctions: Connexin43 and bone cell signaling. Bone 2013; 52:157-66. [PMID: 23041511 PMCID: PMC3513515 DOI: 10.1016/j.bone.2012.09.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein expressed in bone cells and plays a central role in cell-to-cell communication in the skeleton. Findings of the last decade uncovered functions of Cx43 hemichannels expressed on unopposed plasma cell membranes as mediators of the communication between bone cells and their extracellular milieu. Additionally, through its cytoplasmic C-terminus domain, Cx43 serves as a scaffolding protein that associates with structural and signaling molecules leading to regulation of intracellular signaling, independent of channel activity. This perspective discusses the evidence demonstrating that via these diverse mechanisms Cx43 is a key component of the intracellular machinery responsible for signal transduction in bone in response to pharmacologic, hormonal and mechanical stimuli. This advance in the knowledge of the role of connexins increases our understanding of the pathophysiological mechanisms that regulate bone cell function and provides new opportunities to treat bone diseases.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
68
|
Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res 2012; 27:2359-72. [PMID: 22714552 PMCID: PMC3683470 DOI: 10.1002/jbmr.1687] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mechanical unloading via hindlimb suspension (HLS). The HLS model was selected to recapitulate the effects of skeletal unloading due to prolonged bed rest, reduced activity associated with aging, and spaceflight microgravity. At baseline, the cortical bone of cKO mice displayed an osteopenic phenotype, with expanded cortices, decreased cortical thickness, decreased bone mineral density, and increased porosity. There was no baseline trabecular phenotype. After 3 weeks of HLS, wild-type (WT) mice experienced a substantial decline in trabecular bone volume fraction, connectivity density, trabecular thickness, and trabecular tissue mineral density. These deleterious effects were attenuated in cKO mice. Conversely, there was a similar and significant amount of cortical bone loss in both WT and cKO. Interestingly, mechanical testing revealed a greater loss of strength and rigidity for cKO during HLS. Analysis of double-label quantitative histomorphometry data demonstrated a substantial decrease in bone formation rate, mineralizing surface, and mineral apposition rate at both the periosteal and endocortical surfaces of the femur after unloading of WT mice. This suppression of bone formation was not observed in cKO mice, in which parameters were maintained at baseline levels. Taken together, the results of the present study indicate that Cx43 deficiency desensitizes bone to the effects of mechanical unloading, and that this may be due to an inability of mechanosensing osteocytes to effectively communicate the unloading state to osteoblasts to suppress bone formation. Cx43 may represent a novel therapeutic target for investigation as a countermeasure for age-related and unloading-induced bone loss.
Collapse
Affiliation(s)
- Shane A Lloyd
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
69
|
Watkins MP, Norris JY, Grimston SK, Zhang X, Phipps RJ, Ebetino FH, Civitelli R. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice. Bone 2012; 51:787-94. [PMID: 22750450 PMCID: PMC3432742 DOI: 10.1016/j.bone.2012.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/15/2012] [Accepted: 06/19/2012] [Indexed: 02/05/2023]
Abstract
The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface.
Collapse
Affiliation(s)
- Marcus P Watkins
- Division of Bone and Mineral Diseases, Departments of Internal Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice. PLoS One 2012; 7:e44222. [PMID: 22970183 PMCID: PMC3438198 DOI: 10.1371/journal.pone.0044222] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022] Open
Abstract
The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain further insights on Cx43 and mechanotransduction, we examined bone formation response at both endocortical and periosteal surfaces in 2-month-old mice with conditional Gja1 ablation driven by the Dermo1 promoter (cKO). Relative to wild type (WT) littermates, it requires a larger amount of compressive force to generate the same periosteal strain in cKO mice. Importantly, cKO mice activate periosteal bone formation at a lower strain level than do WT mice, suggesting an increased sensitivity to mechanical load in Cx43 deficiency. Consistently, trabecular bone mass also increases in mutant mice upon load, while it decreases in WT. On the other hand, bone formation actually decreases on the endocortical surface in WT mice upon application of axial mechanical load, and this response is also accentuated in cKO mice. These changes are associated with increase of Cox-2 in both genotypes and further decrease of Sost mRNA in cKO relative to WT bones. Thus, the response of bone forming cells to mechanical load differs between trabecular and cortical components, and remarkably between endocortical and periosteal envelopes. Cx43 deficiency enhances both the periosteal and endocortical response to mechanical load applied as axial compression in growing mice.
