51
|
Wilhelm A, Aldridge V, Haldar D, Naylor AJ, Weston CJ, Hedegaard D, Garg A, Fear J, Reynolds GM, Croft AP, Henderson NC, Buckley CD, Newsome PN. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut 2016; 65:1175-85. [PMID: 26078290 PMCID: PMC4941145 DOI: 10.1136/gutjnl-2014-308325] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/27/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION CD248 (endosialin) is a stromal cell marker expressed on fibroblasts and pericytes. During liver injury, myofibroblasts are the main source of fibrotic matrix. OBJECTIVE To determine the role of CD248 in the development of liver fibrosis in the rodent and human setting. DESIGN CD248 expression was studied by immunostaining and quantitative PCR in both normal and diseased human and murine liver tissue and isolated hepatic stellate cells (HSCs). Hepatic fibrosis was induced in CD248(-/-) and wild-type controls with carbon tetrachloride (CCl4) treatment. RESULTS Expression of CD248 was seen in normal liver of humans and mice but was significantly increased in liver injury using both immunostaining and gene expression assays. CD248 was co-expressed with a range of fibroblast/HSC markers including desmin, vimentin and α-smooth muscle actin (α-SMA) in murine and human liver sections. CD248 expression was restricted to isolated primary murine and human HSC. Collagen deposition and α-SMA expression, but not inflammation and neoangiogenesis, was reduced in CD248(-/-) mice compared with wild-type mice after CCl4 treatment. Isolated HSC from wild-type and CD248(-/-) mice expressed platelet-derived growth factor receptor α (PDGFR-α) and PDGFR-β at similar levels. As expected, PDGF-BB stimulation induced proliferation of wild-type HSC, whereas CD248(-/-) HSC did not demonstrate a proliferative response to PDGF-BB. Abrogated PDGF signalling in CD248(-/-) HSC was confirmed by significantly reduced c-fos expression in CD248(-/-) HSC compared with wild-type HSC. CONCLUSIONS Our data show that deletion of CD248 reduces susceptibility to liver fibrosis via an effect on PDGF signalling, making it an attractive clinical target for the treatment of liver injury.
Collapse
Affiliation(s)
- Annika Wilhelm
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Victoria Aldridge
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK,University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Debashis Haldar
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Amy J Naylor
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Christopher J Weston
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Ditte Hedegaard
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Abhilok Garg
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Janine Fear
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Gary M Reynolds
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Adam P Croft
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Neil C Henderson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- NIHR Birmingham Liver BRU and Centre for Liver Research, University of Birmingham, Birmingham, UK,University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
52
|
Fibrinolytic crosstalk with endothelial cells expands murine mesenchymal stromal cells. Blood 2016; 128:1063-75. [PMID: 27283026 DOI: 10.1182/blood-2015-10-673103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Tissue plasminogen activator (tPA), aside from its vascular fibrinolytic action, exerts various effects within the body, ranging from synaptic plasticity to control of cell fate. Here, we observed that by activating plasminogen and matrix metalloproteinase-9, tPA expands murine bone marrow-derived CD45(-)TER119(-)Sca-1(+)PDGFRα(+) mesenchymal stromal cells (PαS-MSCs) in vivo through a crosstalk between PαS-MSCs and endothelial cells. Mechanistically, tPA induces the release of Kit ligand from PαS-MSCs, which activates c-Kit(+) endothelial cells to secrete MSC growth factors: platelet-derived growth factor-BB (PDGF-BB) and fibroblast growth factor 2 (FGF2). In synergy, FGF2 and PDGF-BB upregulate PDGFRα expression in PαS-MSCs, which ultimately leads to PαS-MSC expansion. These data show a novel mechanism by which the fibrinolytic system expands PαS-MSCs through a cytokine crosstalk between niche cells.
Collapse
|
53
|
Belotti D, Capelli C, Resovi A, Introna M, Taraboletti G. Thrombospondin-1 promotes mesenchymal stromal cell functions via TGFβ and in cooperation with PDGF. Matrix Biol 2016; 55:106-116. [PMID: 26992552 DOI: 10.1016/j.matbio.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Mesenchymal stromal cells (MSC) are characterized by unique tropism for wounded tissues, high differentiating capacity, ability to induce tissue repair, and anti-inflammatory and immunoregulatory activities. This has generated interest in their therapeutic use in severe human conditions as well as in regenerative medicine and tissue engineering. Identification of factors involved in the regulation of MSC proliferation, migration and differentiation could provide insights into the pathophysiological regulation of MSC and be exploited to optimize clinical grade expansion protocols for therapeutic use. Here we identify thrombospondin-1 (TSP-1) as a major regulator of MSC. TSP-1 induced MSC proliferation. This effect was mediated by TSP-1-induced activation of endogenous TGFβ, as shown by the inhibitory effects of anti-TGFβ antibodies and by the lack of activity of TSP-2 - that does not activate TGFβ. Moreover, TSP-1 strongly potentiated the proliferative and migratory activity of PDGF on MSC. TSP-1 directly bound to PDGF, through a site located within the TSP-1 type III repeats, and protected the growth factor from degradation by MSC-derived proteases, hence increasing its stability and bioavailability. The studies presented here identify a more comprehensive picture of the pleiotropic effect of TSP-1 on MSC behavior, setting the basis for further studies aimed at investigating the possible use of PDGF and TSP-1 in the in vitro expansion of MSC for therapeutic applications.
Collapse
Affiliation(s)
- Dorina Belotti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Chiara Capelli
- USS Centro di Terapia Cellulare "G. Lanzani", USC Haematology, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Resovi
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Martino Introna
- USS Centro di Terapia Cellulare "G. Lanzani", USC Haematology, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giulia Taraboletti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy.
| |
Collapse
|
54
|
Raghavendran HRB, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, McKean R, Kamarul T. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Colloids Surf B Biointerfaces 2016; 139:68-78. [PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/19/2022]
Abstract
Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
Collapse
Affiliation(s)
- Hanumantha Rao Balaji Raghavendran
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Saktiswaren Mohan
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Krishnamurithy Genasan
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sangeetha Vasudevaraj Naveen
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sepehr Talebian
- Department of Mechanical engineering, Engineering Faculty, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Robert McKean
- The Electrospinning Company Ltd., Rutherford Appleton Laboratory, Harwell Oxford Didcot, Oxfordshire OX11 0QX, UK
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Clinical Investigation Centre, Faculty of Medicine, University of Malaya Medical Center, Kuala Lumpur, Malaysia.
| |
Collapse
|
55
|
Kämmerer PW, Schiegnitz E, Palarie V, Dau M, Frerich B, Al-Nawas B. Influence of platelet-derived growth factor on osseous remodeling properties of a variable-thread tapered dental implant in vivo. Clin Oral Implants Res 2016; 28:201-206. [PMID: 26771071 DOI: 10.1111/clr.12782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To evaluate the effect of platelet-derived growth factor (rhPDGF-BB) on the promotion of osteogenesis around variable-thread tapered implants in an animal model. MATERIAL AND METHODS Twenty-four variable-thread tapered implants were inserted in the tibia of 12 rabbits. Twelve sites received additional rhPDGF-BB released from a presoaked xenogenic bone block that was fixed supracrestally. Primary outcomes were bone-to-implant contact (BIC; in % ± SD) and percentage of medullary bone fill around the implants (PMF; in % ± SD) after 3 weeks (PDGF n = 6, no PDGF n = 6) and 6 weeks (PDGF n = 6, no PDGF n = 6). RESULTS Considerable crestal and medullary bone remodeling could be found around all implants. After 3 weeks, both BIC and PMF values were higher in the no PDGF group (BIC: 63% ± 10 with PDGF vs. 85% ± 5 with no PDGF; PMF: 57% ± 10 with PDGF vs. 74% ± 4 with no PDGF). After 6 weeks, the BIC difference between the two groups was less distinct (BIC: 78% ± 17 with PDGF vs. 72% ± 25 with no PDGF), whereas the PDGF group showed higher PMF values (PMF: 77% ± 5 with PDGF vs. 56% ± 10 with no PDGF). CONCLUSIONS The addition of rhPDGF-BB decreases early osseous crestal and medullar healing properties around dental implants. In a later phase, an increase in the cortical area as well as an increased medullar bone formation was seen. This response is likely to provide stronger secondary stability and stability in suboptimal situations involving poor-quality bone.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Eik Schiegnitz
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Victor Palarie
- Department of Oral and Maxillofacial Surgery and Oral Implantology, "A. Gutan" of the State University of Medicine and Pharmacy "N. Testemitanu,", Chisinau, Moldova
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Bilal Al-Nawas
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
56
|
Abstract
Telocytes (TCs) are a novel type of interstitial cells, with extremely long and thin cellular prolongations termed telopodes (Tps). TCs were first identified by Popescu et al. and described their finding as "cells with telopodes." The presence of TCs has been reported in the majority of tissues and organs (for details please visit www.telocytes.com ). TCs have been ignored or overlooked for a long time due to our inability to observe these cells via a light microscopy. TCs represent a distinct cell population, different from other types of interstitial cells, based on their distinct (ultra)structure, immunophenotype, microRNA profile, gene feature, proteome signature, and secretome features. As TCs have been suggested as new cellular targets for forthcoming therapies, developing specific methods to modulate TC numbers represents an important objective.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| |
Collapse
|
57
|
PDGFRα plays a crucial role in connective tissue remodeling. Sci Rep 2015; 5:17948. [PMID: 26639755 PMCID: PMC4671150 DOI: 10.1038/srep17948] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.
Collapse
|
58
|
Yang J, Zhou Y, Wei F, Xiao Y. Blood clot formed on rough titanium surface induces early cell recruitment. Clin Oral Implants Res 2015; 27:1031-8. [DOI: 10.1111/clr.12672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Jin Yang
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- School of Stomatology; Affiliated Stomatological Hospital; Fujian Medical University; Fuzhou China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM); Queensland University of Technology; Brisbane Qld Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- School of Basic Medicine; Hubei University of Chinese Medicine; Wuhan China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation; Queensland University of Technology (QUT); Brisbane Qld Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM); Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
59
|
Chen W, Baylink DJ, Brier-Jones J, Neises A, Kiroyan JB, Rundle CH, Lau KHW, Zhang XB. PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proc Natl Acad Sci U S A 2015; 112:E3893-900. [PMID: 26150503 PMCID: PMC4517286 DOI: 10.1073/pnas.1501759112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Substantial advances have been made in the past two decades in the management of osteoporosis. However, none of the current medications can eliminate the risk of fracture and rejuvenate the skeleton. To this end, we recently reported that transplantation of hematopoietic stem/progenitor cells (HSCs) or Sca1(+) cells engineered to overexpress FGF2 results in a significant increase in lamellar bone matrix formation at the endosteum; but this increase was attended by the development of secondary hyperparathyroidism and severe osteomalacia. Here we switch the therapeutic gene to PDGFB, another potent mitogen for mesenchymal stem cells (MSCs) but potentially safer than FGF2. We found that modest overexpression of PDGFB using a relatively weak phosphoglycerate kinase (PGK) promoter completely avoided osteomalacia and secondary hyperparathyroidism, and simultaneously increased trabecular bone formation and trabecular connectivity, and decreased cortical porosity. These effects led to a 45% increase in the bone strength. Transplantation of PGK-PDGFB-transduced Sca1(+) cells increased MSC proliferation, raising the possibility that PDGF-BB enhances expansion of MSC in the vicinity of the hematopoietic niche where the osteogenic milieu propels the differentiation of MSCs toward an osteogenic destination. Our therapy should have potential clinical applications for patients undergoing HSC transplantation, who are at high risk for osteoporosis and bone fractures after total body irradiation preconditioning. It could eventually have wider application once the therapy can be applied without the preconditioning.
Collapse
Affiliation(s)
- Wanqiu Chen
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - David J Baylink
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | | | - Amanda Neises
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Jason B Kiroyan
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Charles H Rundle
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357
| | - Kin-Hing William Lau
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354;
| |
Collapse
|
60
|
Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B, Green JJ, Caplan AI, Gimble JM, Dorafshar AH, Grayson WL. Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells. Stem Cells 2015; 33:2773-84. [PMID: 26013357 DOI: 10.1002/stem.2060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/25/2015] [Accepted: 04/20/2015] [Indexed: 01/22/2023]
Abstract
Tissue engineering using mesenchymal stem cells (MSCs) holds great promise for regenerating critically sized bone defects. While the bone marrow-derived MSC is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/ml of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRβ within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration.
Collapse
Affiliation(s)
- Ben P Hung
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daphne L Hutton
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Corey J Bishop
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bilal Naved
- Fischell Department of Biomedical Engineering, University of Maryland, College Park, Maryland, USA
| | - Jordan J Green
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeffrey M Gimble
- Department of Medicine and Surgery, Tulane University, New Orleans, Louisiana, USA
| | - Amir H Dorafshar
- Department of Plastic Surgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Warren L Grayson
- Department of Biomedical Engineering.,Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science & Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| |
Collapse
|
61
|
Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs. Biochem Biophys Res Commun 2015; 462:159-64. [PMID: 25951977 DOI: 10.1016/j.bbrc.2015.04.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis.
Collapse
|
62
|
Xu B, Luo Y, Liu Y, Li BY, Wang Y. Platelet-derived growth factor-BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression. Am J Physiol Heart Circ Physiol 2015; 308:H980-9. [PMID: 25724494 DOI: 10.1152/ajpheart.00737.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/21/2015] [Indexed: 01/10/2023]
Abstract
Delivery of bone marrow-derived mesenchymal stem cells (MSCs) to myocardium protects ischemic tissue through the paracrine release of beneficial angiogenic and cytoprotective factors. Platelet-derived growth factor (PDGF)-BB, a potent mitogen of MSCs, is involved in the pathophysiology of ischemic heart disease. However, the role(s) of PDGF in MSC-mediated cardioprotection remains unknown. Here, we found that PDGF treatment of MSCs resulted in rapid activation of both Akt and ERK (central intracellular signal mediators), upregulated VEGF, and induced phosphorylation of the activator protein-1 (AP-1) transcription factor c-Jun. Examination of several microRNA genes having predicted promoter c-Jun-binding sites showed that PDGF treatment resulted in upregulation of miR-16-2 and downregulation of miRs-23b, -27b, and -320b. To examine possible PDGF augmentation of therapeutic potential, we evaluated the effects of PDGF using an ex vivo isolated mouse heart ischemia-reperfusion model. Human MSCs, with or without PDGF preconditioning, were infused into the coronary circulation of isolated mouse hearts. The hearts that received PDGF-treated MSCs exhibited a greater functional recovery compared with naïve MSC-infused hearts, following ischemia-reperfusion injury. This enhanced functional recovery was abolished by overexpression of miR-320, a microRNA we found downregulated by PDGF-activated c-Jun. Overexpression of miR-320 also resulted in upregulation of insulin-like growth factor binding protein (IGFBP) family members, suggesting PDGF "cross talk" with the mitogenic IGF signaling pathway. Collectively, we conclude that PDGF enhances MSC-mediated cardioprotection via a c-Jun/miR-320 signaling mechanism and PDGF MSC preconditioning may be an effective therapeutic strategy for cardiac ischemia.