Collapse
|
71
|
Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, Rhee Y, Bellido T, Plotkin LI. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 2012; 27:374-89. [PMID: 22028311 PMCID: PMC3271138 DOI: 10.1002/jbmr.548] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Connexin 43 (Cx43) mediates osteocyte communication with other cells and with the extracellular milieu and regulates osteoblastic cell signaling and gene expression. We now report that mice lacking Cx43 in osteoblasts/osteocytes or only in osteocytes (Cx43(ΔOt) mice) exhibit increased osteocyte apoptosis, endocortical resorption, and periosteal bone formation, resulting in higher marrow cavity and total tissue areas measured at the femoral mid-diaphysis. Blockade of resorption reversed the increased marrow cavity but not total tissue area, demonstrating that endocortical resorption and periosteal apposition are independently regulated. Anatomical mapping of apoptotic osteocytes, osteocytic protein expression, and resorption and formation suggests that Cx43 controls osteoclast and osteoblast activity by regulating osteoprotegerin and sclerostin levels, respectively, in osteocytes located in specific areas of the cortex. Whereas empty lacunae and living osteocytes lacking osteoprotegerin were distributed throughout cortical bone in Cx43(ΔOt) mice, apoptotic osteocytes were preferentially located in areas containing osteoclasts, suggesting that osteoclast recruitment requires active signaling from dying osteocytes. Furthermore, Cx43 deletion in cultured osteocytic cells resulted in increased apoptosis and decreased osteoprotegerin expression. Thus, Cx43 is essential in a cell-autonomous fashion in vivo and in vitro for osteocyte survival and for controlling the expression of osteocytic genes that affect osteoclast and osteoblast function.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Keith W. Condon
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Matthew R. Allen
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Nathan Farlow
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Giovanni Passeri
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Lucas R. Brun
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Yumie Rhee
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Teresita Bellido
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
- Dept. Internal Medicine, Div. Endocrinology, Indiana University School of Medicine, U.S.A
| | - Lilian I. Plotkin
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| |
Collapse
|
72
|
Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP. ERK acts in parallel to PKCδ to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol 2012; 302:C1035-44. [PMID: 22277757 DOI: 10.1152/ajpcell.00262.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gap junction protein, connexin43 (Cx43), plays an important role in skeletal biology. Previously, we have shown that Cx43 can enhance the signaling and transcriptional response to fibroblast growth factor 2 (FGF2) in osteoblasts by increasing protein kinase C-δ (PKCδ) activation to affect Runx2 activity. In the present study, we show by luciferase reporter assays that the ERK signaling cascade acts in parallel to PKCδ to modulate Runx2 activity downstream of the Cx43-dependent amplification of FGF2 signaling. The PKCδ-independent activation of ERK by FGF2 was confirmed by Western blotting, as was the Cx43-dependent enhancement of ERK activation. Consistent with our prior observations for PKCδ, flow cytometry analyses show that Cx43 overexpression enhances the percentage of phospho-ERK-positive cells in response to FGF2, supporting the notion that shared signals among gap junction-coupled cells result in the enhanced response to FGF2. Western blots and luciferase reporter assays performed on osteoblasts cultured under low-density and high-density conditions revealed that cell-cell contacts are required for Cx43 to amplify ERK activation and gene transcription. Similarly, inhibition of gap junctional communication with the channel blocker 18β-glycyrrhetinic acid attenuates the Cx43-dependent enhancement of Runx2-transcriptional activity. In total, these data underscore the importance of cell-cell communication and activation of the ERK and PKCδ pathways in the coordination of the osteoblast response to FGF2 among populations of osteoblasts.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
73
|
Tu X, Rhee Y, Condon K, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 2012; 50:209-17. [PMID: 22075208 PMCID: PMC3246572 DOI: 10.1016/j.bone.2011.10.025] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/30/2011] [Accepted: 10/25/2011] [Indexed: 01/16/2023]
Abstract
Sclerostin, the Wnt signaling antagonist encoded by the Sost gene, is secreted by osteocytes and inhibits bone formation by osteoblasts. Mechanical stimulation reduces sclerostin expression, suggesting that osteocytes might coordinate the osteogenic response to mechanical force by locally unleashing Wnt signaling. To investigate whether sclerostin downregulation is a pre-requisite for load-induced bone formation, we conducted experiments in transgenic mice (TG) engineered to maintain high levels of SOST expression during mechanical loading. This was accomplished by introducing a human SOST transgene driven by the 8 kb fragment of the DMP1 promoter that also provided osteocyte specificity of the transgene. Right ulnae were subjected to in vivo cyclic axial loading at equivalent strains for 1 min/day at 2 Hz; left ulnae served as internal controls. Endogenous murine Sost mRNA expression measured 24 h after 1 loading bout was decreased by about 50% in TG and wild type (WT) littermates. In contrast, human SOST, only expressed in TG mice, remained high after loading. Mice were loaded on 3 consecutive days and bone formation was quantified 16 days after initiation of loading. Periosteal bone formation in control ulnae was similar in WT and TG mice. Loading induced the expected strain-dependent increase in bone formation in WT mice, resulting from increases in both mineralizing surface (MS/BS) and mineral apposition rate (MAR). In contrast, load-induced bone formation was reduced by 70-85% in TG mice, due to lower MS/BS and complete inhibition of MAR. Moreover, Wnt target gene expression induced by loading in WT mice was absent in TG mice. Thus, downregulation of Sost/sclerostin in osteocytes is an obligatory step in the mechanotransduction cascade that activates Wnt signaling and directs osteogenesis to where bone is structurally needed.
Collapse
Affiliation(s)
- Xiaolin Tu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yumie Rhee
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicoletta Bivi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Denise Dwyer
- Metabolic Research Department, Amgen Inc., Thousand Oaks, CA, USA
| | - Marina Stolina
- Metabolic Research Department, Amgen Inc., Thousand Oaks, CA, USA
| | - Charles H. Turner
- Department of Orthopedic Surgery, Biomechanics and Biomaterials Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
- Corresponding author and reprint requests: Teresita Bellido, Ph.D., Department of Anatomy and Cell Biology, and Department of Internal Medicine, Division of Endocrinology, Indiana University School of Medicine, 635 Barnhill Drive, MS5035, Indianapolis, IN 46202, Phone 317-274-7410, Fax 317-278-2040,
| |
Collapse
|
74
|
Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1909-18. [PMID: 21963408 DOI: 10.1016/j.bbamem.2011.09.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Gap junctional intercellular communication (GJIC) mediated by connexins, in particular connexin 43 (Cx43), plays important roles in regulating signal transmission among different bone cells and thereby regulates development, differentiation, modeling and remodeling of the bone. GJIC regulates osteoblast formation, differentiation, survival and apoptosis. Osteoclast formation and resorptive ability are also reported to be modulated by GJIC. Furthermore, osteocytes utilize GJIC to coordinate bone remodeling in response to anabolic factors and mechanical loading. Apart from gap junctions, connexins also form hemichannels, which are localized on the cell surface and function independently of the gap junction channels. Both these channels mediate the transfer of molecules smaller than 1.2kDa including small ions, metabolites, ATP, prostaglandin and IP(3). The biological importance of the communication mediated by connexin-forming channels in bone development is revealed by the low bone mass and osteoblast dysfunction in the Cx43-null mice and the skeletal malformations observed in occulodentodigital dysplasia (ODDD) caused by mutations in the Cx43 gene. The current review summarizes the role of gap junctions and hemichannels in regulating signaling, function and development of bone cells. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
75
|
Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, Jepsen KJ, Koch M, Birk DE. Type XII collagen regulates osteoblast polarity and communication during bone formation. ACTA ACUST UNITED AC 2011; 193:1115-30. [PMID: 21670218 PMCID: PMC3115787 DOI: 10.1083/jcb.201010010] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Type XII collagen–null mice have fragile bones with disorganized collagen fiber arrangement, decreased bone matrix formation, and delayed osteoblast differentiation. Differentiated osteoblasts are polarized in regions of bone deposition, demonstrate extensive cell interaction and communication, and are responsible for bone formation and quality. Type XII collagen is a fibril-associated collagen with interrupted triple helices and has been implicated in the osteoblast response to mechanical forces. Type XII collagen is expressed by osteoblasts and localizes to areas of bone formation. A transgenic mouse null for type XII collagen exhibits skeletal abnormalities including shorter, more slender long bones with decreased mechanical strength as well as altered vertebrae structure compared with wild-type mice. Col12a−/− osteoblasts have decreased bone matrix deposition with delayed maturation indicated by decreased bone matrix protein expression. Compared with controls, Col12a−/− osteoblasts are disorganized and less polarized with disrupted cell–cell interactions, decreased connexin43 expression, and impaired gap junction function. The data demonstrate important regulatory roles for type XII collagen in osteoblast differentiation and bone matrix formation.