Collapse
Affiliation(s)
- Bing Xu
- Department of Pharmacology, Harbin Medical University, Harbin, China; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Luo
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Bai-Yan Li
- Department of Pharmacology, Harbin Medical University, Harbin, China; Department of Biomedical Engineering, Indiana University Purdue University, Indianapolis, Indiana
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana;
| |
Collapse
|
63
|
Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335:78-99. [PMID: 24961486 PMCID: PMC4334369 DOI: 10.1111/nyas.12463] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rosa A. Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
64
|
Li A, Xia X, Yeh J, Kua H, Liu H, Mishina Y, Hao A, Li B. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9:e113785. [PMID: 25470749 PMCID: PMC4254917 DOI: 10.1371/journal.pone.0113785] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Anna Li
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuechun Xia
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - James Yeh
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiyi Kua
- The Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138632, Singapore
| | - Huijuan Liu
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aijun Hao
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- * E-mail: (BL); (AH)
| | - Baojie Li
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- * E-mail: (BL); (AH)
| |
Collapse
|
65
|
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:75-87. [PMID: 25015093 DOI: 10.1089/ten.teb.2014.0119] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone regeneration is a well organized but complex physiological process, in which different cell types and their activated signaling pathways are involved. In bone regeneration and remodeling processes, mesenchymal stem cells (MSCs) have a crucial role, and their differentiation during these processes is regulated by specific signaling molecules (growth factors/cytokines and hormones) and their activated intracellular networks. Especially the utilization of the molecular machinery seems crucial to consider prior to developing bone implants, bone-substitute materials, and cell-based constructs for bone regeneration. The aim of this review is to provide an overview of the signaling mechanisms involved in bone regeneration and remodeling and the osteogenic potential of MSCs to become a key cellular resource for such regeneration and remodeling processes. Additionally, an overview of possibilities to beneficially exploit cell signaling processes to optimize bone regeneration is provided.
Collapse
|
66
|
PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2014; 448:241-7. [DOI: 10.1016/j.bbrc.2014.04.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 01/08/2023]
|
67
|
Khojasteh A, Dashti SG, Dehghan MM, Behnia H, Abbasnia P, Morad G. The osteoregenerative effects of platelet-derived growth factor BB cotransplanted with mesenchymal stem cells, loaded on freeze-dried mineral bone block: a pilot study in dog mandible. J Biomed Mater Res B Appl Biomater 2014; 102:1771-8. [PMID: 24706585 DOI: 10.1002/jbm.b.33156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/31/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Due to shortcomings associated with autogenous bone graft, the gold standard of craniofacial grafting, investigators seek alternatives that are accessible, efficient, and affordable. Accordingly, in the present pilot study, bone regeneration was induced using bone marrow-derived mesenchymal stem cells (BMSCs) loaded onto freeze-dried mineral bone block (FDMBB) in the presence or absence of recombinant platelet-derived growth factor-BB (rh PDGF-BB). Eight weeks after the bilateral extraction of premolars of four mongrel dogs, 25 × 10 mm defects were created at both sides of the mandible. The right mandible received autogenous-BMSC loaded on FDMBB (MSC group), whereas the left mandible received cellular blocks impregnated with rhPDGF-BB (MSC + PDGF Group). Animals were euthanized 8 weeks after grafting. Micro-computed tomography (micro-CT) and histomorphometric analysis demonstrated higher levels of bone formation for the test group (10.34% ± 0.20 and 26.63% ± 3.14, respectively) when compared to the control group (8.20% ± 0.20 and 21.38% ± 5.11). The differences were not statistically significant (P > 0.05). According to the performed micro-CT and histomorphometric analysis, adding 0.5 mg rhPDGF-BB (0.3 mg/mL) to the combination of BMSC/FDMBB did not significantly increase bone formation in supracrestal defect in dog mandible.
Collapse
Affiliation(s)
- Arash Khojasteh
- Department of Oral and Maxillofacial Surgery, Research Institute of Dental Sciences, Dental school, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
68
|
Menicanin D, Mrozik KM, Wada N, Marino V, Shi S, Bartold PM, Gronthos S. Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 2014; 23:1001-11. [PMID: 24351050 DOI: 10.1089/scd.2013.0490] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Primary periodontal ligament stem cells (PDLSCs) are known to possess multidifferentiation potential and exhibit an immunophenotype similar to that described for bone-marrow-derived mesenchymal stem cells. In the present study, bromo-deoxyuridine (BrdU)-labeled ovine PDLSCs implanted into immunodeficient mice survived after 8 weeks post-transplantation and exhibited the capacity to form bone/cementum-like mineralized tissue, ligament structures similar to Sharpey's fibers with an associated vasculature. To evaluate self-renewal potential, PDLSCs were recovered from harvested primary transplants 8 weeks post-transplantation that exhibit an immunophenotype and multipotential capacity comparable to primary PDLSCs. The re-derived PDLSCs isolated from primary transplants were implanted into secondary ectopic xenogeneic transplants. Histomorphological analysis demonstrated that four out of six donor re-derived PDLSC populations displayed a capacity to survive and form fibrous ligament structures and mineralized tissues associated with vasculature in vivo, although at diminished levels in comparison to primary PDLSCs. Further, the capacity for long-term survival and the potential role of PDLSCs in dental tissue regeneration were determined using an ovine preclinical periodontal defect model. Autologous ex vivo-expanded PDLSCs that were prelabeled with BrdU were seeded onto Gelfoam(®) scaffolds and then transplanted into fenestration defects surgically created in the periodontium of the second premolars. Histological assessment at 8 weeks post-implantation revealed surviving BrdU-positive PDLSCs associated with regenerated periodontium-related tissues, including cementum and bone-like structures. This is the first report to demonstrate the self-renewal capacity of PDLSCs using serial xenogeneic transplants and provides evidence of the long-term survival and tissue contribution of autologous PDLSCs in a preclinical periodontal defect model.
Collapse
Affiliation(s)
- Danijela Menicanin
- 1 Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide , Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
69
|
Biver E, Thouverey C, Magne D, Caverzasio J. Crosstalk between tyrosine kinase receptors, GSK3 and BMP2 signaling during osteoblastic differentiation of human mesenchymal stem cells. Mol Cell Endocrinol 2014; 382:120-130. [PMID: 24060635 DOI: 10.1016/j.mce.2013.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/16/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
Bone morphogenic proteins (BMPs) promote mesenchymal stem cell (MSC) osteogenic differentiation, whereas platelet derived growth factor (PDGF) and fibroblast growth factor (FGF) activate their proliferation through receptors tyrosine kinase (RTK). The effects of PDGF or FGF receptor signaling pathway on BMP2-induced osteoblastic differentiation was investigated in human MSC (HMSC). Inhibition of PDGF or/and FGF receptors enhanced BMP2-induced alkaline phosphatase (ALP) activity, expression of Osterix, ALP and Bone sialoprotein, and matrix calcification. These effects were associated with increased Smad-1 activity, indicating that mitogenic factors interfere with Smad signaling in HMSC differentiation. RTK activate MAPK and inhibit GSK3 through the PI3K/Akt pathway. Biochemical analysis indicated that MAPK JNK and GSK3 especially are potential signaling molecules regulating BMP-induced osteoblastic HMSC differentiation. These observations highlight that the osteogenic effects of BMP2 are modulated by mitogenic factors acting through RTK.
Collapse
Affiliation(s)
- Emmanuel Biver
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland; Pathophysiology of Inflammatory Bone Diseases, PMOI EA4490, Boulogne/Mer, France
| | - Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland
| | - David Magne
- Institut of Molecular and Supramolecular Biochemistry, UMR, CNRS 5246, University of Lyon 1, 69622 Villeurbanne Cedex, France
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland.
| |
Collapse
|
70
|
Griffin DR, Borrajo J, Soon A, Acosta-Vélez GF, Oshita V, Darling N, Mack J, Barker T, Iruela-Arispe ML, Segura T. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. Chembiochem 2014; 15:233-42. [PMID: 24399784 DOI: 10.1002/cbic.201300687] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/11/2013] [Indexed: 11/09/2022]
Abstract
The ability to design artificial extracellular matrices as cell-instructive scaffolds has opened the door to technologies capable of studying the fate of cells in vitro and to guiding tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of biochemical cues to guide cell phenotype and multicellular organization. The extracellular matrix (ECM) is composed of a heterogeneous mixture of proteins that present a variety of spatially discrete signals to residing cell populations. In contrast, most engineered ECMs do not mimic this heterogeneity. In recent years, photo-deprotection has been used to spatially immobilize signals. However, this approach has been limited mostly to small peptides. Here we combine photo-deprotection with enzymatic reaction to achieve spatially controlled immobilization of active bioactive signals that range from small molecules to large proteins. A peptide substrate for transglutaminase factor XIII (FXIIIa) was caged with a photo-deprotectable group, which was then immobilized to the bulk of a cell-compatible hydrogel. With focused light, the substrate can be deprotected and used to immobilize patterned bioactive signals. This approach offers an innovative strategy to immobilize delicate bioactive signals, such as growth factors, without loss of activity and enables in situ cell manipulation of encapsulated cells.