Collapse
Affiliation(s)
- Yayoi Izu
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Grimston SK, Goldberg DB, Watkins M, Brodt MD, Silva MJ, Civitelli R. Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res 2011; 26:2151-60. [PMID: 21590735 PMCID: PMC3306012 DOI: 10.1002/jbmr.425] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have shown previously that the effect of mechanical loading on bone depends in part on connexin43 (Cx43). To determine whether Cx43 is also involved in the effect of mechanical unloading, we have used botulinum toxin A (BtxA) to induce reversible muscle paralysis in mice with a conditional deletion of the Cx43 gene in osteoblasts and osteocytes (cKO). BtxA injection in hind limb muscles of wild-type (WT) mice resulted in significant muscle atrophy and rapid loss of trabecular bone. Bone loss reached a nadir of about 40% at 3 weeks after injection, followed by a slow recovery. A similar degree of trabecular bone loss was observed in cKO mice. By contrast, BtxA injection in WT mice significantly increased marrow area and endocortical osteoclast number and decreased cortical thickness and bone strength. These changes did not occur in cKO mice, whose marrow area is larger, osteoclast number higher, and cortical thickness and bone strength lower relative to WT mice in basal conditions. Changes in cortical structure occurring in WT mice had not recovered 19 weeks after BtxA injection despite correction of the early osteoclast activation and a modest increase in periosteal bone formation. Thus BtxA-induced muscle paralysis leads to rapid loss of trabecular bone and to changes in structural and biomechanical properties of cortical bone, neither of which are fully reversed after 19 weeks. Osteoblast/osteocyte Cx43 is involved in the adaptive responses to skeletal unloading selectively in the cortical bone via modulation of osteoclastogenesis on the endocortical surface.
Collapse
Affiliation(s)
- Susan K. Grimston
- Division of Bone and Mineral Disease, Department of Internal
Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel B. Goldberg
- Division of Bone and Mineral Disease, Department of Internal
Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus Watkins
- Division of Bone and Mineral Disease, Department of Internal
Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael D. Brodt
- Department of Orthopaedic Surgery, Washington University School of
Medicine, St. Louis, MO, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of
Medicine, St. Louis, MO, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Disease, Department of Internal
Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University School of
Medicine, St. Louis, MO, USA
| |
Collapse
|
77
|
Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 2011; 6:e23516. [PMID: 21897843 PMCID: PMC3163577 DOI: 10.1371/journal.pone.0023516] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/20/2011] [Indexed: 11/20/2022] Open
Abstract
Emerging evidence suggests that connexin mediated gap junctional intercellular communication contributes to many aspects of bone biology including bone development, maintenance of bone homeostasis and responsiveness of bone cells to diverse extracellular signals. Deletion of connexin 43, the predominant gap junction protein in bone, is embryonic lethal making it challenging to examine the role of connexin 43 in bone in vivo. However, transgenic murine models in which only osteocytes and osteoblasts are deficient in connexin 43, and which are fully viable, have recently been developed. Unfortunately, the bone phenotype of different connexin 43 deficient models has been variable. To address this issue, we used an osteocalcin driven Cre-lox system to create osteoblast and osteocyte specific connexin 43 deficient mice. These mice displayed bone loss as a result of increased bone resorption and osteoclastogenesis. The mechanism underlying this increased osteoclastogenesis included increases in the osteocytic, but not osteoblastic, RANKL/OPG ratio. Previous in vitro studies suggest that connexin 43 deficient bone cells are less responsive to biomechanical signals. Interestingly, and in contrast to in vitro studies, we found that connexin 43 deficient mice displayed an enhanced anabolic response to mechanical load. Our results suggest that transient inhibition of connexin 43 expression and gap junctional intercellular communication may prove a potentially powerful means of enhancing the anabolic response of bone to mechanical loading.
Collapse
|
78
|
Sena K, Angle SR, Kanaji A, Aher C, Karwo DG, Sumner DR, Virdi AS. Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells. ULTRASONICS 2011; 51:639-644. [PMID: 21333315 DOI: 10.1016/j.ultras.2011.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/22/2011] [Indexed: 05/30/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is an established therapy for fracture repair and has been used widely in the clinics, but its underlying mechanism of action remains unclear. The aim of the current research was to determine the effect of LIPUS on gap junctional cell-to-cell intercellular communication in rat bone marrow stromal cells (BMSC) in vitro and to determine whether the ability of BMSCs to communicate by gap junctions would affect their response to LIPUS. Single or daily-multiple LIPUS treatment at 1.5MHz, 30mW/cm(2), for 20min was applied to BMSC. We demonstrated that BMSC form functional gap junctions and single LIPUS treatment significantly increased the intracellular dye transfer between BMSC. In addition, activated phosphorylation of ERK1/2 and p38 by LIPUS stimulation was diminished when cells were treated with a gap junction inhibitor 18β-glycyrrhetinic acid (18β). We further demonstrated that 18β diminished the significant increase in alkaline phosphatase activity following LIPUS stimulation. These results suggest a potential role of gap junctional cell-to-cell intercellular communication on the effects of LIPUS in BMSC.
Collapse
Affiliation(s)
- Kotaro Sena
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States.
| | | | | | | | | | | | | |
Collapse
|
79
|
Price JS, Sugiyama T, Galea GL, Meakin LB, Sunters A, Lanyon LE. Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr Osteoporos Rep 2011; 9:76-82. [PMID: 21384138 DOI: 10.1007/s11914-011-0050-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There appears to be no unique mechanically sensitive pathway by which changes in bone loading regulate bone mass and architecture to ensure adequate structural strength. Rather, strain-derived changes in bone cells activate a number of nonspecific strain-sensitive pathways (including calcium fluxes, prostanoids, nitric oxide, extracellular signal-regulated kinase, and sclerostin), the activities of which are modified by a number of factors (including estrogen receptors) for which this contribution is subsidiary to other purposes. The strain-sensitive pathways modified by these factors interact with a number of other pathways, some of which appear to have specific osteoregulatory potential (eg, the parathyroid hormone pathway), whereas others such as the Wnt pathway appear to be associated primarily with the response mechanisms of proliferation, differentiation, and apoptosis. The outcome of these multiple interactions are stimuli for local bone formation, resorption, or maintenance of the status quo, to maintain existing bone architecture or adapt it to a new mechanical regimen.
Collapse
Affiliation(s)
- Joanna S Price
- School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK.
| | | | | | | | | | | |
Collapse
|
80
|
Plotkin LI. CONNEXIN 43 AND BONE: NOT JUST A GAP JUNCTION PROTEIN. ACTUALIZACIONES EN OSTEOLOGIA 2011; 7:79-90. [PMID: 22679450 PMCID: PMC3367377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Connexins are essential for the communication of cells among themselves and with their environment. Connexin hexamers assemble at the plasma membrane to form hemichannels that allow the exchange of cellular contents with the extracellular milieu. In addition, hemichannels expressed in neighboring cells align to form gap junction channels that mediate the exchange of contents among cells. Connexin 43 (Cx43) is the most abundant connexin expressed in bone cells and its deletion in all tissues leads to osteoblast dysfunction, as evidenced by reduced expression of osteoblast markers and delayed ossification. Moreover, Cx43 is essential for the survival of osteocytes; and mice lacking Cx43 in these cells exhibit increased prevalence of osteocyte apoptosis and empty lacunae in cortical bone. Work of several groups for the past few years has unveiled the role of Cx43 on the response of bone cells to a variety of stimuli. Thus, the preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo. This survival effect does not require cell-to-cell communication and is mediated by unopposed hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes induced by mechanical stimulation in vitro. More recent evidence showed that the cAMP-mediated survival effect of parathyroid hormone (PTH) also requires Cx43 expression. Moreover, the hormone does not increase bone mineral content in mice haploinsufficient for Cx43 or lacking Cx43 in osteoblastic cells. Since inhibition of osteoblast apoptosis contributes, at least in part, to bone anabolism by PTH, the lack of response to the hormone might be due to the requirement of Cx43 for the effect of PTH on osteoblast survival. In summary, mounting evidence indicate that Cx43 is a key component of the intracellular machinery responsible for the transduction of signals in the skeleton in response to pharmacologic, hormonal and mechanical stimuli.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
81
|
Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 2011; 25:2418-32. [PMID: 21454365 DOI: 10.1096/fj.10-180299] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated whether polycystin-1 is a bone mechanosensor. We conditionally deleted Pkd1 in mature osteoblasts/osteocytes by crossing Dmp1-Cre with Pkd1(flox/m1Bei) mice, in which the m1Bei allele is nonfunctional. We assessed in wild-type and Pkd1-deficient mice the response to mechanical loading in vivo by ulna loading and ex vivo by measuring the response of isolated osteoblasts to fluid shear stress. We found that conditional Pkd1 heterozygotes (Dmp1-Cre;Pkd1(flox/+)) and null mice (Pkd1(Dmp1-cKO)) exhibited a ∼ 40 and ∼ 90% decrease, respectively, in functional Pkd1 transcripts in bone. Femoral bone mineral density (12 vs. 27%), trabecular bone volume (32 vs. 48%), and cortical thickness (6 vs. 17%) were reduced proportionate to the reduction of Pkd1 gene dose, as were mineral apposition rate (MAR) and expression of Runx2-II, Osteocalcin, Dmp1, and Phex. Anabolic load-induced periosteal lamellar MAR (0.58 ± 0.14; Pkd1(Dmp1-cKO) vs. 1.68 ± 0.34 μm/d; control) and increases in Cox-2, c-Jun, Wnt10b, Axin2, and Runx2-II gene expression were significantly attenuated in Pkd1(Dmp1-cKO) mice compared with controls. Application of fluid shear stress to immortalized osteoblasts from Pkd1(null/null) and Pkd1(m1Bei/m1Bei)-derived osteoblasts failed to elicit the increments in cytosolic calcium observed in wild-type controls. These data indicate that polycystin-1 is essential for the anabolic response to skeletal loading in osteoblasts/osteocytes.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38165, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Burra S, Jiang JX. Regulation of cellular function by connexin hemichannels. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 2:119-128. [PMID: 21968837 PMCID: PMC3180094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/25/2011] [Indexed: 05/31/2023]
Abstract
Gap junctions and hemichannels are formed by a family of proteins called connexins. Till date up to twenty one different connexins have been characterized and their expression was observed to be spatio-temporally regulated. Gap junctions and hemichannels are involved in transfer of a variety of less than 1 kDa small molecules such as, ions, small metabolites, cAMP, ATP, IP3, prostaglandins, etc. Post-translational modifications of connexins and their interaction with other proteins are reported to be the key regulators of channel functions. Studies during the past decade or so, suggest the physiological important of connexin hemichannels mediating the communication between the cell and its environment. Molecules conveyed through the hemichannels elicit a variety of signaling pathways and influence cellular functions such as, cell cycle, tissue homeostasis, migration, mechanotransduction, oxidative stress. The purpose of the current review is to compile the reported studies so far and provide a general overview in our understanding how the molecular transfer through hemichannels regulates cellular signaling and functions.