Collapse
Affiliation(s)
- Donald R Griffin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095 (USA)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Granéli C, Thorfve A, Ruetschi U, Brisby H, Thomsen P, Lindahl A, Karlsson C. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res 2014; 12:153-65. [DOI: 10.1016/j.scr.2013.09.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022] Open
|
72
|
Tauer JT, Hofbauer LC, Jung R, Erben RG, Suttorp M. Micro-osmotic pumps for continuous release of the tyrosine kinase inhibitor bosutinib in juvenile rats and its impact on bone growth. Med Sci Monit Basic Res 2013; 19:274-8. [PMID: 24185529 PMCID: PMC3852366 DOI: 10.12659/msmbr.889518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bosutinib is a third-generation dual tyrosine kinase inhibitor (TKI) inhibiting Abl and Src kinases. It was developed to act on up-regulated tyrosine kinases (TKs) like BCR-ABL in Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) when resistance to first- and second-generation TKIs developed. However, first- and second-generation TKIs show off-target effects on bone metabolism, whereas studies on skeletal adverse effects of bosutinib are still lacking. Therefore, it was the aim of this study to continuously expose juvenile rats to bosutinib and to analyze its influence on the growing bone. Material/Methods Starting after weaning, 4-week-old Wistar rats were chronically exposed over a 28-day period to varying concentrations of bosutinib, which were continuously administered subcutaneously via implanted Alzet® micro-osmotic pumps. After necropsy, the length of the femora and tibiae were analyzed. Results Continuous administration of bosutinib by micro-osmotic pumps led to serum drug levels in the lower therapeutic range, was well tolerated, and exhibited only minor adverse effects on the growing skeleton. Conclusions Micro-osmotic pumps represent a convenient system for continuous TKI release in young growing rats. Compared to first- and second-generation TKIs, bosutinib seems to exert fewer adverse effects on the growing bone.
Collapse
Affiliation(s)
- Josephine Tabea Tauer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital "Carl Gustav Carus", Technical University, Dresden, Germany
| | | | | | | | | |
Collapse
|
73
|
Mosiewicz KA, Kolb L, van der Vlies AJ, Martino MM, Lienemann PS, Hubbell JA, Ehrbar M, Lutolf MP. In situ cell manipulation through enzymatic hydrogel photopatterning. NATURE MATERIALS 2013; 12:1072-8. [PMID: 24121990 DOI: 10.1038/nmat3766] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)--a key ECM crosslinking enzyme--is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.
Collapse
Affiliation(s)
- Katarzyna A Mosiewicz
- 1] Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland [2]
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lin Z, Fateh A, Salem DM, Intini G. Periosteum: biology and applications in craniofacial bone regeneration. J Dent Res 2013; 93:109-16. [PMID: 24088412 DOI: 10.1177/0022034513506445] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The bone-regenerative potentials of the periosteum have been explored as early as the 17th century. Over the past few years, however, much has been discovered in terms of the molecular and cellular mechanisms that control the periosteal contribution to bone regeneration. Lineage tracing analyses and knock-in transgenic mice have helped define the relative contributions of the periosteum and endosteum to bone regeneration. Additional studies have shed light on the critical roles that BMP, FGF, Hedgehog, Notch, PDGF, Wnt, and inflammation signaling have or may have in periosteal-mediated bone regeneration, fostering the path to novel approaches in bone-regenerative therapy. Thus, by examining the role that each pathway has in periosteal-mediated bone regeneration, in this review we analyze the status of the current research on the regenerative potential of the periosteum. The provided analysis aims to inform both clinician-scientists who may have interest in the current studies about the biology of the periosteum as well as dental surgeons who may find this review useful to perform periosteal-harnessing bone-regenerative procedures.
Collapse
Affiliation(s)
- Z Lin
- Harvard School of Dental Medicine, 188 Longwood Avenue, REB 403, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
75
|
Shi K, Lu J, Zhao Y, Wang L, Li J, Qi B, Li H, Ma C. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 2013; 55:487-94. [PMID: 23579289 DOI: 10.1016/j.bone.2013.04.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/19/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
Abstract
Osterix (Osx) is an osteoblast-specific transcription factor that is essential for osteoblast differentiation and bone formation. Osx-null mice, which exhibit a complete absence of bone formation and arrested osteoblast differentiation, die immediately after birth. However, our understanding of the regulatory mechanism of Osx expression remains poor. MicroRNAs (miRNAs) are a class of small non-coding RNAs that play pivotal roles in diverse biological processes, including the development, differentiation, proliferation, survival, and oncogenesis of cells and organisms. In this study, we aimed to investigate the impact of miRNAs on Osx expression. Bioinformatic analyses predicted that miR-214 would be a potential regulator of Osx. The direct binding of miR-214 to the Osx 3' untranslated region (3' UTR) was demonstrated by a luciferase reporter assay using a construct containing the Osx 3' UTR. Deletion mutant construction revealed that the Osx 3' UTR contained two miR-214 binding sites. MiR-214 expression was inversely correlated with Osx expression in Saos-2 and U2OS cells. The forced expression of miR-214 in Saos-2 cells led to a reduction in the level of Osx protein. Moreover, the role of miR-214 in the osteogenic differentiation of C2C12 cells was investigated. We found that the osteogenic differentiation of C2C12 cells was enhanced by the downregulation of miR-214 expression, as measured by increased alkaline phosphatase activity and matrix mineralization. Taken together, these results indicate that miR-214 is a novel regulator of Osx, and that it plays an important role in the osteogenic differentiation of C2C12 cells as a suppressor.
Collapse
Affiliation(s)
- Kaikai Shi
- Department of Developmental Genetics, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Park SY, Kim KH, Shin SY, Koo KT, Lee YM, Seol YJ. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model. Tissue Eng Part A 2013; 19:2495-505. [PMID: 23901900 DOI: 10.1089/ten.tea.2012.0648] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.
Collapse
Affiliation(s)
- Shin-Young Park
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
77
|
Iba K, Abe Y, Chikenji T, Kanaya K, Chiba H, Sasaki K, Dohke T, Wada T, Yamashita T. Delayed fracture healing in tetranectin-deficient mice. J Bone Miner Metab 2013; 31:399-408. [PMID: 23588617 DOI: 10.1007/s00774-013-0436-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/31/2013] [Indexed: 12/17/2022]
Abstract
Tetranectin is a plasminogen-binding protein that enhances plasminogen activation, which has been suggested to play a role in tissue remodeling. Recently, we showed that tetranectin has a role in the wound-healing process. In this study, we investigated whether tetranectin plays a role in fracture healing. The fracture-healing process was studied using a femoral osteotomy model in tetranectin-null mice, previously generated by the authors. Radiographic imaging, micro-computed tomography (μCT), and histological analysis were used to evaluate osteotomy healing. In wild-type mice, a callus was apparent from 7 days, and most samples showed marked callus formation and rebridging of the cortices at the osteotomy site at 21 days. In contrast, in the tetranectin-null mice there was no callus formation at 7 days and much less callus formation and no bridging of cortices were observed at 21 days. At 35 days, all osteotomy sites showed clear rebridging, and secondary bone formation was achieved in wild-type mice by 42 days. In contrast, no clear rebridging or secondary bone formation was observed at 42 days in the tetranectin-null mice. Analysis using μCT at 21 days after osteotomy revealed that the callus area in tetranectin-null mice was smaller than that in wild-type mice. Histological analysis also showed that soft tissue and callus formation were smaller in the tetranectin-null mice at the early stage of the healing process after drill-hole injury. These results suggested that tetranectin could have a role in the positive regulation at the early stage of the fracture-healing process, which was reflected in the delayed fracture healing in tetranectin-deficient mice.
Collapse
Affiliation(s)
- Kousuke Iba
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hutton DL, Moore EM, Gimble JM, Grayson WL. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Eng Part A 2013; 19:2076-86. [PMID: 23582144 DOI: 10.1089/ten.tea.2012.0752] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vasculature is essential to the functional integration of a tissue-engineered bone graft to enable sufficient nutrient delivery and viability after implantation. Native bone and vasculature develop through intimately coupled, tightly regulated spatiotemporal cell-cell signaling. The complexity of these developmental processes has been a challenge for tissue engineers to recapitulate, resulting in poor codevelopment of both bone and vasculature within a unified graft. To address this, we cultured adipose-derived stromal/stem cells (ASCs), a clinically relevant, single cell source that has been previously investigated for its ability to give rise to vascularized bone grafts, and studied the effects of initial spatial organization of cells, the temporal addition of growth factors, and the presence of exogenous platelet-derived growth factor-BB (PDGF-BB) on the codevelopment of bone and vascular tissue structures. Human ASCs were aggregated into multicellular spheroids via the hanging drop method before encapsulation and subsequent outgrowth in fibrin gels. Cellular aggregation substantially increased vascular network density, interconnectivity, and pericyte coverage compared to monodispersed cultures. To form robust vessel networks, it was essential to culture ASCs in a purely vasculogenic medium for at least 8 days before the addition of osteogenic cues. Physiologically relevant concentrations of exogenous PDGF-BB (20 ng/mL) substantially enhanced both vascular network stability and osteogenic differentiation. Comparisons with the bone morphogenetic protein-2, another pro-osteogenic and proangiogenic growth factor, indicated that this potential to couple the formation of both lineages might be unique to PDGF-BB. Furthermore, the resulting tissue structure demonstrated the close association of mineral deposits with pre-existing vascular structures that have been described for developing tissues. This combination of a single cell source with a potent induction factor used at physiological concentrations can provide a clinically relevant approach to engineering highly vascularized bone grafts.
Collapse
Affiliation(s)
- Daphne L Hutton
- Department of Biomedical Engineering, Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | |
Collapse
|
79
|
Functional analysis of platelet-derived growth factor receptor-β in neural stem/progenitor cells. Neuroscience 2013; 238:195-208. [DOI: 10.1016/j.neuroscience.2013.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 01/18/2023]
|
80
|
Cipriani P, Marrelli A, Benedetto PD, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, Screpanti I, Giacomelli R. Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis 2013; 16:595-607. [DOI: 10.1007/s10456-013-9338-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
81
|
Caverzasio J, Biver E, Thouverey C. Predominant role of PDGF receptor transactivation in Wnt3a-induced osteoblastic cell proliferation. J Bone Miner Res 2013; 28:260-70. [PMID: 22927028 DOI: 10.1002/jbmr.1748] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that Wnt3a enhances the proliferation and inhibits the osteogenic differentiation of human mesenchymal stem cells (hMSCs). In this study, we investigated the signaling pathways involved in Wnt3a-induced osteoblastic cell proliferation. Experiments with DKK1, a natural antagonist of Lrp5/6, indicated that Wnt/β-catenin did not play a major role in Wnt3a-induced osteoblastic cell proliferation. The use of selective inhibitors of known mitogenic pathways implicates Src family kinases (SFKs) and a protein kinase C (PKC) in this cellular response. Time-dependent analysis of signaling molecules activated by Wnt3a in MC3T3-E1 cells revealed parallel activation of the canonical pathway and of several tyrosine kinases, including SFKs and PDGF receptors (PDGF-Rs). Functional analysis with specific inhibitors suggested a major role of PDGF-Rs in mediating Wnt3a-induced cell proliferation. Further investigation with an si-RNA approach confirmed a predominant role of this receptor in this cellular response. The use of soluble decoy PDGF-Rs that can sequester extracellular PDGFs excluding that part of the increased PDGF receptor phosphorylation by Wnt3a was the result of autocrine production of PDGFs. A selective SFK inhibitor blunted the enhanced PDGF-R phosphorylation and cell proliferation induced by Wnt3a. Studies of initial events involved in the regulation of this pathway suggest a role of dishevelled. In conclusion, data presented in this study indicate that cell proliferation induced by Wnt3a in osteoblastic cells is mediated by a dishevelled-dependent and β-catenin-independent pathway, which involves the transactivation of PDGF receptors.
Collapse
Affiliation(s)
- Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
82
|
Chong LY, Chien LY, Chung MC, Liang K, Lim JCS, Fu JH, Wang CH, Chang PC. Controlling the proliferation and differentiation stages to initiate periodontal regeneration. Connect Tissue Res 2013. [PMID: 23186286 DOI: 10.3109/03008207.2012.751985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The success of periodontal regeneration depends on the coordination of early cell proliferation and late cell differentiation. The aim of this study was to investigate whether the proliferation or differentiation stage predominantly promotes the initiation of periodontal regeneration. Critical-sized periodontal defects were surgically created on rat maxillae and filled with poly-(D,L-lactide-co-glycolide)-poly-d,l-lactide hybrid microspheres encapsulating platelet-derived growth factor (PDGF, a promoter of mitogenesis), simvastatin (a promoter of osteogenic differentiation), or bovine serum albumin (a control). The encapsulation efficiency and in vitro release profiles of the microspheres were determined by high-performance liquid chromatography and enzyme-linked immunosorbent assay. The maxillae were harvested after 10 or 14 days and assessed by micro-computed tomography, histology, and immunohistochemistry for regeneration efficacy and cell viability. The rapid release of PDGF was observed within the first week, whereas a slow release profile was noted for simvastatin. The PDGF-treated specimens demonstrated a significantly higher bone volume fraction compared with bovine serum albumin- (p < 0.05) or simvastatin-treated (p < 0.05) specimens at day 14. Histologically, active bone formation originating from the defect borders was noted in both the PDGF- and the simvastatin-treated specimens, and functionally aligned periodontal ligament fiber insertion was only observed in the PDGF-treated specimens. The significant promotion of mitogenesis by PDGF treatment was also noted at day 14 (p < 0.05). In conclusion, increased mitogenesis or osteogenic differentiation may stimulate osteogenesis, and the upregulation of mitogenesis by PDGF appears to play a role in the initiation of periodontal regeneration.