Collapse
Affiliation(s)
- Sirisha Burra
- Department of Biochemistry, University of Texas Health Science Center San Antonio, TX 78229 USA
| | | |
Collapse
|
83
|
Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, Civitelli R. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 2011; 22:1240-51. [PMID: 21346198 PMCID: PMC3078079 DOI: 10.1091/mbc.e10-07-0571] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cx43 in osteogenic cells controls both arms of the bone-remodeling cycle via direct actions on osteoblast differentiation and function and indirect modulation of osteoclastogenesis. These result in changes remindful of those that occur in skeletal disuse or aging and disclose a far broader function of Cx43 in skeletal biology. Connexin43 (Cx43) has an important role in skeletal homeostasis, and Cx43 gene (Gja1) mutations have been linked to oculodentodigital dysplasia (ODDD), a human disorder characterized by prominent skeletal abnormalities. To determine the function of Cx43 at early steps of osteogenesis and its role in the ODDD skeletal phenotype, we have used the Dermo1 promoter to drive Gja1 ablation or induce an ODDD mutation in the chondro-osteogenic linage. Both Gja1 null and ODDD mutant mice develop age-related osteopenia, primarily due to a progressive enlargement of the medullary cavity and cortical thinning. This phenotype is the consequence of a high bone turnover state, with increased endocortical osteoclast-mediated bone resorption and increased periosteal bone apposition. Increased bone resorption is a noncell autonomous defect, caused by exuberant stimulation of osteoclastogenesis by Cx43-deficient bone marrow stromal cells, via decreased Opg production. The latter is part of a broad defect in osteoblast differentiation and function, which also results in abnormal structural and material properties of bone leading to decreased resistance to mechanical load. Thus Cx43 in osteogenic cells is a critical regulator of both arms of the bone remodeling cycle, its absence causing structural changes remindful of aged or disused bone.
Collapse
Affiliation(s)
- Marcus Watkins
- Department of Internal Medicine and Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Communication between osteoblasts, osteoclasts, and osteocytes is integral to their ability to build and maintain the skeletal system and respond to physical signals. Various physiological mechanisms, including nerve communication, hormones, and cytokines, play an important role in this process. More recently, the important role of direct, cell-cell communication via gap junctions has been established. In this review, we demonstrate the integral role of gap junctional intercellular communication (GJIC) in skeletal physiology and bone cell mechanosensing.
Collapse
|
85
|
Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO. Characterization of hTERT-immortalized osteoblast cell lines generated from wild-type and connexin43-null mouse calvaria. Am J Physiol Cell Physiol 2010; 299:C994-C1006. [PMID: 20686067 DOI: 10.1152/ajpcell.00544.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gap junction protein connexin43 (Cx43) has been proposed to play key roles in bone differentiation and mineralization, but underlying cellular mechanisms are not totally understood. To further explore roles of Cx43 in these processes, we immortalized calvarial osteoblasts from wild-type and Cx43-null mice using human telomerase reverse transcriptase (hTERT). Osteoblastic (MOB) cell lines were generated from three individual wild-type and three individual Cx43-null mouse calvaria. Average population doubling times of the cell lines were higher than of the primary osteoblasts but did not greatly differ with regard to genotype. Modest to high level of Cx45 expression was detected in MOBs of both genotypes. Most of the cell lines expressed osteoblastic markers [Type I collagen, osteopontin, osteocalcin, parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrP), periostin (OSF-2), osterix (Osx), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP)], and mineralization was comparable to that of primary osteoblasts. Two MOB cell lines from each genotype with most robust maintenance of osteoblast lineage markers were analyzed in greater detail, revealing that the Cx43-null cell lines showed a significant delay in early differentiation (up to 9 days in culture). Matrix mineralization was markedly delayed in one of the Cx43-null lines and slightly delayed in the other. These findings comparing new and very stable wild-type and Cx43-null osteoblastic cell lines define a role for Cx43 in early differentiation and mineralization stages of osteoblasts and further support the concept that Cx43 plays important role in the cellular processes associated with skeleton function.