Collapse
Affiliation(s)
- Li Yen Chong
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Naylor AJ, Azzam E, Smith S, Croft A, Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, Isacke C, Goodyear SR, Rogers MJ, Buckley CD. The mesenchymal stem cell marker CD248 (endosialin) is a negative regulator of bone formation in mice. ACTA ACUST UNITED AC 2013; 64:3334-43. [PMID: 22674221 DOI: 10.1002/art.34556] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE CD248 (tumor endothelial marker 1/endosialin) is found on stromal cells and is highly expressed during malignancy and inflammation. Studies have shown a reduction in inflammatory arthritis in CD248-knockout (CD248(-/-) ) mice. The aim of the present study was to investigate the functional effect of genetic deletion of CD248 on bone mass. METHODS Western blotting, polymerase chain reaction, and immunofluorescence were used to investigate the expression of CD248 in humans and mice. Micro-computed tomography and the 3-point bending test were used to measure bone parameters and mechanical properties of the tibiae of 10-week-old wild-type (WT) or CD248(-/-) mice. Human and mouse primary osteoblasts were cultured in medium containing 10 mM β-glycerophosphate and 50 μg/ml ascorbic acid to induce mineralization, and then treated with platelet-derived growth factor BB (PDGF-BB). The mineral apposition rate in vivo was calculated by identifying newly formed bone via calcein labeling. RESULTS Expression of CD248 was seen in human and mouse osteoblasts, but not osteoclasts. CD248(-/-) mouse tibiae had higher bone mass and superior mechanical properties (increased load required to cause fracture) compared to WT mice. Primary osteoblasts from CD248(-/-) mice induced increased mineralization in vitro and produced increased bone over 7 days in vivo. There was no decrease in bone mineralization and no increase in proliferation of osteoblasts in response to stimulation with PDGF-BB, which could be attributed to a defect in PDGF signal transduction in the CD248(-/-) mice. CONCLUSION There is an unmet clinical need to address rheumatoid arthritis-associated bone loss. Genetic deletion of CD248 in mice results in high bone mass due to increased osteoblast-mediated bone formation, suggesting that targeting CD248 in rheumatoid arthritis may have the effect of increasing bone mass in addition to the previously reported effect of reducing inflammation.
Collapse
|
84
|
Klymov A, Prodanov L, Lamers E, Jansen JA, Walboomers XF. Understanding the role of nano-topography on the surface of a bone-implant. Biomater Sci 2013; 1:135-151. [DOI: 10.1039/c2bm00032f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
85
|
Gharibi B, Ghuman MS, Hughes FJ. Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. J Cell Mol Med 2012; 16:2789-801. [PMID: 22805337 PMCID: PMC4118247 DOI: 10.1111/j.1582-4934.2012.01602.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/09/2012] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms that direct mesenchymal stem cell (MSC) self-renewal fate decisions is a key to most tissue regenerative approaches. The aim of this study here was to investigate the mechanisms of action of platelet-derived growth factor receptor β (PDGFRβ) signalling on MSC proliferation and differentiation. MSC were cultured and stimulated with PDGF-BB together with inhibitors of second messenger pathways. Cell proliferation was assessed using ethynyl-2'-deoxyuridine and phosphorylation status of signalling molecules assessed by Western Blots. To assess differentiation potentials, cells were transferred to adipogenic or osteogenic media, and differentiation assessed by expression of differentiation association genes by qRT-PCR, and by long-term culture assays. Our results showed that distinct pathways with opposing actions were activated by PDGF. PI3K/Akt signalling was the main contributor to MSC proliferation in response to activation of PDGFRβ. We also demonstrate a negative feedback mechanism between PI3K/Akt and PDGFR-β expression. In addition, PI3K/Akt downstream signal cascades, mTOR and its associated proteins p70S6K and 4E-BP1 were involved. These pathways induced the expression of cyclin D1, cyclin D3 and CDK6 to promote cell cycle progression and MSC proliferation. In contrast, activation of Erk by PDGFRβ signalling potently inhibited the adipocytic differentiation of MSCs by blocking PPARγ and CEBPα expression. The data suggest that PDGFRβ-induced Akt and Erk pathways regulate opposing fate decisions of proliferation and differentiation to promote MSC self-renewal. Thus, activation of multiple intracellular cascades is required for successful and sustainable MSC self-renewal strategies.
Collapse
Affiliation(s)
- Borzo Gharibi
- Periodontology, Dental Institute, King's College LondonLondon, UK
| | - Mandeep S Ghuman
- Periodontology, Dental Institute, King's College LondonLondon, UK
| | - Francis J Hughes
- Periodontology, Dental Institute, King's College LondonLondon, UK
| |
Collapse
|
86
|
Di Maggio N, Mehrkens A, Papadimitropoulos A, Schaeren S, Heberer M, Banfi A, Martin I. Fibroblast Growth Factor-2 Maintains a Niche-Dependent Population of Self-Renewing Highly Potent Non-adherent Mesenchymal Progenitors Through FGFR2c. Stem Cells 2012; 30:1455-64. [DOI: 10.1002/stem.1106] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Rosu-Myles M, She YM, Fair J, Muradia G, Mehic J, Menendez P, Prasad SS, Cyr TD. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells. PLoS One 2012; 7:e38954. [PMID: 22719999 PMCID: PMC3374805 DOI: 10.1371/journal.pone.0038954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/14/2012] [Indexed: 01/09/2023] Open
Abstract
Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.
Collapse
Affiliation(s)
- Michael Rosu-Myles
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Fitter S, Vandyke K, Gronthos S, Zannettino ACW. Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogenesis and adiponectin secretion. J Mol Endocrinol 2012; 48:229-40. [PMID: 22474082 DOI: 10.1530/jme-12-0003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Improved glucose and lipid metabolism is a unique side effect of imatinib therapy in some chronic myeloid leukaemia (CML) patients. We recently reported that plasma levels of adiponectin, an important regulator of insulin sensitivity, are elevated following imatinib therapy in CML patients, which could account for these improved metabolic outcomes. Adiponectin is secreted exclusively from adipocytes, suggesting that imatinib modulates adiponectin levels directly, by transcriptional upregulation of adiponectin in pre-existing adipocytes, and/or indirectly, by stimulating adipogenesis. In this report, we have demonstrated that imatinib promotes adipogenic differentiation of human mesenchymal stromal cells (MSCs), which in turn secrete high-molecular-weight adiponectin. Conversely, imatinib does not stimulate adiponectin secretion from mature adipocytes. We hypothesise that inhibition of PDGFRα (PDGFRA) and PDGFRβ (PDGFRB) is the mechanism by which imatinib promotes adipogenesis. Supporting this, functional blocking antibodies to PDGFR promote adipogenesis and adiponectin secretion in MSC cultures. We have shown that imatinib is a potent inhibitor of PDGF-induced PI3 kinase activation and, using a PI3 kinase p110α-specific inhibitor (PIK-75), we have demonstrated that suppression of this pathway recapitulates the effects of imatinib on MSC differentiation. Furthermore, using mitogens that activate the PI3 kinase pathway, or MSCs expressing constitutively activated Akt, we have shown that activation of the PI3 kinase pathway negates the pro-adipogenic effects of imatinib. Taken together, our results suggest that imatinib increases plasma adiponectin levels by promoting adipogenesis through the suppression of PI3 kinase signalling downstream of PDGFR.
Collapse
Affiliation(s)
- Stephen Fitter
- Myeloma Research Laboratory, Bone and Cancer Research Laboratories, Department of Haematology, Institute of Medical and Veterinary Science, Centre for Cancer Biology, SA Pathology, GPO Box 14, Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
89
|
Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S, Hutschenreuter G, Zenke M, Wagner W. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS One 2012; 7:e37839. [PMID: 22662236 PMCID: PMC3360602 DOI: 10.1371/journal.pone.0037839] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/25/2012] [Indexed: 12/29/2022] Open
Abstract
The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (<35 years) as compared to older donors (>45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation.
Collapse
Affiliation(s)
- Michael Lohmann
- Department for Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Gudrun Walenda
- Department for Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Hatim Hemeda
- Department for Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Sylvia Joussen
- Department for Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolf Drescher
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Martin Zenke
- Department for Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Department for Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- * E-mail:
| |
Collapse
|
90
|
Karantalis V, Balkan W, Schulman IH, Hatzistergos KE, Hare JM. Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol 2012; 303:H256-70. [PMID: 22636682 DOI: 10.1152/ajpheart.00221.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although pharmacological and interventional advances have reduced the morbidity and mortality of ischemic heart disease, there is an ongoing need for novel therapeutic strategies that prevent or reverse progressive ventricular remodeling following myocardial infarction, the process that forms the substrate for ventricular failure. The development of cell-based therapy as a strategy to repair or regenerate injured tissue offers extraordinary promise for a powerful anti-remodeling therapy. In this regard, the field of cell therapy has made major advancements in the past decade. Accumulating data from preclinical studies have provided novel insights into stem cell engraftment, differentiation, and interactions with host cellular elements, as well as the effectiveness of various methods of cell delivery and accuracy of diverse imaging modalities to assess therapeutic efficacy. These findings have in turn guided rationally designed translational clinical investigations. Collectively, there is a growing understanding of the parameters that underlie successful cell-based approaches for improving heart structure and function in ischemic and other cardiomyopathies.