Collapse
Affiliation(s)
- Mia M Thi
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
86
|
Di Benedetto A, Watkins M, Grimston S, Salazar V, Donsante C, Mbalaviele G, Radice GL, Civitelli R. N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 2010; 123:2640-8. [PMID: 20605916 DOI: 10.1242/jcs.067777] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that targeted expression of a dominant-negative truncated form of N-cadherin (Cdh2) delays acquisition of peak bone mass in mice and retards osteoblast differentiation; whereas deletion of cadherin 11 (Cdh11), another osteoblast cadherin, leads to only modest osteopenia. To determine the specific roles of these two cadherins in the adult skeleton, we generated mice with an osteoblast/osteocyte specific Cdh2 ablation (cKO) and double Cdh2(+/-);Cdh11(-/-) germline mutant mice. Age-dependent osteopenia and smaller diaphyses with decreased bone strength characterize cKO bones. By contrast, Cdh2(+/-);Cdh11(-/-) exhibit severely reduced trabecular bone mass, decreased in vivo bone formation rate, smaller diaphyses and impaired bone strength relative to single Cdh11 null mice. The number of bone marrow immature precursors and osteoprogenitor cells is reduced in both cKO and Cdh2(+/-);Cdh11(-/-) mice, suggesting that N-cadherin is involved in maintenance of the stromal cell precursor pool via the osteoblast. Although Cdh11 is dispensable for postnatal skeletal growth, it favors osteogenesis over adipogenesis. Deletion of either cadherin reduces β-catenin abundance and β-catenin-dependent gene expression, whereas N-cadherin loss disrupts cell-cell adhesion more severely than loss of cadherin 11. Thus, Cdh2 and Cdh11 are crucial regulators of postnatal skeletal growth and bone mass maintenance, serving overlapping, yet distinct, functions in the osteogenic lineage.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Niger C, Hebert C, Stains JP. Interaction of connexin43 and protein kinase C-delta during FGF2 signaling. BMC BIOCHEMISTRY 2010; 11:14. [PMID: 20338032 PMCID: PMC2855512 DOI: 10.1186/1471-2091-11-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/25/2010] [Indexed: 01/07/2023]
Abstract
Background We have recently demonstrated that modulation of the gap junction protein, connexin43, can affect the response of osteoblasts to fibroblast growth factor 2 in a protein kinase C-delta-dependent manner. Others have shown that the C-terminal tail of connexin43 serves as a docking platform for signaling complexes. It is unknown whether protein kinase C-delta can physically interact with connexin43. Results In the present study, we investigate by immunofluorescent co-detection and biochemical examination the interaction between Cx43 and protein kinase C-delta. We establish that protein kinase C-delta physically interacts with connexin43 during fibroblast growth factor 2 signaling, and that protein kinase C delta preferentially co-precipitates phosphorylated connexin43. Further, we show by pull down assay that protein kinase C-delta associates with the C-terminal tail of connexin43. Conclusions Connexin43 can serve as a direct docking platform for the recruitment of protein kinase C-delta in order to affect fibroblast growth factor 2 signaling in osteoblasts. These data expand the list of signal molecules that assemble on the connexin43 C-terminal tail and provide a critical context to understand how gap junctions modify signal transduction cascades in order to impact cell function.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
88
|
Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 2010; 46:314-21. [PMID: 19733269 PMCID: PMC2825292 DOI: 10.1016/j.bone.2009.08.054] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/04/2009] [Accepted: 08/27/2009] [Indexed: 11/30/2022]
Abstract
In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them.
Collapse
Affiliation(s)
- Toshihiro Sugiyama
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | | | |
Collapse
|
89
|
Lima F, Niger C, Hebert C, Stains JP. Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism. Mol Biol Cell 2009; 20:2697-708. [PMID: 19339281 PMCID: PMC2688549 DOI: 10.1091/mbc.e08-10-1079] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 12/13/2022] Open
Abstract
In this study, we examine the role of the gap junction protein, connexin43 (Cx43), in the transcriptional response of osteocalcin to fibroblast growth factor 2 (FGF2) in MC3T3 osteoblasts. By luciferase reporter assays, we identify that the osteocalcin transcriptional response to FGF2 is markedly increased by overexpression of Cx43, an effect that is mediated by Runx2 via its OSE2 cognate element, but not by a previously identified connexin-responsive Sp1/Sp3-binding element. Furthermore, disruption of Cx43 function with Cx43 siRNAs or overexpression of connexin45 markedly attenuates the response to FGF2. Inhibition of protein kinase C delta (PKCdelta) with rottlerin or siRNA-mediated knockdown abrogates the osteocalcin response to FGF2. Additionally, we show that upon treatment with FGF2, PKCdelta translocates to the nucleus, PKCdelta and Runx2 are phosphorylated and these events are enhanced by Cx43 overexpression, suggesting that the degree of activation is enhanced by increased Cx43 levels. Indeed, chromatin immunoprecipitations of the osteocalcin proximal promoter with antibodies against Runx2 demonstrate that the recruitment of Runx2 to the osteocalcin promoter in response to FGF2 treatment is dramatically enhanced by Cx43 overexpression. Thus, Cx43 plays a critical role in regulating the ability of osteoblasts to respond to FGF2 by impacting PKCdelta and Runx2 function.
Collapse
Affiliation(s)
- Florence Lima
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Corinne Niger
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Carla Hebert
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
90
|
|
91
|
Silva MJ, Brodt MD. Mechanical stimulation of bone formation is normal in the SAMP6 mouse. Calcif Tissue Int 2008; 82:489-97. [PMID: 18509697 PMCID: PMC2705984 DOI: 10.1007/s00223-008-9142-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
Abstract
With aging, the skeleton may have diminished responsiveness to mechanical stimulation. The senescence-accelerated mouse SAMP6 has many features of senile osteoporosis and is thus a useful model to examine how the osteoporotic skeleton responds to mechanical loading. We performed in vivo tibial bending on 4-month-old SAMP6 (osteoporotic) and SAMR1 (control) mice. Loading was applied daily (60 cycles/day, 5 days/week) for 2 weeks at peak force levels that produced estimated endocortical strains of 1,000 and 2,000 microepsilon In a separate group of mice, sham bending was applied. Comparisons were made between right (loaded) and left (nonloaded) tibiae. Tibial bone marrow cells were cultured under osteogenic conditions and stained for alkaline phosphatase (ALP) and alizarin red (ALIZ) at 14 and 28 days, respectively. Tibiae were then embedded in plastic and sectioned, and endocortical bone formation was assessed based on calcein labels. Tibial bending did not alter the osteogenic potential of the marrow as there were no significant differences in ALP or ALIZ staining between loaded and nonloaded bones. Tibial bending activated the formation of endocortical bone in both SAMP6 and SAMR1 mice, whereas sham bending did not elicit an endocortical response. Both groups of mice exhibited bending strain-dependent increases in bone formation rate. We found little evidence of diminished responsiveness to loading in the SAMP6 skeleton. In conclusion, the ability of the SAMP6 mouse to respond normally to an anabolic mechanical stimulus distinguishes it from chronologically aged animals. This finding highlights a limitation of the SAMP6 mouse as a model of senile osteoporosis.
Collapse
Affiliation(s)
- Matthew J Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, 1 Barnes-Jewish Hospital Plaza, Suite 11300 WP, St. Louis, MO 63110, USA.
| | | |
Collapse
|
92
|
Civitelli R. Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 2008; 473:188-92. [PMID: 18424255 PMCID: PMC2441851 DOI: 10.1016/j.abb.2008.04.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 11/17/2022]
Abstract
Skeletal development (bone modeling) and its maintenance in post-natal life in response to local and systemic stimuli (bone remodeling) require coordinated activity among osteoblasts (bone forming cells), osteocytes (cells embedded in bone) and osteoclasts (bone resorbing cells), in order to meet the needs of structural integrity, mechanical competence and maintenance of mineral homeostasis. One mechanism of cell-cell interaction is via direct cell-cell communication via gap junctions. These are transmembrane channels that allow continuity of cytoplasms between communicating cells. The biologic importance of connexin43 (Cx43), the most abundant gap junction protein in the skeleton is demonstrated by the skeletal malformations present in oculodentodigital dysplasia (ODDD), a disease linked to Cx43 gene (GJA1) mutations, and by the low bone mass and osteoblast dysfunction in Gja1 ablated mice. The presence of Cx43 is required for osteoblast differentiation and function, and by forming either gap junctions or "hemichannels" Cx43 allows participation of cell networks to responses to extracellular stimuli, via propagation of specific signals converging upon connexin sensitive transcriptional units. Hence, Cx43 is involved in skeletal responsiveness to anabolic signals, as those provided by parathyroid hormone and physical load, the latter function probably involving osteocyte-osteoblast communication.
Collapse
Affiliation(s)
- Roberto Civitelli
- Washington University in St. Louis, Department of Internal Medicine, Division of Bone and Mineral Diseases, 660 S. Euclid Avenue, P.O. Box 8301, St. Louis, MO 63110, USA.
| |
Collapse
|