Collapse
Affiliation(s)
- Vasileios Karantalis
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Florida, USA
| | | | | | | | | |
Collapse
|
91
|
Murphy MB, Blashki D, Buchanan RM, Yazdi IK, Ferrari M, Simmons PJ, Tasciotti E. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials 2012; 33:5308-16. [PMID: 22542609 DOI: 10.1016/j.biomaterials.2012.04.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 02/07/2023]
Abstract
Platelet-rich plasma (PRP) was prepared from human adult peripheral blood and from human umbilical cord (uc) blood and the properties were compared in a series of in vitro bioassays. Quantification of growth factors in PRP and platelet-poor plasma (PPP) fractions revealed increased levels of mitogenic growth factors PDGF-AB, PDGF-BB, and FGF-2, the angiogenic agent VEGF and the chemokine RANTES in ucPRP compared to adult PRP (aPRP) and PPP. To compare the ability of the various PRP products to stimulate proliferation of human bone marrow (BM), rat BM and compact bone (CB)-derived mesenchymal stem cells (MSC), cells were cultured in serum-free media for 4 and 7 days with varying concentrations of PRP, PPP, or combinations of recombinant mitogens. It was found that while all forms of PRP and PPP were more mitogenic than fetal bovine serum, ucPRP resulted in significantly higher proliferation by 7 days than adult PRP and PPP. We observed that addition of as little as 0.1% ucPRP caused greater proliferation of MSC effects than the most potent combination of recombinant growth factors tested, namely PDGF-AB + PDGF-BB + FGF-2, each at 10 ng/mL. Similarly, in chemotaxis assays, ucPRP showed greater potency than adult PRP, PPP from either source, or indeed than combinations of either recombinant growth factors (PDGF, FGF, and TGF-β1) or chemokines previously shown to stimulate chemotactic migration of MSC. Lastly, we successfully demonstrated that PRP and PPP represented a viable alternative to FBS containing media for the cryo-preservation of MSC from human and rat BM.
Collapse
Affiliation(s)
- Matthew B Murphy
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77025, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Garcia-Gomez A, Ocio EM, Crusoe E, Santamaria C, Hernández-Campo P, Blanco JF, Sanchez-Guijo FM, Hernández-Iglesias T, Briñón JG, Fisac-Herrero RM, Lee FY, Pandiella A, San Miguel JF, Garayoa M. Dasatinib as a bone-modifying agent: anabolic and anti-resorptive effects. PLoS One 2012; 7:e34914. [PMID: 22539950 PMCID: PMC3335111 DOI: 10.1371/journal.pone.0034914] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 03/08/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function. METHODS For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model. RESULTS Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2-5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1-2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression. CONCLUSIONS Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Enrique M. Ocio
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Edvan Crusoe
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Carlos Santamaria
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Hernández-Campo
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Juan F. Blanco
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Fermin M. Sanchez-Guijo
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | | | - Jesús G. Briñón
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | | | - Francis Y. Lee
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey, United States of America
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Jesús F. San Miguel
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
- Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
- * E-mail:
| |
Collapse
|
93
|
Nakagawa T, Inoue H, Sasahara M. Platelet-derived growth factor and renal disease. Curr Opin Nephrol Hypertens 2012; 21:80-5. [PMID: 22123208 DOI: 10.1097/mnh.0b013e32834db4d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the recent advances in our understanding of the role of platelet-derived growth factor (PDGF) in glomerular disease. RECENT FINDINGS Accumulating evidence indicates a critical involvement of PDGF receptor-β (PDGFR-β) signaling in glomerular disease. Augmented signaling via PDGFR-β is involved in the pathogenesis of IgA nephropathy. Therefore, targeting PDGFR-β signaling is a viable therapeutic strategy for glomerular diseases. However, current PDGFR-β antagonists are nonspecific, and their long-term effects remain to be elucidated. To develop effective intervention therapies targeting PDGF signaling, it is necessary to clarify the specific involvement of PDGF in the pathogenesis of glomerular disease. A novel PDGFR-β targeting mouse model has provided new insight into the postnatal role of PDGFR-β in aging-related mesangial sclerosis and the glomerular remodeling after nephrectomy. Furthermore, the same study indicated the redundancy of growth factor signals underlying glomerular remodeling. In this context, other studies have suggested a role for PDGFR-α signaling and collaborating growth factors to compensate for PDGFR-β in the kidney glomerulus. SUMMARY Intervention in growth factor signaling could be a valuable therapeutic strategy for kidney glomerular diseases. Further studies are required to characterize the pathogenesis of these diseases for the successful development of such a therapy.
Collapse
Affiliation(s)
- Taizo Nakagawa
- The Second Department of Internal Medicine, University of Toyama, Toyama, Japan.
| | | | | |
Collapse
|
94
|
Fekete N, Gadelorge M, Fürst D, Maurer C, Dausend J, Fleury-Cappellesso S, Mailänder V, Lotfi R, Ignatius A, Sensebé L, Bourin P, Schrezenmeier H, Rojewski MT. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 2012; 14:540-54. [PMID: 22296115 PMCID: PMC3400099 DOI: 10.3109/14653249.2012.655420] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation.
Collapse
Affiliation(s)
- Natalie Fekete
- Institut für Transfusionsmedizin, Universität Ulm und Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Fortini C, Toffoletto B, Fucili A, Puppato E, Olivares A, Beltrami AP, Fiorelli V, Bergamin N, Cesselli D, Morelli C, Francolini G, Ferrari R, Beltrami CA. Circulating stem cell vary with NYHA stage in heart failure patients. J Cell Mol Med 2012; 15:1726-36. [PMID: 21029373 PMCID: PMC4373363 DOI: 10.1111/j.1582-4934.2010.01195.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have investigated the blood levels of sub-classes of stem cells (SCs) [mesenchymal stem cells (MSCs), haematopoietic stem cells (HSCs), endothelial progenitor cells/circulating endothelial cells (EPCs/CECs) and tissue-committed stem cells (TCSCs)] in heart failure (HF) patients at different stage of pathology and correlated it with plasmatic levels of proangiogenic cytokines. Peripheral blood level of SCs were analysed in 97 HF patients (24 in NYHA class I, 41 in class II, 17 in class III and 15 in class IV) and in 23 healthy controls. Plasmatic levels of PDGF-BB, bFGF, HGF, vascular endothelial growth factor (VEGF), SDF-1α, TNF-α and NTproBNP were also measured. Compared with healthy individuals, MSC, and in particular the sub-classes CD45−CD34−CD90+, CD45−CD34−CD105+ and CD45−CD34−CXCR4+ were significantly enhanced in NYHA class IV patients (16.8-, 6.4- and 2.7-fold, respectively). Level of CD45−CD34−CD90+CXCR4+cells progressively increased from class II to class IV (fold increases compared with controls: 8.5, 12 and 21.5, respectively). A significant involvement of CXCR4+ subpopulation of HSC (CD45+CD34+CD90+CXCR4+, 1.4 versus 13.3 cells/μl in controls and NYHA class III patients, respectively) and TCSC (CD45−CD34+CXCR4+, 1.5 cells/ μl in controls versus 12.4 and 28.6 cells/μl in NYHA classes II and IV, respectively) were also observed. All tested cytokines were enhanced in HF patients. In particular, for PDGF-BB and SDF-1α we studied specific ligand/receptors pairs. Interestingly, the first one positively correlated with TCSCs expressing PDGFR (r = 0.52, P = 0.001), whereas the second one correlated with TCSCs (r = 0.34, P = 0.005) and with MSCs CD90+ expressing CXCR4 (r = 0.39, P = 0.001). HF is characterized by the increase in the circulating levels of different MSC, HSC, EPC and TCSC subsets. Both the entity and kinetic of this process varied in distinct cell subsets. Specifically, differently from HSCs and EPCs/CECs, MSCs and TCSCs significantly increased with the progression of the disease, suggesting a possible distinct role of these cells in the pathophysiology of HF.
Collapse
Affiliation(s)
- Cinzia Fortini
- University of Ferrara and Cardiovascular Research Center, Salvatore Maugeri Foundation, IRCCS, Lumezzane, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Jönsson S, Hjorth-Hansen H, Olsson B, Wadenvik H, Sundan A, Standal T. Imatinib inhibits proliferation of human mesenchymal stem cells and promotes early but not late osteoblast differentiation in vitro. J Bone Miner Metab 2012; 30:119-23. [PMID: 21993629 DOI: 10.1007/s00774-011-0323-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/04/2011] [Indexed: 12/11/2022]
Abstract
Altered bone metabolism has been reported in patients with chronic myeloid leukemia treated with the tyrosine kinase inhibitor imatinib. Several studies have shown that imatinib inhibits the differentiation and activity of osteoclasts in vitro, whereas the effects of imatinib on osteoblast differentiation are less clear. In this study osteoblast differentiation was induced in human mesenchymal stem cells (hMSCs) by treatment with bone morphogenetic protein 2 in vitro. Imatinib inhibited proliferation of hMSCs in a dose-dependent manner. Even though imatinib promoted early osteoblast differentiation assessed by alkaline phosphate activity, mineralization measured by Alizarin Red staining (ARS) was reduced by imatinib. Moreover, the inhibitory effect of imatinib on mineralization was most prominent at low concentrations of imatinib. When we measured the relative mRNA expression levels of Runx2, we found that Runx2 expression was higher in imatinib-treated (5 μM) cultures at early time points during differentiation. On the other hand, the expression of Osterix late during differentiation was lower in imatinib-treated (5 μM) cultures, corresponding to the ARS results. Thus, the effect of imatinib on osteoblast differentiation is not only dependent on the drug concentration, but indeed also on the maturation stage of the cells. This finding might partly explain why previous studies on the effects of imatinib osteoblast differentiation have shown different results.
Collapse
Affiliation(s)
- Sofia Jönsson
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
97
|
PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med 2011; 18:100-10. [PMID: 22138754 DOI: 10.1038/nm.2575] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/17/2011] [Indexed: 01/06/2023]
Abstract
The platelet-derived growth factor (PDGF) signaling system contributes to tumor angiogenesis and vascular remodeling. Here we show in mouse tumor models that PDGF-BB induces erythropoietin (EPO) mRNA and protein expression by targeting stromal and perivascular cells that express PDGF receptor-β (PDGFR-β). Tumor-derived PDGF-BB promoted tumor growth, angiogenesis and extramedullary hematopoiesis at least in part through modulation of EPO expression. Moreover, adenoviral delivery of PDGF-BB to tumor-free mice increased both EPO production and erythropoiesis, as well as protecting from irradiation-induced anemia. At the molecular level, we show that the PDGF-BB-PDGFR-bβ signaling system activates the EPO promoter, acting in part through transcriptional regulation by the transcription factor Atf3, possibly through its association with two additional transcription factors, c-Jun and Sp1. Our findings suggest that PDGF-BB-induced EPO promotes tumor growth through two mechanisms: first, paracrine stimulation of tumor angiogenesis by direct induction of endothelial cell proliferation, migration, sprouting and tube formation, and second, endocrine stimulation of extramedullary hematopoiesis leading to increased oxygen perfusion and protection against tumor-associated anemia.
Collapse
|
98
|
Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 2011; 109:923-40. [PMID: 21960725 DOI: 10.1161/circresaha.111.243147] [Citation(s) in RCA: 632] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) are a prototypical adult stem cell with capacity for self-renewal and differentiation with a broad tissue distribution. Initially described in bone marrow, MSCs have the capacity to differentiate into mesoderm- and nonmesoderm-derived tissues. The endogenous role for MSCs is maintenance of stem cell niches (classically the hematopoietic), and as such, MSCs participate in organ homeostasis, wound healing, and successful aging. From a therapeutic perspective, and facilitated by the ease of preparation and immunologic privilege, MSCs are emerging as an extremely promising therapeutic agent for tissue regeneration. Studies in animal models of myocardial infarction have demonstrated the ability of transplanted MSCs to engraft and differentiate into cardiomyocytes and vasculature cells, recruit endogenous cardiac stem cells, and secrete a wide array of paracrine factors. Together, these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improved left ventricular function, induced reverse remodeling, and decreased scar size. This article reviews the current understanding of MSC biology, mechanism of action in cardiac repair, translational findings, and early clinical trial data of MSC therapy for cardiac disease.
Collapse
Affiliation(s)
- Adam R Williams
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| | | |
Collapse
|
99
|
Liu L, Wang Y, Wu K, Fu S, Zhang L, Xu Y, Huang H. The tyrosine kinase inhibitor nilotinib inhibits proliferation and osteoblast differentiation of human mesenchymal stromal cells. Bone 2011; 49:1117-8; author reply 1119. [PMID: 21821158 DOI: 10.1016/j.bone.2011.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/13/2011] [Indexed: 11/21/2022]
|
100
|
Suzuki H, Usui I, Kato I, Oya T, Kanatani Y, Yamazaki Y, Fujisaka S, Senda S, Ishii Y, Urakaze M, Mahmood A, Takasawa S, Okamoto H, Kobayashi M, Tobe K, Sasahara M. Deletion of platelet-derived growth factor receptor-β improves diabetic nephropathy in Ca²⁺/calmodulin-dependent protein kinase IIα (Thr286Asp) transgenic mice. Diabetologia 2011; 54:2953-62. [PMID: 21833587 DOI: 10.1007/s00125-011-2270-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/05/2011] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS The activation of platelet-derived growth factor receptor-β (PDGFR-β) signalling is increased in the glomeruli and tubules of diabetic animals. In this study, we examined the role of PDGFR-β signalling during the development of diabetic nephropathy. METHODS We recently generated pancreatic beta cell-specific Ca(2+)/calmodulin-dependent protein kinase IIα (Thr286Asp) transgenic mice (CaMKIIα mice), which show very high plasma glucose levels up to 55.5 mmol/l and exhibit the features of diabetic nephropathy. These mice were crossed with conditional knockout mice in which Pdgfr-β (also known as Pdgfrb) was deleted postnatally. The effect of the deletion of the Pdgfr-β gene on diabetic nephropathy in CaMKIIα mice was evaluated at 10 and 16 weeks of age. RESULTS The plasma glucose concentrations and HbA(1c) levels were elevated in the CaMKIIα mice from 4 weeks of age. Variables indicative of diabetic nephropathy, such as an increased urinary albumin/creatinine ratio, kidney weight/body weight ratio and mesangial area/glomerular area ratio, were observed at 16 weeks of age. The postnatal deletion of the Pdgfr-β gene significantly decreased the urinary albumin/creatinine ratio and mesangial area/glomerular area ratio without affecting the plasma glucose concentration. Furthermore, the increased oxidative stress in the kidneys of the CaMKIIα mice as shown by the increased urinary 8-hydroxydeoxyguanosine (8-OHdG) excretion and the increased expression of NAD(P)H oxidase 4 (NOX4), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (MnSOD) was decreased by Pdgfr-β gene deletion. CONCLUSIONS/INTERPRETATION The activation of PDGFR-β signalling contributes to the progress of diabetic nephropathy, with an increase in oxidative stress and mesangial expansion in CaMKIIα mice.
Collapse
Affiliation(s)
- H Suzuki
- First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|